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The leading partitional clustering technique, k-modes, is one of the most computationally efficient clus-
tering methods for categorical data. However, the performance of the k-modes clustering algorithm
which converges to numerous local minima strongly depends on initial cluster centers. Currently, most
methods of initialization cluster centers are mainly for numerical data. Due to lack of geometry for the
categorical data, these methods used in cluster centers initialization for numerical data are not applicable
to categorical data. This paper proposes a novel initialization method for categorical data which is imple-
mented to the k-modes algorithm. The method integrates the distance and the density together to select
initial cluster centers and overcomes shortcomings of the existing initialization methods for categorical
data. Experimental results illustrate the proposed initialization method is effective and can be applied to
large data sets for its linear time complexity with respect to the number of data objects.
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1. Introduction

Clustering is a process of grouping a set of objects into clusters so
that the objects in the same cluster have high similarity but are very
dissimilar with objects in other clusters. Various types of clustering
methods have been proposed and developed, see, for instance (Jain
& Dubes, 1988). Clustering algorithms in the literature can
generally be classified into two types: hierarchical clustering and
partitional clustering. Hierarchical clustering algorithms, essen-
tially heuristic procedures, produce a hierarchy of partitions of
the set of observations according to an agglomerative strategy or
to a divisive one. Partitional clustering algorithms, in general,
assume a given number of clusters and, essentially, seek the
optimization of an objective function measuring the homogeneity
within the clusters and/or the separation between the clusters.

The k-means algorithm (Anderberg, 1973; Ball & Hall, 1967;
MacQueen, 1967; Jain & Dubes, 1988) is a well known partitional
clustering algorithm which is widely used in real world applications
such as marketing research and data mining to cluster very large
data sets due to their efficiency. In 1997 Huang (1997, 1998),
extended the k-means algorithm to propose the k-modes algorithm
whose extensions have removed the numeric-only limitation of the
k-means algorithm and enable the k-means clustering process to be
used to efficiently cluster large categorical data sets from real world
databases. Since first published, the k-modes algorithm has become
ll rights reserved.
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a popular technique in solving categorical data clustering problems
in different application domains (Andreopoulos, An, & Wang, 2005).

The k-means algorithm and the k-modes algorithm use alternat-
ing minimization methods to solve non convex optimization
problems in finding cluster solutions (Jain & Dubes, 1988). These
algorithms require a set of initial cluster centers to start and often
end up with different clustering results from different sets of initial
cluster centers. Therefore, these algorithms are very sensitive to the
initial cluster centers. Usually, these algorithms are run with differ-
ent initial guesses of cluster centers, and the results are compared
in order to determine the best clustering results. One way is to se-
lect the clustering results with the least objective function value
formulated in these algorithms, see, for instance (Huang, Ng, Rong,
& Li, 2005). In addition, cluster validation techniques can be em-
ployed to select the best clustering result, see, for instance (Jain &
Dubes, 1988). Other approaches have been proposed and studied
to address this issue by using a better initial seed value selection
for the k-means algorithm (Arthur & Vassilvitskii, 2007; Babu &
Murty, 1993; Brendan & Delbert, 2007; Bradley, Mangasarian, &
Street, 1997; Bradley & Fayyad, 1998; Khan & Ahmad, 2004;
Krishna & Murty, 1999; Laszlo & Mukherjee, 2006, 2007; Pen,
Lozano, & Larraaga, 1999). For example, some experts (Babu &
Murty, 1993; Krishna & Murty, 1999; Laszlo & Mukherjee, 2006,
2007) used genetic algorithm to obtain the good initial cluster cen-
ters. Arthur and Vassilvitskii (2007) proposed and studied a careful
seeding for initial cluster centers to improve clustering results.
However, due to lack of intuitive geometry for categorical data,
the techniques used in cluster centers initialization for numerical
data are not applicable to categorical data. To date, few researches
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are concerned for cluster centers initialization for categorical data.
However, due to the fact that large categorical data sets exist in
many applications, it has been widely recognized that directly clus-
tering the raw categorical data is important. Examples include envi-
ronmental data analysis (Wrigley, 1985), market basket data
analysis (Aggarwal, Magdalena, & Yu, 2002), DNA or protein se-
quence analysis (Baxevanis & Ouellette, 2001), text mining (Wang
& Karypis, 2006), and computer security (Barbara & Jajodia, 2002).
Therefore, how to select initial cluster centers for clustering cate-
gorical data become an important research question. The k-centers
clustering technique.

