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Abstract

As two classical measures, approximation accuracy and consistency degree can be employed to evaluate the decision
performance of a decision table. However, these two measures cannot give elaborate depictions of the certainty and con-
sistency of a decision table when their values are equal to zero. To overcome this shortcoming, we first classify decision
tables in rough set theory into three types according to their consistency and introduce three new measures for evaluating
the decision performance of a decision-rule set extracted from a decision table. We then analyze how each of these three
measures depends on the condition granulation and decision granulation of each of the three types of decision tables.
Experimental analyses on three practical data sets show that the three new measures appear to be well suited for evaluating
the decision performance of a decision-rule set and are much better than the two classical measures.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, rough set theory developed by Pawlak [17] has become a popular mathematical framework for
pattern recognition, image processing, feature selection, neuro computing, conflict analysis, decision support,
data mining and knowledge discovery process from large data sets [1,16,20–23]. As applications of rough set
theory in decision problems, a number of reduct techniques have been proposed in the last 20 years for infor-
mation systems and decision tables [2,3,8,9,13–15,18,19,27,30–33,36,37]. As follows, for our further develop-
ment, we briefly review some of these techniques. b-Reduct proposed by Ziarko [37] provides a kind of
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attribute-reduction methods in the variable precision rough set model. a-Reduct and a-relative reduct that
allow the occurrence of additional inconsistency were proposed in [15] for information systems and decision
tables, respectively. An attribute-reduction method that preserves the class membership distribution of all
objects in information systems was proposed by Slezak [30,31]. Five kinds of attribute reducts and their rela-
tionships in inconsistent systems were investigated by Kryszkiewicz [7], Li [8] and Mi [14], respectively. By
eliminating some rigorous conditions required by the distribution reduct, a maximum distribution reduct
was introduced by Mi [14]. Unlike the possible reduct in [14], the maximum distribution reduct can derive
decision rules that are compatible with the original system.

A set of decision rules can be generated from a decision table by adopting any kind of reduction method men-
tioned above [6,29,35]. In recent years, how to evaluate the decision performance of a decision rule has become a
very important issue in rough set theory. In [3], based on information entropy, Düntsch suggested some uncer-
tainty measures of a decision rule and proposed three criteria for model selection. Moreover, several other mea-
sures such as certainty measure and support measure are often used to evaluate a decision rule [5,10,33].
However, all of these measures are only defined for a single decision rule and are not suitable for measuring
the decision performance of a rule set. There are two more kinds of measures in the literature [17,19], which
are approximation accuracy for decision classification and consistency degree for a decision table. Although
these two measures, in some sense, could be regarded as measures for evaluating the decision performance of
all decision rules generated from a decision table, they have some limitations. For instance, the certainty and con-
sistency of a rule set could not be well characterized by the approximation accuracy and consistency degree when
their values reaches zero. As we know, when the approximation accuracy or consistency degree is equal to zero, it
is only implied that there is no decision rule with the certainty of one in the decision table. This shows that the
approximation accuracy and consistency degree of a decision table cannot give elaborate depictions of the cer-
tainty and consistency for a rule set. To overcome the shortcomings of the existing measures, this paper aims to
find some measures for evaluating the decision performance of a set of decision rules. Three new measures are
proposed for this objective, which are certainty measure (a), consistency measure (b), and support measure (c).

The rest of this paper is organized as follows. Some preliminary concepts such as indiscernibility relation, par-
tition, partial relation of knowledge and decision tables are briefly recalled in Section 2. In Section 3, some new
concepts and two lemmas for further developments are introduced, which show how to classify decision tables
into three types. In Section 4, through some examples, the limitations of the two classical measures are revealed.
In Section 5, three new measures (a, b and c) are introduced for evaluating the decision performance of a set of
rules, it is analyzed how each of these three measures depends on the condition granulation and decision gran-
ulation of each of the three types of decision tables, and experimental analyses of each of the three measures are
performed on three practical data sets. Section 6 concludes this paper with some remarks and discussions.

2. Some basic concepts

In this section, we review some basic concepts such as indiscernibility relation, partition, partial relation of
knowledge and decision tables.

An information system (sometimes called a data table, an attribute-value system, a knowledge representa-
tion system, etc.), as a basic concept in rough set theory, provides a convenient framework for the represen-
tation of objects in terms of their attribute values. An information system S is a pair (U,A), where U is a
non-empty, finite set of objects and is called the universe and A is a non-empty, finite set of attributes. For
each a 2 A, a mapping a: U! Va is determined by a given decision table, where Va is the domain of a.

Each non-empty subset B � A determines an indiscernibility relation in the following way:
RB ¼ fðx; yÞ 2 U � U j aðxÞ ¼ aðyÞ; 8a 2 Bg:
The relation RB partitions U into some equivalence classes given by
U=RB ¼ f½x�Bjx 2 Ug; just U=B;
where [x]B denotes the equivalence class determined by x with respect to B, i.e.,
½x�B ¼ fy 2 U jðx; yÞ 2 RBg:



Table 1
A decision table about diagnosing rheum

Patients Headache Muscle pain Animal heat Rheum

e1 Yes Yes Normal No
e2 Yes Yes High Yes
e3 Yes Yes Higher Yes
e4 No Yes Normal No
e5 No No High No
e6 No Yes Higher Yes
e7 No No High Yes
e8 No Yes Higher No
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We define a partial relation � on the family {U/Bj B � A} as follows: U/P � U/Q (or U/Q � U/P) if and
only if, for every Pi 2 U/P, there exists Qj 2 U/Q such that Pi � Qj, where U=P ¼ fP 1; P 2; . . . ; P mg and
U=Q ¼ fQ1;Q2; . . . ;Qng are partitions induced by P,Q � A, respectively. In this case, we say that Q is coarser
than P, or P is finer than Q. If U/P � U/Q and U/P5U/Q, we say Q is strictly coarser than P (or P is strictly
finer than Q), denoted by U/P � U/Q (or U/Q � U/P).

It is clear that U/P � U/Q if and only if, for every X 2 U/P, there exists Y 2 U/Q such that X � Y, and
there exist X0 2 U/P, Y0 2 U/Q such that X0 	 Y0.

A decision table is an information system S = (U,C [ D) with C \ D = Ø, where an element of C is called a
condition attribute, C is called a condition attribute set, an element of D is called a decision attribute, and D is
called a decision attribute set. If U/C � U/D, then S = (U,C [ D) is said to be consistent, otherwise it is said to
be inconsistent. One can extract certain decision rules from a consistent decision table and uncertain decision
rules from an inconsistent decision table. For example, a decision table about diagnosing rheum is given by
Table 1.

In Table 1, U = {e1,e2,e3,e4,e5,e6,e7,e8} is the universe, C = {c1,c2,c3} = {Headache, Muscle pain, Animal

heat} is the condition attribute set, and D = {d} = {Rheum} is the decision attribute set.

3. Decision rule and knowledge granulation in decision tables

In the first part of this section, we briefly recall the notions of decision rules and certainty measure and sup-
port measure of a decision rule in rough set theory.