Huang in Huang (1998) suggested to select the first k distinct ob-
jects from the data set as the initial k modes or assign the most fre-
quent categories equally to the initial k modes. Though the methods
are to make the initial modes diverse, an uniform criteria is not gi-
ven for selecting k initial modes in Huang (1998). Sun, Zhu, and
Chen (2002) introduces an initialization method which is based
on the frame of refining. This method presents a study on applying
Bradley’s iterative initial-point refinement algorithm (Bradley &
Fayyad, 1998) to the k-modes clustering, but its time cost is high
and the parameters of this method are plenty which need to be as-
serted in advance. In Coolcat algorithm (Barbara, Couto, & Li, 2002),
the MaxMin distances method is used to find the k most dissimilar
data objects from the data set as initial seeds. However, the method
only considers the distance between the data objects, by which out-
liers maybe be selected. Cao, Liang, and Bai (2009) and Wu, Jiang,
and Huang (2007) integrated the distance and the density together
to propose a cluster centers initialization method, respectively. The
difference between the two methods is the definition of the density
of an object. Wu used the total distance between an object and all
objects from data set as the density of the object. Due to the fact
that the time complexity of calculating the densities of all objects
is O(n2), it limits the process in a sub-sample data set and uses a
refining framework. But this method needs to randomly select
sub-sample, so the sole clustering result can not be guaranteed.
Cao et al. (2009) defined the density of an object based on frequency
of attribute values. In this paper, we prove that Cao’s density is
equivalent to Wu’s density, which means that Cao’s method is
equivalent to Wu’s method. Although the two methods can avoid
to select outliers as the cluster centers by the density, they have
some shortcomings: (1) The object with the maximum density is ta-
ken as the first cluster center. Due to the fact that they only consid-
ered the factor of density in the selection of the first cluster center,
it is possible that the selected object is a boundary point among
clusters, which is proved in this paper; (2) One real object in a clus-
ter is selected as the cluster center. But in most cases, the center of a
cluster is not a real object but a virtual object, which means that a
real object could not sufficiently represent the cluster. In summary,
there are no universally accepted method for obtaining initial clus-
ter centers currently. Hence, it is very necessary to propose a new
initialization method for categorical data which overcomes short-
comings of the existing initialization methods.

In the paper, we propose a novel cluster centers initialization
method. We use the distances between objects and the center of
the whole data set to avoid selecting the boundary objects among
clusters as the first cluster center. In this method, an object is se-
lected not as an initial cluster center but as a cluster exemplar.
We integrate the cluster exemplar and the neighbor objects around
it together to construct the candidates of the initial cluster center,
and define some criteria to select initial cluster centers from the
candidates. The proposed initialization method is used along with
the k-modes algorithm. The time complexity of the method is ana-
lyzed. The comparisons with other methods illustrate the effective-
ness of this approach.

The outline of the rest of this paper is as follows. Section 2 intro-
duces the k-modes algorithm. In Section 3, a new initialization
method is proposed. Section 4 demonstrates the effectiveness
and scalability of the new initialization method. General discussion
and the conclusions of this work follow in Section 5.

2. The k-modes algorithm

As we know, the structural data are stored in a table, where each
row (tuple) represents facts about an object. A data table is also
called an information system in rough set theory (Liang & Li,
2005, Liang, Wang, & Qian, 2009; Pawlak, 1991; Qian, Liang,
Pedrycz, & Dang, 2010). Data in the real world usually contains
categorical attributes (Gowda & Diday, 1999). More formally, a cat-
egorical data table is defined as a quadruple IS = (U,A,V, f), where:

(1) U is the nonempty set of objects, called a universe.
(2) A is the nonempty set of attributes.
(3) V is the union of attribute domains, i.e., V =

S
a2AVa, where Va

is the value domain of attribute a and it is finite and unor-
dered, e.g., for any p, q 2 Va, either p = q or p – q.

(4) f:U � A ? V is an information function such that for any
a 2 A and x 2 U, f(x,a) 2 Va.

The objective of the k-modes algorithm is to cluster U into k
clusters by minimizing the function

FðW ; ZÞ ¼
Xk

l¼1

Xn

i¼1

xlidðzl; xiÞ

subject to

xli 2 f0;1g; 1 6 l 6 k; 1 6 i 6 n;

Xk

l¼1

xli ¼ 1; 1 6 i 6 n;

and

0 <
Xn

i¼1

xli < n; 1 6 l 6 k;

where k(6n) is a known number of clusters. W = [xli] is a k-by-n
{0,1} matrix, xli indicates whether xi belongs to the lth cluster for
the k-modes algorithm, xli = 1 if xi belongs to the lth cluster and 0
otherwise. Z = {z1,z2, . . . , zk}, and zl is the lth cluster center with
the categorical attributes a1, a2, . . . , ajAj.

To cluster categorical data, the k-modes algorithm (Huang,
1997, 1998) measures the distance between a cluster center and
a categorical data object, and updates the cluster center at each
iteration as follows:

The distance measure d(zl,xi) between a center zl and a categor-
ical data object xi is defined as

dðzl; xiÞ ¼
X
a2A

daðzl; xiÞ;

where

daðzl; xiÞ ¼
1; f ðzl; aÞ– f ðxi; aÞ;
0; f ðzl; aÞ ¼ f ðxi; aÞ:

�

It is easy to verify that the function d defines a metric space on
the set of categorical objects. The lth cluster center zl, referred to as
the lth mode, is updated as follows. Each f(zl,a) for a 2 A is updated.
For the k-modes algorithm, f(zl,a) satisfies the following criterion:

jfxi 2 Ujf ðxi; aÞ ¼ f ðzl; aÞ;xli ¼ 1gj
¼max

q2Va
jfxi 2 Ujf ðxi; aÞ ¼ q;xli ¼ 1gj:

For the k-modes algorithm, W = [xli] is updated as

xli ¼
1; if dðzl; xiÞ ¼ min

16h6k
dðzh; xiÞ;

0; otherwise:

(
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The whole process of the k-modes algorithm is described as
follows (Huang, 1998):

Step 1. Choose an initial point Z(1) # R, where R ¼ Va1 � Va2�
� � � � VajAj . Determine W(1) such that F(W,Z(1)) is minimized.
Set t = 1.

Step 2. Determine Z(t+1) such that F(W(t), Z(t+1)) is minimized. If
F(W(t), Z(t+1)) = F(W(t), Z(t)), then stop; otherwise goto Step 3.

Step 3. Determine W(t+1) such that F(W(t+1), Z(t+1)) is minimized. If
F(W(t+1), Z(t+1)) = F(W(t), Z(t+1)), then stop; otherwise set
t = t + 1 and goto Step 2.

This procedure removes the numeric-only limitation of the k-
means algorithm. However, the k-modes algorithm is the same
as the k-means algorithm and is sensitive to initial cluster centers.
To solve these problem, a new initialization method for categorical
data is proposed in Section 3.

3. A new cluster centers initialization method

Currently, many approaches are proposed to measure the cohe-
siveness of a data object (Cao et al., 2009; Ester, Kriegel, Sander, &
Xu, 1996; Wu et al., 2007). It is well known to use the total distance
between a data object and all data objects to measure the density of
the data object (Wu et al., 2007), because of its simple and no param-
eters. Hence, we decide to use the density to measure a point in R
where R ¼ Va1 � Va2 � � � � � VajAj . The definition is given as follows:

Definition 1. Let IS = (U,A,V, f) be a categorical data table,
A ¼ fa1; a2; . . . ; ajAjg; R ¼ Va1 � Va2 � � � � � VajAj . For any x 2 R, the
density of x in R is defined as

DensðxÞ ¼ � 1
jUj

X
y2U

dðx; yÞ:

Obviously, we have �jAj 6 Dens(x) 6 0. For any y 2 U, if
d(x,y) = 0, then Dens(x) = 0. If d(x,y) = jAj, then Dens(x) = �jAj.

By the definition of the density, we know that the time com-
plexity of calculating the densities of n objects is O(jUjjAjn). Since
the initialization method needs to calculate the densities of all data
objects in the data set whose time complexity is O(jUj2jAj), a work-
ing method has to optimize the density calculation.

Proposition 1. For any point x 2 R; DensðxÞ ¼
P

a2A
jfy2Ujf ðx;aÞ¼f ðy;aÞgj

jUj � 1
� �

.

Table 1
Computation of the densities of all objects in U.