Definition 1 ([10,33]). Let S = (U,C [ D) be a decision table, Xi 2 U/C, Yj 2 U/D and Xi \ Yj 5 Ø. By
des(Xi) and des(Yj), we denote the descriptions of the equivalence classes Xi and Yj in the decision table S. A
decision rule is formally defined as
Zij : desðX iÞ ! desðY jÞ:

Certainty measure and support measure of a decision rule Zij are defined as follows [10,33]:
lðZijÞ ¼ jX i \ Y jj=jX ij and sðZijÞ ¼ jX i \ Y jj=jU j;

where jÆj is the cardinality of a set. It is clear that the value of each of l(Zij) and s(Zij) of a decision rule Zij falls

into the interval 1
jU j ; 1
h i

. In subsequent discussions, we denote the cardinality of the set Xi \ Yj by jZijj, which

is called the support number of the rule Zij.
In rough set theory, we can extract some decision rules from a given decision table. However, in some

practical issues, it may happen that there does not exist any certain decision rule with the certainty of one in
the decision-rule set extracted from a given decision table. In this situation, the lower approximation of the
target decision is equal to an empty set in this decision table. To characterize this type of decision tables, in the
following, decision tables are classified into three types according to their consistency, which are consistent
decision tables, conversely consistent decision tables and mixed decision tables.

As follows, we introduce several new concepts and notations, which will be applied in our further
developments. For convenience, by a(x) and d(x), we denote the values of an object x under a condition
attribute a 2 C and a decision attribute d 2 D, respectively.
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Definition 2. Let S = (U,C [ D) be a decision table, U/C = {X1,X2, . . .,Xm}, and U/D = {Y1,Y2, . . .,Yn}. A
condition class Xi 2 U/C is said to be consistent if d(x) = d(y), "x,y 2 Xi and "d 2 D; a decision class
Yj 2 U/D is said to be conversely consistent if a(x) = a(y), "x,y 2 Yj and "a 2 C.

It is easy to see that a decision table S = (U,C [ D) is consistent if every condition class Xi 2 U/C is
consistent.

Definition 3. Let S = (U,C [ D) be a decision table, U/C = {X1,X2, . . .,Xm}, and U/D = {Y1,Y2, . . .,Yn}.
S is said to be conversely consistent if every decision class Yj 2 U/D is conversely consistent, i.e.,
U/D � U/C. A decision table is called a mixed decision table if it is neither consistent nor conversely
consistent.

In addition to the above concepts and notations, we say that S = (U,C [ D) is strictly consistent (or strictly
and conversely consistent) if U/C � U/D (or U/D � U/C).

A strictly and conversely consistent decision table has some practical implications. A strictly and conversely
consistent decision table is inconsistent. In a strictly and conversely consistent decision table, there does not
exist any condition class X 2 U/C and any decision class Y 2 U/D such that X � Y. In other words, one can
not extract any certain decision rule from a strictly and conversely consistent decision table. Furthermore,
when a decision table is strictly and conversely consistent, two well-known classical evaluation measures,
approximation accuracy and consistency degree, can not be applied to measure its certainty and consistency.
In the remaining part of this paper, one can see that the introduction of the conversely consistency will play an
important role in revealing the limitations of the two classical measures and verifying the validity of the
evaluation measures proposed in this paper.

In a mixed decision table, from Definition 3, one can see that there exist X 2 U/C and Y 2 U/D such that X

is consistent and Y is conversely consistent. We thus obtain the following results.

• A decision table is strictly consistent iff there does not exist any Y 2 U/D such that Y is conversely consis-
tent, and

• a decision table is strictly and conversely consistent iff there does not exist any X 2 U/C such that X is
consistent.

This implies that a mixed decision table can be transformed into a conversely consistent decision table (a
consistent decision table) by deleting its strictly consistent part (by deleting its strictly and conversely
consistent part). Hence, in a broad sense, a mixed decision table is a combination of a consistent decision table
and a conversely consistent decision table. For this reason, we only focus on the properties of a consistent
decision table and a conversely consistent decision table in this paper. For general decision tables, we
investigate their characters by practical experimental analyses.

Granularity, a very important concept in rough set theory, is often used to indicate a partition or a
cover of the universe of an information system or a decision table [4,11,12,24–26,28,34]. The performance
of a decision rule depends directly on the condition granularity and decision granularity of a decision
table. In general, the changes of granulation of a decision table can be realized through two ways as
follows: (1) refining/coarsening the domain of attributes and (2) adding/reducing attributes. The first
approach is mainly used to deal with the case that the attribute values of some elements are imprecise in a
decision table. For example, in Table 1, the value of decision attribute Rheum of each element in the
universe is either Yes or No. Hence, Rheum degree can not be further analyzed, i.e., the decision values
are imprecise. Obviously, decision rules extracting from this kind of decision tables are lack of
practicability and pertinence. In the second approach, the certainty measure of a decision rule may be
changed through adding or reducing some condition attributes or decision attributes in a decision table.
For instance, in Table 1, the certainty measures of some decision rules can be increased by adding new
condition attributes.

In general, knowledge granulation is employed to measure the discernibility ability of a knowledge in rough
set theory. The smaller knowledge granulation of a knowledge is, the stronger its discernibility ability is. In
[10,12], Liang introduced a knowledge granulation G(A) to measure the discernibility ability of a knowledge in
an information system, which is given in the following definition.
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Definition 4 [10,12]. Let S = (U,A) be an information system and U/A = {R1,R2, . . .,Rm}. Knowledge granu-
lation of A is defined as
GðAÞ ¼ 1

jU j2
Xm

i¼1

jRij2: ð1Þ
Following this definition similarly, for a decision table S = (U,C [ D), we can call G(C), G(D) and G(C [ D)
condition granulation, decision granulation and granulation of S, respectively.

As a result of the above discussions, we come to the following two lemmas.

Lemma 1. Let S = (U, C [ D) be a strictly consistent decision table, i.e., U/C � U/D. Then, there exists at least

one decision class in U/D such that it can be represented as the union of more than one condition classes in U/C.

Proof. Let U/C = {X1,X2, . . .,Xm} and U/D = {Y1,Y2, . . .,Yn}. By the consistency of S, a decision class
Y 2 U/D is the union of some condition classes X 2 U/C. Furthermore, since S is strictly consistent, there exist
X0 2 U/C and Y0 2 U/D such that X0 	 Y0. This indicates that Y0 is equal to the union of more than one con-
dition classes in U/C. This completes the proof. h

Lemma 2. Let S = (U,C [ D) be a strictly and conversely consistent decision table, i.e., U/D � U/C. Then, there

exists at least one condition class in U/C such that it can be represented as the union of more than one decision

classes in U/D.

Proof. The proof is similar to that of Lemma 1. By Lemmas 1 and 2, one can easily obtain the following
theorem. h

Theorem 1. Let S = (U,C [ D) be a decision table.

(1) If S is strictly consistent, then G(C) < G(D); and

(2) if S is strictly and conversely consistent, then G(C) > G(D).