Input: IS = (U,A,V, f) and k, where k is the number of cluster desired.
Output: Dens(x), x 2 U.
Let fra,q denotes the number of categorical objects in U which have the value q

of the attribute a, q 2 Va, a 2 A.
Begin

Centers = ;;
fra,q = 0, 1 6 i 6 jAj, q 2 Va, a 2 A;
For each x in U

For each a in A
For each q in Va

if f(y,a) = = q
fra,q = fra,q + 1;

end
end

end
end
For each x in U

Compute Dens(x) using Proposition 1;
end

end
Proof

DensðxÞ ¼ � 1
jUj

X
y2U

dðx; yÞ ¼ � 1
jUj

X
y2U

X
a2A

daðx; yÞ

¼ � 1
jUj

X
a2A

X
y2U

daðx; yÞ

¼ � 1
jUj

X
a2A

ðjUj � jfy 2 Ujf ðx; aÞ ¼ f ðy; aÞgjÞ

¼
X
a2A

jfy 2 Ujf ðx; aÞ ¼ f ðy; aÞgj
jUj � 1

� �
:

This completes the proof. h

From the view of Proposition 1, we know the relation between
the density and the frequencies of the attribute values, which
prove that Cao’s density is equivalent to Wu’s density. For a given
categorical data table, the number of every category of every cate-
gorical attribute is known. We first compute the frequency of every
attribute value of every attribute and save these to a table. Next,
we compute densities of data objects by the saved table. The meth-
od is described in Table 1. Since the time complexity of calculating
frequencies of all values in the categorical attribute a 2 A is
O(jUjjVaj), the time complexity of calculating densities of all data
objects in a data table is O(jUjjVj), where j V j¼

P
a2A j Va j. When

the number of objects is large, jVj � jUj. Therefore, the method in
Table 1 can be applied to large data sets for its linear time com-
plexity with respect to the number of data objects.

Proposition 2. If z 2 R is a mode of U, then Dens(z) = maxx2RDens(x).

Proof. Let z be a mode of U. From the definition of mode in Section
2, it follows that for each a 2 A,

jfx 2 Ujf ðx; aÞ ¼ f ðz; aÞgj ¼max
q2Va
jfx 2 Ujf ðx; aÞ ¼ qgj;

then

DensðzÞ ¼max
x2R

DensðxÞ:

This completes the proof. h

According to Definition 1, we know that the more Dens(x) is, if
can be expressed in a graph, the more the number of objects
around x is, as well as the more possible x be a cluster center. So
Wu et al. (2007) and Cao et al. (2009) selected the point with the
maximum density as the first initial cluster center. However, the
point also may be a boundary point among clusters. According to
Proposition 2, we find that the Dens(z) of the mode z of U is max-
imum. z can be seen as a center point of U which is similar to the
mean of numerical data and reflects the common features in U.
That means that the smaller the distance between a data object x
and z is, the more x maybe contain the common features of all clus-
ters. When a data object x contains many common features of all
clusters, x may be a boundary point among clusters although x
maybe have high value of Dens(x).

Let us consider the following example to demonstrate the prob-
lem. The synthetic data set in Table 2 is described with four cate-
gorical attributes a1 (four categories: B, C, E or F), a2 (six
categories: B, C, D, E, F or G), a3 (five categories: B, C, D, E or F)
and a4(six categories: B, C, D, E or F), and there are three classes
with with their modes and their four objects.

We find that x4 is a boundary point among clusters, although
Densðx4Þ ¼max12

i¼1DensðxiÞ. Since dðx4; z1Þ ¼ maxy2D1 dðy; z1Þ; x4

cannot better reflect the characteristics of the class D1 than other
objects in D1.



Table 2
Synthetic data set.

Objects Attributes

a1 a2 a3 a4 Class

x1 B B F B D1

x2 B F B B D1

x3 B B B E D1

x4 C E B B D1

The mode z1 of the class D1 B B B B
x5 C C D C D2

x6 C C C D D2

x7 C D C C D2

x8 E G C C D2

The mode z2 of the class D2 C C C C
x9 E E B E D3

x10 F E E E D3

x11 E E E F D3

x12 C B E E D3

The mode z3 of the class D3 E E E E

Table 3
The method for computing CAx.

Input: IS = (U,A,V, f) and x 2 U.
Output: CAx.

Let Si = {yjd(x,y) = i, y 2 U} and Qi = {yjd(x,y) 6 i, y 2 U}, 1 6 i 6 jAj. fri,a,q

denotes the number of categorical objects in Si which have the value q of
the attribute a and qfri,a,q denotes the number of categorical objects in Qi

which have the value q of the attribute a, 1 6 i 6 jAj, q 2 Va, a 2 A.