It should be noted that the inverse propositions of Lemmas 1, 2 and Theorem 1 need not be true.
4. Limitations of classical measures for decision tables

In this section, through several illustrative examples, we reveal the limitations of existing classical measures
for evaluating the decision performance of a decision table.

In [18], several measures for evaluating a decision rule Zij: des(Xi)! des(Yj) have been introduced, which
are certainty measure l(Xi,Yj) = jXi \ Yjj/jXij and support measure s(Xi,Yj) = jXi \ Yjj/jUj. However, l(Xi,Yj)
and s(Xi,Yj) are only defined for a single decision rule and are not suitable for measuring the decision perfor-
mance of a decision-rule set.

In [18], approximation accuracy of a classification was introduced by Pawlak. Let F = {Y1,Y2, . . .,Yn} be a
classification of the universe U, and C a condition attribute set. Then, C-lower and C-upper approximations of
F are given by CF = {CY1,CY2, . . ., CYn} and CF ¼ fCY 1; CY 2; . . . ;CY ng, respectively, where
CY i ¼
[
fx 2 U j½x�C � Y i 2 F g; 1 6 i 6 n;
and
CY i ¼
[
fx 2 U j½x�C \ Y i 6¼ Ø; Y i 2 F g; 1 6 i 6 n:
The approximation accuracy of F by C is defined as
aCðF Þ ¼
P

Y i2U=DjCY ijP
Y i2U=DjCY ij

: ð2Þ
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The approximation accuracy expresses the percentage of possible correct decisions when classifying objects by
employing the attribute set C. In some situations, aC(F) can be used to measure the certainty of a decision
table. However, its limitations can be revealed by the following example.

Example 1. Let S1 = (U,C [ D1) and S2 = (U,C [ D2) be two decision tables with the same universe U.
Suppose that
U=C ¼ ffe1; e2g; fe3; e4; e5g; fe6; e7gg;

U=D1 ¼ ffe1g; fe2; e3; e4g; fe5; e6g; fe7gg;
and
U=D2 ¼ ffe1; e3g; fe2; e4; e6g; fe5g; fe7gg:

Then, six decision rules extracted from S1 and their certainty measures and support measures corresponding to
each individual rule are given by

r1 : des({e1,e2})! des({e1}), lðr1Þ ¼ 1
2
, sðr1Þ ¼ 1

7
;

r2 : des({e1,e2})! des({e2}), lðr2Þ ¼ 1
2
, sðr2Þ ¼ 1

7
;

r3 : des({e3,e4,e5})! des({e3,e4}), lðr3Þ ¼ 2
3
, sðr3Þ ¼ 2

7
;

r4 : des({e3,e4,e5})! des({e5}), lðr4Þ ¼ 1
3
, sðr4Þ ¼ 1

7
;

r5 : des({e6,e7})! des({e6}), lðr5Þ ¼ 1
2
, sðr5Þ ¼ 1

7
;

r6 : des({e6,e7})! des({e7}), lðr6Þ ¼ 1
2
, sðr6Þ ¼ 1

7
.

Furthermore, seven decision rules extracted from S2 and their certainty measures and support measures cor-
responding to each individual rule are given by

r01 : desðfe1; e2gÞ ! desðfe1gÞ, lðr01Þ ¼ 1
2
, sðr01Þ ¼ 1

7
;

r20 : desðfe3; e4; e5gÞ ! desðfe3gÞ, lðr02Þ ¼ 1
3
, sðr02Þ ¼ 1

7
;

r03 : desðfe1; e2gÞ ! desðfe2gÞ, lðr03Þ ¼ 1
2
, sðr03Þ ¼ 1

7
;

r04 : desðfe3; e4; e5gÞ ! desðfe4gÞ, lðr04Þ ¼ 1
3
, sðr04Þ ¼ 1

7
;

r05 : desðfe6; e7gÞ ! desðfe6gÞ, lðr05Þ ¼ 1
2
, sðr05Þ ¼ 1

7
;

r06 : desðfe3; e4; e5gÞ ! desðfe5gÞ, lðr06Þ ¼ 1
3
, sðr06Þ ¼ 1

7
;

r07 : desðfe6; e7gÞ ! desðfe7gÞ, lðr07Þ ¼ 1
2
, sðr07Þ ¼ 1

7
.

By formula (2), we have that
aCðU=D1Þ ¼
P

Y i2U=D1
jCY ijP

Y i2U=D1
jCY ij

¼ 0

2þ 5þ 5þ 2
¼ 0;

aCðU=D2Þ ¼
P

Y i2U=D2
jCY ijP

Y i2U=D2
jCY ij

¼ 0

5þ 7þ 3þ 2
¼ 0:
That is to say aC(U/D1) = aC(U/D2) = 0.
Now, let us consider the average value of the certainty measure of each of the two rule sets extracted one

from S1 and the other from S2. Taking the average of the certainty-measure values corresponding to decision
rules for each decision table, we have that
1

6

X6

i¼1

lðriÞ ¼
1

6

1

2
þ 1

2
þ 2

3
þ 1

3
þ 1

2
þ 1

2

� �
¼ 1

2

and
1

7

X7

i¼1

lðr0iÞ ¼
1

7

1

2
þ 1

3
þ 1

2
þ 1

3
þ 1

2
þ 1

3
þ 1

2

� �
¼ 3

7
:
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Obviously, 1
2
¼ 7

14
> 6

14
¼ 3

7
. It implies that the decision table S1 has a higher certainty than S2 on the average.

However, this situation is not revealed by the approximation accuracy. Therefore, a more comprehensive and
effective measure for evaluating the certainty of a decision table is needed.

The consistency degree of a decision table S = (U,C [ D), another classical measure proposed in [18], is
defined as
cCðDÞ ¼
Pn

i¼1jCY ij
jU j : ð3Þ
The consistency degree expresses the percentage of objects which can be correctly classified into decision clas-
ses of U/D by a condition attribute set C. In some situations, cC(D) can be employed to measure the consis-
tency of a decision table. Similar to Example 1, however, the consistency of a decision table also cannot be well
characterized by the classical consistency degree because it only considers the lower approximation of a target
decision. Therefore, a more comprehensive and effective measure for evaluating the consistency of a decision
table is also needed.

From the definitions of the approximation accuracy and consistency degree, one can easily obtain the
following property.

Property 1. If S = (U, C [ D) is a strictly and conversely consistent decision table, then aC(U/D) = 0 and

cC(D) = 0.

Property 1 shows that the approximation accuracy and consistency degree cannot well characterize the

certainty and consistency of a strictly and conversely consistent decision table.