Begin
CAx = ;;
Si = ;, 1 6 i 6 jAj;
fri,a,q = 0, 1 6 i 6 jAj, q 2 Va,a 2 A;
For each y in U

i = d(x,y);
Si = Si

S
{y};

For each a in A
For each q in Va

if f(y,a) = = q
fri,a,q = fri,a,q + 1;

end
end

end
end
For i = 1 to jAj

if i = =1
Qi = Si;
qfri,a,q = fri,a,q,q 2 Va,a 2 A;

else
Qi = Qi�1 + Si;
qfri,a,q = qfri�1,a,q + fri,a,q,q 2 Va,a 2 A;

end
Compute cai where is a mode of Qi;
CAx = cai

S
CAx;

end
end
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Therefore, when computing the first cluster center, if the den-
sity of the objects is only taken into account, it is very possible that
the boundary point among clusters is taken as a cluster center. To
avoid the potential problem, first, we compute a mode z of U. Since
z reflects the common features in U, if the smaller the distances be-
tween an object and z is, the more possible the object as a bound-
ary point among clusters is. So we select the object with higher
density and farther from z. We combine the distance between
the object and z with the density of the object together to measure
the possibility of the object to be an exemplar of the first cluster.
According Definition 2, we select a data object with maximum
Pos ExemplarC1

ðxÞ as an exemplar of the first cluster.

Definition 2. Let IS = (U,A,V, f) be a categorical data table and z 2 R
be a mode of U. For any x 2 U, the possibility of x to be an exemplar
of the first cluster C1 is defined as

Pos ExemplarC1
ðxÞ ¼ DensðxÞ þ dðx; zÞ:

Due to the fact that an object could not sufficiently represent a
cluster, we take the selected object not as an initial cluster center
but as an exemplar of a cluster. We integrate the information of the
exemplar and its neighbor objects to construct the candidates and
define some criteria to select points from the candidates as the ini-
tial cluster centers. In the following, we give the definition and
method of constructing the candidates based on the selected
exemplar. The time complexity of the method is analyzed.
Definition 3. Let IS = (U,A,V, f) be a categorical data table and x 2 U
be an exemplar of the lth cluster Cl. CAx to be a set of the candidate
cluster centers of Cl is defined as

CAx ¼ fca1; . . . ; cajAjg;

where cai 2 R is a mode of the set Qi = {y 2 Ujd(y,x) 6 i}, 1 6 i 6 jAj.
In Table 3, the method for computing CAx is described where x is

given. Table 3 shows that the time complexity of computing CAx is
O(jUjjVj).

According to Definition 3, we know that if 1 6 i < j 6m, Qi # Qj,
which means that as the value of i increases, the number of the
neighbor objects of the exemplar x contained by Qi increases. In
other words, caj contains more information of the neighbor objects
than cai. However, for the value of i, bigger is not better. Because
Qi = U and cai is a mode of U when i = m. That tells us that the
excessive amount of objects contained by Qi weakens the repre-
sentability of cai to the exemplar x. Therefore, we should integrate
the partial neighbor objects of the exemplar. It is important to
choose an appropriate cai from CAx.

Next, we define a criterion to select a point from the candidates
as the first cluster center. From the candidates, we select a point
which is with the higher density and farther from the mode z of
U but closer to the exemplar. We give the explanations about the
criterion that (1) the selected point with the higher density means
that there are more objects around it; (2) the selected point farther
from the mode z of U reduces the possibility to be boundary point
among clusters; (3) the selected point closer to the exemplar
means that it better represents the exemplar x in the cluster.

Definition 4. Let IS = (U,A,V, f) be a categorical data table, z be a
mode of U,x be an exemplar of the first cluster C1 and CAx be a set
of the candidate cluster centers of C1. For any y 2 CAx, the
possibility of y to be a cluster center of C1 is defined as

Pos centerC1 ðyÞ ¼ DensðyÞ þ dðy; zÞ � dðy; xÞ:
The selection criterion of the rest cluster centers is different

from the first cluster center. For selection of the rest cluster cen-
ters, we consider the distances between points and other selected
cluster centers, instead of the distances between points and the
mode z of U. The larger the distances between the point and other
selected cluster centers are, the more distinct the point is from
other selected cluster centers. In the criterion, we do not consider
the distance between the point and the mode z of U, because we
can not ignore the fact that z also may be a cluster center in some
situations, for example, the data set is imbalanced.
Definition 5. Let IS = (U,A,V,f) be a categorical data table and
Zl = {z1,z2, . . . , zl} be a set of the obtained cluster centers, where
0 < l < k. For any x 2 U, the possibility of x to be an exemplar of the
l + 1 cluster Cl+1 is defined as



Table 6
The initial cluster centers obtained using different initialization methods.

Algorithms Cluster centers a1 a2 a3 a4

Cao’s method z1 C E B B
z2 E G C C
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Pos ExemplarClþ1
ðxÞ ¼ DensðxÞ þmin

l

i¼1
dðx; ziÞ:

From the candidates, we select a point as the cluster center
which is with the higher density and farther from other selected
cluster centers but closer to the exemplar.
z3 C B E E

Proposed method z1 B B B B
z2 C C C C
z3 E E E E

Table 7
Cluster recovery for the data set in Table 2 with different initial cluster centers.

Clusters found Objects in clusters Cao’s method Proposed method

D1 D2 D3 D1 D2 D3

C1 4 2 0 2 4 0 0
C2 4 0 4 0 0 4 0
C3 4 2 0 2 0 0 4
Definition 6. Let IS = (U,A,V, f) be a categorical data table,
Zl = {z1,z2, . . . ,zl} be a set of the chosen cluster centers, where
l < k, x be an exemplar of the l + 1th cluster Cl+1 and CAx be a set of
the candidate cluster centers of Cl. For any y 2 CAx, the possibility of
y to be a cluster center of Cl+1 is defined as

Pos centerClþ1
ðyÞ ¼ DensðyÞ þmin

l

i¼1
dðy; ziÞ � dðy; xÞ:

In the following, a new initialization method for categorical
data is described in Table 4.

The time complexity of the proposed initialization method is
composed of two parts. First, we obtain a mode of U and calculate
densities of all objects in U, whose time complexity is O(jUjjVj). Sec-
ond, the computing of the initial cluster centers will take
O(jUjk2 + jUjjVjk + jAjk2) steps. Therefore, the whole time complex-
ity of the proposed method is O(jUjjVj + jUjk2 + jUjjVjk + jAjk2). In
Table 5, the time complexities of Cao’s methods and the proposed
method are showed. The comparison illustrates that the proposed
method requires slightly more computational times than Cao’s
Table 4
A new initialization method for categorical data.

Input: IS = (U,A,V, f) and k, where k is the number of cluster desired.
Output: Centers.

Let fra,q denotes the number of categorical objects in U which have the value q
of the attribute a, q 2 Va, a 2 A.

Begin
Centers = ;;
fri,a,q = 0, 1 6 i 6 jAj, q 2 Va, a 2 A;
For each x in U

For each a in A
For each q in Va

if f(y,a) = = q
fra,q = fra,q + 1;

end
end

end
end
Compute a mode z of U;
For each x in U

Compute Dens(x);
end
For i = 1 to k

Pos ExemplarCi
ðxCi
Þ ¼ maxy2UfPos ExemplarCi

ðyÞg;
/⁄find the most probable examplar xCi

of the ith cluster center⁄/
Obtain CAxCi

¼ fca1; . . . ; camg using the emthod in Table 3;

For j = 1 to jAj
Compute Dens(caj);

end
Pos centerCi

ðziÞ ¼ maxcaj2CAxCi
fPro centerCi

ðcajÞg;

/⁄Find the ith cluster center zi⁄/
Centers = Centers

S
{zi};

end
end

Table 5
The time complexities of different initialization methods.

Algorithms Time complexity

Cao’s method O(jUjjVj + jUjk2)
Proposed method O(jUjjVj + jUjk2 + jUjjVjk + jAjk2)
method. It is an expected outcome since the construction and
selection of candidates requires some additional arithmetic opera-
tions. However, according to the analysis of the time complexity,
the computational complexity of the proposed method is still scal-
able which is linear with respect to the number of data objects, i.e.,
it can cluster large categorical data efficiently.

We use the above example in Table 2 to compare it with Cao’s
method and demonstrate performance of the proposed initializa-
tion method. Table 6 shows the initial cluster centers obtained
using Cao’s method and the proposed method. We use the k-modes
algorithm with the different initial cluster centers to cluster the
data set in Table 2. In Table 7, the clustering results are displayed.
Tables 6 and 7 illustrate that the proposed method can obtain the
better initial cluster centers than Cao’s method for clustering the
data set in Table 2.