Remark. From the above analyses, it is easy to see that the shortcomings of the two classical measures are
mainly caused by the condition equivalence classes that can not be included in the lower approximation of
the target decision in a given decision table. As we know, in an inconsistent decision table, there must exist
some condition equivalence classes that can not be included in the lower approximation of the target decision.
In fact, for a strictly and conversely consistent decision table, the lower approximation of the target decision is
an empty set. Hence, we can make a conclusion that the approximation accuracy and consistency degree can
not be employed to effectively characterize the decision performance of an inconsistent decision table. To over-
come this shortcoming of the two classical measures, the effect of the condition equivalence classes that are not
included in the lower approximation of the target decision should be taken into account in evaluating the deci-
sion performance of an inconsistent decision table.
5. Evaluation of the decision performance of a rule set

To overcome the shortcomings of the two classical measures, in this section, we introduce three new mea-
sures (a, b and c) for evaluating the decision performance of a decision table and analyze how each of these
three measures depends on the condition granulation and decision granulation of each of consistent decision
tables and conversely consistent decision tables. For general decision tables, by employing three decision
tables from real world, we illustrate the advantage of these three measures for evaluating the decision perfor-
mance of a decision rule set extracted from a decision table.

Definition 5. Let S = (U,C [ D) be a decision table, and RULE = {Zij
Zij: des(Xi)! des(Yj),Xi 2 U/
C,Yj 2 U/D}. Certainty measure a of S is defined as
aðSÞ ¼
Xm

i¼1

Xn

j¼1

sðZijÞlðZijÞ ¼
Xm

i¼1

Xn

j¼1

jX i \ Y jj2

jU jjX ij
; ð4Þ
where s(Zij) and l(Zij) are the certainty measure and support measure of the rule Zij, respectively.

Theorem 2 (Extremum). Let S = (U,C [ D) be a decision table, and RULE = {ZijjZij:des(Xi)! des(Yj),Xi 2
U/C, Yj 2 U/D}.
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(1) For any Zij 2 RULE, if l(Zij) = 1, then the measure a achieves its maximum value 1.

(2) If m = 1 and n = —U—, then the measure a achieves its minimum value 1
jU j.
Proof. From the definitions of l(Zij) and s(Zij), it follows that 1
jU j 6 lðZijÞ 6 1 and

Pm
i¼1

Pn
j¼1sðZijÞ ¼Pm

i¼1

Pn
j¼1
jX i\Y jj
jU j ¼ 1.

(1) If l(Zij) = 1 for any Zij 2 RULE, then we have that
aðSÞ ¼
Xm

i¼1

Xn

j¼1

sðZijÞlðZijÞ ¼
Xm

i¼1

Xn

j¼1

jX i \ Y jj2

jU jjX ij
¼
Xm

i¼1

Xn

j¼1

jX i \ Y jj
jU j � 1 ¼ 1:
(2) If m = 1 and n = jUj, then lðZijÞ ¼ 1
jU j for any Zij 2 RULE. In this case, we have that
aðSÞ ¼
Xm

i¼1

Xn

j¼1

sðZijÞlðZijÞ ¼
Xm

i¼1

Xn

j¼1

jX i \ Y jj2

jU jjX ij
¼
Xm

i¼1

Xn

j¼1

jX i \ Y jj
jU j � 1

jU j ¼
1

jU j :
This completes the proof. h
Remark. In fact, a decision table S = (U,C [ D) is consistent if and only if every decision rule from S is certain,
i.e., the certainty measure of each of these decision rules is equal to one. So, (1) of Theorem 2 shows that the
measure a achieves its maximum value 1 when S is consistent. When we want to distinguish any two objects of U

without any condition information, (2) of Theorem 2 shows that a achieves its minimum value 1
jU j.

In the following example, how the measure a overcomes the limitation of the classical measure aC(U/D) can
be illustrated.

Example 2 (Continued from Example 1). Computing the measure a, we have that
aðS1Þ ¼
Xm

i¼1

Xn

j¼1

sðZijÞlðZijÞ

¼ 1

7
� 1
2
þ 1

7
� 1
2
þ 2

7
� 2
3
þ 1

7
� 1
3
þ 1

7
� 1
2
þ 1

7
� 1
2
¼ 11

21
;

aðS2Þ ¼
Xm

i¼1

Xn

j¼1

sðZijÞlðZijÞ

¼ 1

7
� 1
2
þ 1

7
� 1
2
þ 1

7
� 1
3
þ 1

7
� 1
3
þ 1

7
� 1
3
þ 1

7
� 1
2
þ 1

7
� 1
2
¼ 9

21
:

Therefore, a(S1) > a(S2).
Example 2 indicates that unlike the approximation accuracy aC(U/D), the measure a can be used to

measure the certainty of a decision-rule set when aC(U/D) = 0, i.e., the lower approximation of each decision
class is equal to an empty set.

Remark. From formula (2), it follows that aC(U/D) = 0 if
S

Y i2U=DCY i ¼ Ø. In fact, in a broad sense, CYi = Ø
does not imply that the certainty of a rule concerning Yi is equal to 0. So the measure a is much better than the
approximation accuracy for measuring the certainty of a decision-rule set when a decision table is strictly and
conversely consistent.

In the following, we discuss the monotonicity of the measure a in a conversely consistent decision table.

Theorem 3. Let S1 = (U, C1 [ D1) and S2 = (U,C2 [ D2) be two conversely consistent decision tables. If U/

C1 = U/C2 and U/D2 � U/D1, then a(S1) > a(S2).

Proof. From U/C1 = U/C2 and the converse consistencies of S1 and S2, it follows that there exist Xp 2 U/C1

and Yq 2 U/D1 such that Yq � Xp. Since U/D2 � U/D1, there exist Y 1
q; Y

2
q; . . . ; Y s

q 2 U=D2 (s > 1) such that
Y q ¼

Ss
k¼1Y k

q. In other words, the rule Zpq in S1 can be decomposed into a family of rules Z1
pq; Z

2
pq; . . . ; Zs

pq in
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S2. It is clear that jZpqj ¼
Ps

k¼1jZk
pqj. Thus, jZpqj2 >

Ps
k¼1jZk

pqj
2. Therefore, from the definition of a(S), it

follows that a(S1) > a(S2). This completes the proof.
Theorem 3 states that the certainty measure a of a conversely consistent decision table decreases with its

decision classes becoming finer. h

Theorem 4. Let S1 = (U, C1 [ D1) and S2 = (U, C2 [ D2) be two conversely consistent decision tables. If U/

D1 = U/D2 and U/C2 � U/C1, then a(S1) < a(S2).

Proof. From U/C2 � U/C1, there exist Xl 2 U/C1 and an integer s > 1 such that X l ¼
Ss

k¼1X k
l , where

X k
l 2 U=C2. It is clear that jX lj ¼

Ps
k¼1jX k

l j. Therefore, 1
jX lj <

1
jX 1

l j
þ 1
jX 2

l j
þ � � � þ 1

jX s
lj
.

Noticing that both S1 and S2 are conversely consistent, we have j Zlq j¼j Zk
lq j (k = 1,2, � � � ,s).