4. Experimental analysis

In this section, in order to evaluate the performance and scala-
bility of the proposed initialization method, some standard data
sets are downloaded from the UCI Machine Learning Repository
(2010). All missing attribute values are treated as special values.
In the performance analysis, we introduce an evaluation method
(Yang, 1999) and compare the clustering results of the k-modes
algorithm based on different initialization methods including ran-
dom initialization method, Cao’s method and the proposed meth-
od. At random initialization method, we carried out 100 runs of
the k-modes algorithm on these standard data sets, respectively.
In the scalability analysis, we test the proposed algorithm in con-
nect-4 data set from UCI (UCI Machine Learning Repository, 2010).

4.1. Performance analysis

To evaluate the performance of clustering results, an evaluation
method is introduced (Yang, 1999). If a data set contains k classes
for a given clustering, let ai denote the number of data objects that
are correctly assigned to class Ci, Let bi denote the data objects that
are incorrectly assigned to the class Ci, and let ci denote the data
objects that are incorrectly rejected from the class Ci. The

accuracy, precision and recall are defined as follow: AC ¼
Pk

i¼1
ai

jUj ;

PR ¼
Pk

i¼1

ai
aiþbi

� �
k ; RE ¼

Pk

i¼1

ai
aiþci

� �
k ; respectively.

We present comparative results of clustering on soybean data,
lung cancer data, zoo data, dermatology data, breast cancer data
and mushroom data, respectively.



Table 10
Cluster recovery for the lung cancer data with the initial cluster centers computed by
the proposed method.

Clusters found Objects in cluster Coming from

I II III

C1 12 7 4 1
C2 6 0 0 6
C3 14 2 9 3

Table 9
Comparison of clustering results of different initialization methods on the soybean
data.

The k-modes algorithm Random Cao’s method Proposed method

AC 0.8564 1.0000 1.0000
PR 0.9000 1.0000 1.0000
RE 0.8402 1.0000 1.0000

Table 8
Cluster recovery for the soybean data with the initial cluster centers computed by the
proposed method.

Clusters found Objects in cluster Coming from

I II III IV

C1 10 0 10 0 0
C2 10 0 0 10 0
C3 10 10 0 0 0
C4 47 0 0 0 47

Table 11
Comparison of clustering results of different initialization methods on the lung cancer
data.

The k-modes algorithm Random Cao’s method Proposed method

AC 0.5363 0.5000 0.6875
PR 0.6033 0.5584 0.7421
RE 0.5396 0.5014 0.6900

Table 12
Cluster recovery for the zoo data with the initial cluster centers computed by the
proposed method.

Clusters found Objects in cluster Coming from

I II III IV V VI VII

C1 22 22 0 0 0 0 0 0
C2 11 0 0 0 0 0 8 3
C3 16 0 0 3 13 0 0 0
C4 20 19 0 1 0 0 0 0
C5 20 0 20 0 0 0 0 0
C6 5 0 0 1 0 4 0 0
C7 7 0 0 0 0 0 0 7

Table 13
Comparison of clustering results of different initialization methods on the zoo data.

The k-modes algorithm Random Cao’s method Proposed method

AC 0.8356 0.8812 0.9208
PR 0.8186 0.8702 0.8985
RE 0.6123 0.6714 0.8143

Table 14
Cluster recovery for the dermatology data with the initial cluster centers computed by
the proposed method.

Clusters found Objects in cluster Coming from

I II III IV V VI

C1 43 43 0 0 0 0 0
C2 70 0 0 70 0 0 0
C3 18 0 0 0 0 0 18
C4 73 15 7 0 4 45 2
C5 108 0 54 2 45 7 0
C6 54 54 0 0 0 0 0

Table 15
Comparison of clustering results of different initialization methods on the dermatol-
ogy data.

The k-modes algorithm Random Cao’s method Proposed method

AC 0.6870 0.7486 0.7760
PR 0.7633 0.8801 0.8527
RE 0.5751 0.6091 0.7482

Table 16
Cluster recovery for the breast cancer data with the initial cluster centers computed
by the proposed method.

Clusters found Objects in cluster Coming from

I II

C1 229 15 214
C2 470 443 27

Table 17
Comparison of clustering results of different initialization methods on the breast-
cancer data.

The k-modes algorithm Random Cao’s method Proposed method

AC 0.8461 0.9113 0.9399
PR 0.8700 0.9292 0.9385
RE 0.7833 0.8773 0.9276

Table 18
Cluster recovery for the mushroom data with the initial cluster centers computed by
the proposed method.

Clusters found Objects in cluster Coming from

I II

C1 3164 70 3094
C2 4960 4138 822

Table 19
Comparison of clustering results of different initialization methods.