Thus,
Table
Data s

Data s

Tic-tac
Derma
Nurser
aðS1Þ ¼
Xm

i¼1

Xn

j¼1

sðZijÞlðZijÞ ¼
1

jU j
Xl
1

i¼1

Xn

j¼1

jZijj2

jX ij
þ 1

jU j
Xn

j¼1

jZljj2

jX lj
þ 1

jU j
Xm

i¼lþ1

Xn

j¼1

jZijj2

jX ij

<
1

jU j
Xl
1

i¼1

Xn

j¼1

jZijj2

jX ij
þ 1

jU j
Xs

k¼1

Xn

j¼1

jZljj2

jX k
l j
þ 1

jU j
Xm

i¼lþ1

Xn

j¼1

jZijj2

jX ij
¼ aðS2Þ:
This completes the proof. h

Theorem 4 states that the certainty measure a of a conversely consistent decision table increases with its
condition classes becoming finer.

For a general decision table, in the following, through experimental analyses, we illustrate the validity of
the measure a for assessing the decision performance of a decision-rule set extracted from the decision table.
In order to verify the advantage of the measure a over the approximation accuracy aC(U/D), we have down-
loaded three public data sets with practical applications from UCI Repository of machine learning databases
[38], which are described in Table 2. All condition attributes and decision attributes in the three data sets are
discrete.

In Table 2, the data set Tic-tac-toe is the encoding of the complete set of possible board configurations at
the end of tie-tac-toe games, which is used to obtain possible ways to create a ‘‘three-in-a-row’’; the data set
Dermatology is a decision table about diagnosing dermatosis according to some clinical features, which is used
to extract general diagnosing rules; and Nursery data set is derived from a hierarchical decision model orig-
inally developed to rank applications for nursery schools.

Here, we compare the certainty measure a with the approximation accuracy aC(D) on these three practical
data sets. The comparisons of values of two measures with the numbers of features in these three data sets are
shown in Tables 3–5 and Figs. 1–3.

It can be seen from Tables 3–5 that the value of the certainty measure a is not smaller than that of the
approximation accuracy aC(D) for the same number of selected features, and this value increases as the num-
ber of selected features becomes bigger in the same data set. The measure a and approximation accuracy will
achieve the same value 1 if the decision table becomes consistent through adding the number of selected fea-
tures. However, from Fig. 1, it is easy to see that the values of approximation accuracy equal to zero when the
number of features equals 1 or 2. In this situation, the lower approximation of the target decision equals an
empty set in the decision table. Hence, the approximation accuracy cannot be used to effectively characterize
the certainty of the decision table when the value of approximation accuracy equals 0. But, for the same
2
ets description

ets Samples Condition features Decision classes

-toe 958 9 2
tology 366 33 6
y 12,960 8 5



Table 3
aC(D) and a with different numbers of features in the data set Tie-tac-toe

Measure Features

1 2 3 4 5 6 7 8 9

aC(D) 0.0000 0.0000 0.0668 0.0886 0.2647 0.6348 0.8933 1.0000 1.0000
a 0.5557 0.5661 0.6414 0.6650 0.7916 0.9000 0.9718 1.0000 1.0000

Table 4
aC(D) and a with different numbers of features in the data set Dermatology

Measure Features

3 6 9 12 15 18 21 24 27 30 33

aC(D) 0.0010 0.2244 0.6358 0.8458 0.9625 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
a 0.3006 0.7167 0.9144 0.9688 0.9909 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5
aC(D) and a with different numbers of features in the data set Nursery

Measure Features

1 2 3 4 5 6 7 8

aC(D) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
a 0.3425 0.4292 0.4323 0.4437 0.4609 0.4720 0.4929 1.0000
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Fig. 1. Variation of the certainty measure a and the approximation accuracy with the number of features (data set Tie-tac-toe).
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situation as that the numbers of features equal 1 and 2, the values of the certainty measure a equal 0.557 and
0.5661, respectively. It shows that unlike the approximation accuracy, the certainty measure of the decision
table with two features is higher than that of the decision table with only one feature. Hence, the measure
a is much better than the approximation accuracy for an inconsistent decision table. We can make the same



1 2 3 6 9 12 15 18 21 24 33
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of features

V
al

ue
 o

f t
he

 m
ea

su
re

approximation accuracy
certainty measure α

Fig. 2. Variation of the certainty measure a and the approximation accuracy with the number of features (data set Dermatology).
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Fig. 3. Variation of the certainty measure a and the approximation accuracy with the number of features (data set Nursery).
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conclusion from Figs. 2 and 3. In other words, when aC(D) = 0 in Figs. 1–3, the measure a is still valid for
evaluating the certainty of the set of decision rules obtained by using these selected features. Hence, the mea-
sure a may be better than the approximation accuracy for evaluating the certainty of a decision table.
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Based on the above analyses, we conclude that if S is consistent, the measure a has the same evaluation
ability as the accuracy measure aC(D) and that if S is inconsistent, the measure a has much better evaluation
ability than the accuracy measure aC(D).

Now, we introduce a measure b to evaluate the consistency of a set of decision rules extracted from a deci-
sion table.

Definition 6. Let S = (U,C [ D) be a decision table and RULE = {Zij—Zij: des(Xi)! des(Yj),Xi 2
U/C,Yj 2 U/D}. Consistency measure b of S is defined as
bðSÞ ¼
Xm

i¼1

jX ij
jU j ½1


4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ�; ð5Þ
where Ni is the number of decision rules determined by the condition class Xi and l(Zij) is the certainty mea-
sure of the rule Zij.

Theorem 5 (Extremum). Let S = (U,C [ D) be a decision table and RULE = {ZijjZij:des(Xi)! des(Yj),Xi 2 U/

C, Yj 2 U/D}.

(1) For every Zij 2 RULE, if l(Zij) = 1, then the measure b achieves its maximum value 1, and

(2) for every Zij 2 RULE, if lðZijÞ ¼ 1
2
, then the measure b achieves its minimum value 0.
Proof. From the definition of l(Zij), it follows that 1
jU j 6 lðZijÞ 6 1.

(1) If l(Zij) = 1 for all Zij 2 RULE, then we have that
bðSÞ ¼
Xm

i¼1

jX ij
jU j ½1


4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ� ¼
Xm

i¼1

jX ij
jU j ½1


4

jX ij
XNi

j¼1

jX i \ Y jj � 1� ð1
 1Þ�

¼
Xm

i¼1

jX ij
jU j ¼ 1:
(2) If lðZijÞ ¼ 1
2

for all Zij 2 RULE, then we have that
bðSÞ ¼
Xm

i¼1

jX ij
jU j 1
 4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ
" #

¼
Xm

i¼1

jX ij
jU j 1
 4

jX ij
XNi

j¼1

jX i \ Y jj �
1

4

" #

¼
Xm

i¼1

jX ij
jU j 1
 1

jX ij
XNi

j¼1

jX i \ Y jj
" #

¼
Xm

i¼1

jX ij
jU j ½1
 1� ¼ 0:
This completes the proof. h

It should be noted that the measure b achieves its maximum one when S = (U,C [ D) is a consistent deci-
sion table.

Remark. Unlike the consistency degree cC(U/D), the measure b can be used to evaluate the consistency of a
decision-rule set when cC(U/D) = 0, i.e., the lower approximation of each decision class is equal to an empty
set. From formula (3), it follows that cC(D) = 0 if

S
Y i2U=DCY i ¼£. In fact, as we know, CYi = B does not

imply that the certainty of a rule concerning Yi is equal to 0. So the measure b is much better than the classical
consistency degree for measuring the consistency of a decision-rule set when decision tables are strictly and
conversely consistent.

The monotonicity of the measure b on conversely consistent decision tables can be found in the following
Theorem 6 and 7.

Theorem 6. Let S1 = (U, C1 [ D1) and S2 = (U,C2 [ D2) be two conversely consistent decision tables. If U/

C1 = U/C2 and U/D2 � U/D1, then b(S1) < b(S2) when 8lðZijÞ 6 1
2
, and b(S1) > b(S2) when 8lðZijÞP 1

2
.
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Proof. Since U/C1 = U/C2 and the conversely consistencies of S1 and S2, there exist Xp 2 U/C1 and Yq 2 U/D1

such that Yq � Xp. By U/D2 � U/D1, we derive that there exist Y 1
q; Y

2
q; . . . ; Y s

q 2 U=D2 (s > 1) such that
Y q ¼

Ss
k¼1Y k

q. In other words, the rule Zpq in S1 can be decomposed into a family of rules Z1
pq; Z

2
pq; . . . ; Zs

pq

in S2. It is clear that jZpqj ¼
Ps

k¼1jZk
pqj.

Let {dDðZilÞ ¼ jX i\½xl�Dj
jX ij (xl 2 Xi), where [xl]D is the decision class of xl induced by D. So, we know that if

xl 2 Xi \ Yj, then dD(Zil) = l(Zij) holds.
Hence, it follows that
bðSÞ ¼
Xm

i¼1

jX ij
jU j ½1


4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ� ¼
Xm

i¼1

jX ij
jU j ½1


4

jX ij
XjX i j

l¼1

dDðZilÞð1
 dDðZilÞÞ�

¼
Xm

i¼1

jX ij
jU j �

4

jX ij
XjX i j

l¼1

dDðZilÞ 

1

2

� �2

¼ 4

jU j
Xm

i¼1

XjX i j

l¼1

dDðZilÞ 

1

2

� �2

:

Therefore, when 8lðZijÞ 6 1
2
, we have that
bðS1Þ ¼
Xm

i¼1

jX ij
jU j ½1


4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ� ¼
4

jU j
Xm

i¼1

XjX i j

l¼1

dD1
ðZilÞ 


1

2

� �2

¼ 4

jU j
Xm

i¼1;i6¼p

XjX ij

l¼1

dD1
ðZilÞ 


1

2

� �2

þ 4

jU j
XjX p j

l¼1

dD1
ðZplÞ 


1

2

� �2

<
4

jU j
Xm

i¼1;i6¼p

XjX ij

l¼1

dD2
ðZilÞ 


1

2

� �2

þ 4

jU j
XjX p j

l¼1

dD2
ðZplÞ 


1

2

� �2

¼ bðS2Þ:
Similar to this idea, b(S1) > b(S2) when 8lðZijÞP 1
2

can be proved.This completes the proof. h

Theorem 6 states that the consistency measure b of a conversely consistent decision table increases with its
decision classes becoming finer when 8lðZijÞ 6 1

2
, and decreases with its decision classes becoming finer when

8lðZijÞP 1
2
.

Theorem 7. Let S1 = (U, C1 [ D1) and S2 = (U, C2 [ D2) be two conversely consistent decision tables. If U/

D1 = U/D2 and U/C2 � U/C1, then b(S1) > b(S2) when 8lðZijÞ 6 1
2, and b(S1) < b(S2) when 8lðZijÞP 1

2.

Proof. Let dCðZilÞ ¼ jX i\½xl�Dj
jX ij (xl 2 Xi,Xi 2 U/C), where [xl]D is the decision class of xl induced by D. So, we

know that if xl 2 Xi \ Yj, then dC(Zil) = l(Zij) holds.
From U/C2 � U/C1, we know there exist Xp 2 U/C1 and an integer s > 1 such that X p ¼

Ss
k¼1X k

p, where
X k

p 2 U=C2. It is clear that jX lj ¼
Ps

k¼1jX k
l j, and jX k

pj < jX pj for every X k
p 2 U=C2. From the converse

consistencies of S1 and S2, it follows that
lðZpjÞ ¼
jX p \ Y jj
jX pj

¼ jY jj
jX pj

<
jY jj
jX k

pj
¼
jX k

p \ Y jj
jX k

pj
¼ lðZk

pjÞ; k ¼ f1; 2; . . . ; sg:
That is dC1
ðZilÞ < dC2

ðZilÞ.
Then, when 8lðZijÞ 6 1

2, we can get that
bðS1Þ ¼
Xm

i¼1

jX ij
jU j 1
 4

jX ij
XNi

j¼1

jX i \ Y jjlðZijÞð1
 lðZijÞÞ
" #

¼ 4

jU j
Xm

i¼1

XjX i j

l¼1

�
dC1
ðZilÞ 


1

2

�2

¼ 4

jU j
Xm

i¼1;i6¼p

XjX ij

l¼1

dC1
ðZilÞ 


1

2

� �2

þ 4

jU j
XjX p j

l¼1

dC1
ðZplÞ 


1

2

� �2

>
4

jU j
Xm

i¼1;i6¼p

XjX ij

l¼1

dC2
ðZilÞ 


1

2

� �2

þ 4

jU j
XjX p j

l¼1

dC2
ðZplÞ 


1

2

� �2

¼ 4

jU j
Xm

i¼1;i6¼p

XjX ij

l¼1

dC2
ðZilÞ 


1

2

� �2

þ 4

jU j
Xs

k¼1

XjX k
p j

l¼1

dC2
ðZplÞ 


1

2

� �2

¼ bðS2Þ:
Similarly, we can prove that b(S1) < b(S2) when 8lðZijÞP 1
2
. This completes the proof. h
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Theorem 7 states that the consistency measure b of a conversely consistent decision table decreases with its
condition classes becoming finer when 8lðZijÞ 6 1

2
, and increases with its condition classes becoming finer

when 8lðZijÞP 1
2
.

For general decision tables, to illustrate the differences between the consistency measure b and the consis-
tency degree cC(D), the three practical data sets in Table 2 will be used again. The comparisons of values of the
two measures with the numbers of features in these three data sets are shown in Tables 6–8, and Figs. 4–6.

From Tables 6–8, it can be seen that the value of the consistency measure b is not smaller than that of the
consistency degree cC(D) for the same number of selected features, and this value increases as the number of
selected features becomes bigger in the same data set. In particular, if the decision table becomes consistent
through adding the number of selected features, the measure b and the consistency degree will have the same
value 1.

Whereas, from Fig. 4, it is easy to see that the values of the consistency degree equal 0 when the number of
features equals 1 or 2. In this situation, the lower approximation of the target decision in the decision table
equals an empty set. Hence, the consistency degree cannot be used to effectively characterize the consistency
of the decision table when the value of the consistency degree equals 0. But, for the same situation as that the
numbers of features equal 1 and 2, the values of the consistency measure b equal 0.1114 and 0.1322, respec-
tively. It shows that unlike the consistency degree, the consistency measure b of the decision table with two
features is higher than that of the decision table with only one feature. Therefore, the measure b is much better
than the consistency degree for an inconsistent decision table. Obviously, we can make the same conclusion
from Figs. 7 and 8. In other words, the measure b is still valid for evaluating the consistency of a set of decision
rules obtained by using these selected features when the value of the consistency degree cC(D) is equal to 0.
Given this advantage, we may conclude that the measure b is much better than the classical consistency degree
for evaluating the consistency of a decision table.

Based on the above analyses, we can draw conclusions that if S is consistent, the measure b has the same
evaluation ability as the consistency degree cC(D) and that if S is inconsistent, the measure b has much better
evaluation ability than the consistency degree cC(D).

Finally, we consider how to define a better support measure for evaluating a decision-rule set.
Table 6
cC(D) and b with different numbers of features in the data set Tie-tac-toe

Measure Features

1 2 3 4 5 6 7 8 9

cC(D) 0.0000 0.0000 0.1253 0.1628 0.4186 0.7766 0.9436 1.0000 1.0000
b 0.1114 0.1322 0.2827 0.3300 0.5832 0.8000 0.9436 1.0000 1.0000

Table 7
cC(D) and b with different numbers of features in the data set Dermatology

Measure Features

3 6 9 12 15 18 21 24 27 30 33

cC(D) 0.0055 0.4372 0.8060 0.9290 0.9809 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
b 0.3101 0.5285 0.8471 0.9429 0.9818 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 8
cC(D) and b with different numbers of features in the data set Nursery

Measure Features

1 2 3 4 5 6 7 8

cC(D) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000
b 0.13777 0.11119 0.11122 0.11126 0.11120 0.11111 0.11111 1.00000
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Fig. 4. Variation of the consistency measure b and the consistency degree with the number of features (data set Tie-tac-toe).
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Fig. 5. Variation of the consistency measure b and the consistency degree with the number of features (data set Dermatology).
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Let S = (U,C [ D) be a decision table and RULE = {Zij—Zij: des(Xi)! des(Yj),Xi 2 U/C,Yj 2 U/D}. Intu-
itively, the mean value of the support measures S(Zij) of all rules Zij seems to be suitable for this task. How-
ever, the following example indicates our intuition unreliable.
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Fig. 6. Variation of the consistency measure b and the consistency degree with the number of features (data set Nursery).
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Fig. 7. Variation of the support measure c with the number of features (data set Tie-tac-toe).
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Example 3. Let S1 = (U,C1 [ D1) and S2 = (U,C2 [ D2) be two decision tables with the same universe U.
Suppose that
U=C1 ¼ ffe1; e2g; fe3; e4g; fe5; e6; e7; e8; e9gg;
U=D1 ¼ ffe1; e2; e3; e4g; fe5; e6; e7; e8; e9gg;
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Fig. 8. Variation of the support measure c with the number of features (data set Dermatology).
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U=C2 ¼ ffe1; e2; e3; e4; e5; e6g; fe7; e8; e9gg;
U=D2 ¼ ffe1; e2; e3g; fe4; e5; e6g; fe7; e8; e9gg:
By taking the average value, it follows that
wsðS1Þ ¼
1

jRULEj
Xm

i¼1

Xn

j¼1

sðZijÞ ¼
1

3

2

9
þ 2

9
þ 5

9

� �
¼ 1

3
;

wsðS2Þ ¼
1

jRULEj
Xm

i¼1

Xn

j¼1

sðZijÞ ¼
1

3

3

9
þ 3

9
þ 3

9

� �
¼ 1

3
:

Therefore, in this case, ws(S1) = ws(S2).
In fact, the weight information of each decision rule has not been considered in this measure. Hence, it may

not be able to effectively characterize the the support measure of a complete decision table.
In the following, we define a more effective support measure c for evaluating the support of a decision-rule

set.

Definition 7. Let S = (U,C [ D) be a decision table and RULE = {ZijjZij: des(Xi)! des(Yj),Xi 2 U/C,Yj 2 U/
D}. Support measure c of S is defined as
cðSÞ ¼
Xm

i¼1

Xn

j¼1

s2ðZijÞ ¼
Xm

i¼1

Xn

j¼1

jX i \ Y jj2

jU j2
; ð6Þ
where s(Zij) is the support measure of the rule Zij.

Theorem 8 (Extremum). Let S = (U,C [ D) be a decision table and RULE = {Zij—Zij:des(Xi)! des(Yj),Xi 2
U/C,Yj 2 U/D}.

(1) If m = n = 1, then the measure c achieves its maximum value 1, and

(2) if m = jUj or n = jUj, then the measure c achieves its minimum value 1
jU j.
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Proof. From the definition of s(Zij), it follows that 1
jU j 6 lðZijÞ 6 1 and

Pm
i¼1

Pn
j¼1sðZijÞ ¼

Pm
i¼1

Pn
j¼1
jX i\Y jj
jU j ¼ 1.

(1) If m = n = 1, then sðZijÞ ¼ jX i\Y jj
jU j ¼

jU j
jU j ¼ 1. Therefore, one can obtain that cðSÞ ¼

Pm
i¼1

Pn
j¼1s2ðZijÞ ¼ 1.

(2) If m = jUj or n = jUj, then sðZijÞ ¼ 1
jU j for all Zij 2 RULE. Hence, cðSÞ ¼

Pm
i¼1

Pn
j¼1s2ðZijÞ ¼Pm

i¼1
1
jU j2 ¼

1
jU j.

This completes the proof. h

Example 4 (Continued from Example 3). From the definition of the measure c, it follows that
cðS1Þ ¼
Xm

i¼1

Xn

j¼1

s2ðZijÞ ¼
2

9

� �2

þ 2

9

� �2

þ 5

9

� �2

¼ 34

81
and

cðS2Þ ¼
Xm

i¼1

Xn

j¼1

s2ðZijÞ ¼
3

9

� �2

þ 3

9

� �2

þ 3

9

� �2

¼ 27

81
:

Therefore, c(S1) > c(S2).
Example 4 indicates that the measure c may be better than the measure ws used in Example 3 for evaluating

a decision-rule set.

Theorem 9. Let S1 = (U,C1 [ D1) and S2 = (U, C2 [ D2) be two decision tables. Then, c(S1) < c(S2) if and only if

G(C1 [ D1) < G(C2 [ D2).

Proof. Suppose that U/(C [ D) = {Xi \ YjjXi \ Yj 5 Ø, Xi 2 U/C1,Yj 2 U/D} and RULE = {Zij—Zij:

Xi! Yj,Xi 2 U/C,Yj 2 U/D}. From Definition 4 and sðZijÞ ¼ jX i\Y jj
jU j , it follows that
GðC [ DÞ ¼ 1

jU j2
Xm

i¼1

Xn

j¼1

jX i \ Y jj2 ¼
Xm

i¼1

Xn

j¼1

jX i \ Y jj
jU j

� �2

¼
Xm

i¼1

Xn

j¼1

s2ðZijÞ ¼ cðSÞ:
Therefore, c(S1) < c(S2) if and only if G(C1 [ D1) < G(C2 [ D2). This completes the proof. h

Theorem 9 states that the support measure c of a decision table increases with the granulation of the deci-
sion table becoming bigger. As a direct result of Theorem 9, we obtain

Corollary 1. Let S1 = (U, C1 [ D1) and S2 = (U, C2 [ D2) be two decision tables. If U/(C1 [ D1) � U/(C2 [ D2),

then c(S1) < c(S2).

Theorem 10. Let S1 = (U,C1 [ D1) and S2 = (U, C2 [ D2) be two conversely consistent decision tables. If U/

C1 = U/C2 and U/D1 � U/D2, then c(S1) < c(S2).

Proof. From U/C1 = U/C2 and the converse consistencies of S1 and S2, it follows that there exist Xl 2 U/C1

and Y j0
2 U=D2 such that Y j0

� X l. By U/D1 � U/D2, we derive that there exist Y 1
j0
; Y 2

j0
; � � � ; Y s

j0
2 U=D1 (s > 1)

such that Y j0
¼
Ss

k¼1Y k
j0

and jY j0
j ¼

Ps
k¼1jY k

j0
j. It is clear that jZlj0

j ¼
Ps

k¼1jZk
lj0
j. Hence,
cðS2Þ ¼
Xm

i¼1

Xn

j¼1

s2ðZijÞ ¼
Xl
1

i¼1

Xn

j¼1

s2ðZijÞ þ
Xn

j¼1

s2ðZljÞ þ
Xm

i¼lþ1

Xn

j¼1

s2ðZijÞ

¼
Xl
1

i¼1

Xn

j¼1

s2ðZijÞ þ
Xn

j¼1;j 6¼j0

s2ðZljÞ þ s2ðZlj0
Þ þ

Xm

i¼lþ1

Xn

j¼1

s2ðZijÞ

¼
Xl
1

i¼1

Xn

j¼1

s2ðZijÞ þ
Xn

j¼1;j 6¼j0

s2ðZljÞ þ
jX l \ Y j0

j2

jU j2
þ
Xm

i¼lþ1

Xn

j¼1

s2ðZijÞ
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¼
Xl
1

i¼1

Xn

j¼1

s2ðZijÞ þ
Xn

j¼1;j 6¼j0

s2ðZljÞ þ
jX l \

Ss
k¼1

Y k
j0

� �
j2

jU j2
þ
Xm

i¼lþ1

Xn

j¼1

s2ðZijÞ

>
Xl
1

i¼1

Xn

j¼1

s2ðZijÞ þ
Xn

j¼1;j 6¼j0

s2ðZljÞ þ
Ps

k¼1jX l \ Y k
j0
j2

jU j2
þ
Xm

i¼lþ1

Xn

j¼1

s2ðZijÞ

¼
Xl
1

i¼1

Xn

j¼1

s2ðZijÞ þ
Xn

j¼1;j 6¼j0

s2ðZljÞ þ
Xs

k¼1

s2ðZk
lj0
Þ þ

Xm

i¼lþ1

Xn

j¼1

s2ðZijÞ ¼ cðS1Þ;
that is c(S1) < c(S2). This completes the proof. h

Theorem 10 states that the support measure c of a decision table decreases with its decision classes becom-
ing finer.

Theorem 11. Let S1 = (U, C1 [ D1) and S2 = (U, C2 [ D2) be two consistent decision tables. If U/C1 � U/C2 and

U/D1 = U/D2, then c(S1) < c(S2).

Proof. The proof is similar to that of Theorem 10.
Theorem 11 states that the support measure c of a decision table decreases as the condition classes becomes

finer. As a result of Theorem 11, we obtain the following two corollaries. square

Corollary 2. Let S1 = (U,C1 [ D1) and S2 = (U, C2 [ D2) be two consistent decision tables. If U/C1 = U/C2, then

c(S1) = c(S2).

Proof. Suppose U/(C [ D) = {Xi \ YjjXi \ Yj 5 Ø, Xi 2 U/C1,Yj 2 U/D}. Since both S1 and S2 are consis-
tent, we have that U/C1 � U/D1 and U/C2 � U/D2, i.e., U/(C1 [ D1) = U/C1 and U/(C2 [ D2) = U/C2. It fol-

lows from U/C1 = U/C2 and sðZijÞ ¼ jX i\Y jj
jU j that c(S1) = c(S2). This completes the proof. h

Corollary 3. Let S1 = (U,C1 [ D1) and S2 = (U, C2 [ D2) be two conversely consistent decision tables. If U/

D1 = U/D2, then c(S1) = c(S2).

Proof. The proof is similar to that of Corollary 2.
Finally, we investigate the variation of the values of the support measure c with the numbers of features in

the three practical data sets in Table 2. The values of the measure with the numbers of features in these three
data sets are shown in Tables 9–11 and Figs. 7–9.

From these tables and figures, one can see that the value of the support measure c decreases with the
number of condition features becoming bigger in the same data set. Note that we may extract more decision
9
different numbers of features in the data set Tie-tac-toe

re Features

1 2 3 4 5 6 7 8 9

0.1998 0.0695 0.0304 0.0120 0.0060 0.0030 0.0016 0.0010 0.0010

10
different numbers of features in the data set Dermatology

re Features

3 6 9 12 15 18 21 24 27 30 33

0.0593 0.0080 0.0052 0.0038 0.0032 0.0029 0.0028 0.0028 0.0028 0.0027 0.0027



Table 11
c with different numbers of features in the data set Nursery

Measure Features

1 2 3 4 5 6 7 8

c 0.11418 0.02861 0.00721 0.00185 0.00064 0.00033 0.00011 0.00007

1 2 3 4 5 6 7 8
0

0.02
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Fig. 9. Variation of the support measure c with the number of features (data set Nursery).
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rules through adding the number of condition features in general. In fact, the bigger the number of decision
rules is, the smaller the value of the support measure is in the same data set. Therefore, the measure c is able to
effectively evaluate the support of all decision rules extracted from a given decision table.

From the above experimental results and analyses, the proposed measures a, b and c appear to be well
suited for evaluating the decision performance of a decision table and a decision-rule set. These measures will
be helpful for selecting a preferred rule-extracting method for a particular application.
6. Conclusions

In rough set theory, some classical measures for evaluating a decision rule or a decision table, such as the
certainty measure and support measure of a rule and the approximation accuracy and consistency degree of a
decision table have been suggested. However, these existing measures are not effective for evaluating the deci-
sion performance of a decision-rule set. In this paper, the limitations of these classical measures have been
exemplified. To overcome these limitations, decision tables have been classified into three types according
to their consistencies and three new more effective measures (a, b and c) have been introduced for evaluating
the certainty, consistency and support of a decision-rule set extracted from a decision table, respectively. It has
been analyzed how each of these three new measures depends on the condition granulation and decision gran-
ulation of each of the three types of decision tables. The experimental analyses on three practical decision
tables show that these three new measures are adequate for evaluating the decision performance of a deci-
sion-rule set extracted from a decision table in rough set theory.
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