The k-modes algorithm Random Cao’s method Proposed method

AC 0.7318 0.8754 0.8902
PR 0.7520 0.9019 0.9061
RE 0.7278 0.8709 0.8867
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4.1.1. Soybean data
The soybean data set has 47 records, each of which is described

by 35 attributes. Each record is labeled as one of the four diseases:
Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia Root Rot, and
Phytophthora Rot. Except for Phytophthora Rot which has 17 re-
cords, all other diseases have 10 records each. The cluster recovery
result of the k-modes algorithm with the proposed method on the
soybean data is summarized in Table 8. The comparison of cluster-
ing results of different initialization methods on the soybean data
is presented in Table 9.
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Fig. 1. (a) Computational times for different numbers of objects. (b) Computational times for different numbers of attributes. (c) Computational times for different numbers of
clusters.
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4.1.2. Lung cancer data
Lung cancer data set contains 32 instances described by 56 cat-

egorical attributes. The data set has three classes. The cluster
recovery result of the k-modes algorithm with the proposed meth-
od on the lung cancer data is summarized in Table 10. The compar-
ison of clustering results of different initialization methods on the
lung cancer data is presented in Table 11.

4.1.3. Zoo data
Zoo data set contains 101 elements described by 17 Boolean-

valued attributes and 1 type attribute. Data set with 101 Elements
belong to seven classes. The cluster recovery result of the k-modes
algorithm with the proposed method on the zoo data is summa-
rized in Table 12. The comparison of clustering results of different
initialization methods on the zoo data is presented in Table 13.

4.1.4. Dermatology data
Dermatology data set contains 366 elements and 33 categorical

attributes. It has six clusters: psoriasis (112 data objects), seboreic
dermatitis (61 data objects), lichen planus (72 data objects), pityri-
asis rosea (49 data objects), cronic dermatitis (52 data objects) and
pityriasis rubra pilaris (20 data objects). The cluster recovery result
of the k-modes algorithm with the proposed method on the derma-
tology data is summarized in Table 14. The comparison of cluster-
ing results of different initialization methods on the dermatology
data is presented in Table 15.

4.1.5. Breast cancer data
Breast cancer data set consists of 699 data objects and 9 cate-

gorical attributes. It has two clusters Benign (458 data objects),
Malignant (241 data objects). The cluster recovery result of the
k-modes algorithm with the proposed method on the breast cancer
data is summarized in Table 16. The comparison of clustering re-
sults of different initialization methods on the breast cancer data
is presented in Table 17.

4.1.6. Mushroom data
Mushroom data set consists of 8124 data objects and 23 cate-

gorical attributes. Each object belongs to one of two classes, edible
(4208 objects) and poisonous (3916 objects). The cluster recovery
result of the k-modes algorithm with the proposed method on
the mushroom data is summarized in Table 18. The comparison
of clustering results of different initialization methods on the
mushroom data is presented in Table 19.

From the above experiential results, for the k-modes algorithm,
we can see that the proposed method is superior to Cao’s method
and random initialization method with respect to AC, PR, RE,
respectively.
4.2. Scalability analysis

To test the scalability of the new algorithm, we choose Connect-
4 data set from UCI. The data set contains 67,557 objects and 42
categorical attributes. It has three class: win (44,473), loss
(16,635) and draw (6449). The computational results are per-
formed by using a machine with an Intel Q9400 and 2G RAM.
The computational times of the proposed algorithm are plotted
with respect to the number of objects, attributes and clusters,
while the other corresponding parameters are fixed.

Fig. 1a shows the computational times against the number of
objects, while the number of attributes is 42 and the number of
clusters is 3. Fig. 1b shows the computational times against the
number of attributes, while the number of clusters is 3 and the
number of objects is 30,000. Fig. 1c shows the computational times
against the number of clusters, while the number of attributes is 42
and the number of objects is 30,000. According to the figures, we
can see that the proposed method is scalable, i.e., it can get the ini-
tial cluster centers of categorical data efficiently.

5. Conclusions

Categorical data are ubiquitous in real-world databases. The
development of the k-modes algorithm was motivated to solve this
problem. However, the clustering algorithm need to rerun many
times with different initializations in an attempt to find a good
solution. Moreover, this works well only when the number of clus-
ters is small and chances are good that at least one random initial-
ization is close to a good solution. In this paper, a new initialization
method for categorical data clustering has been proposed by taking
into account the distance between the objects and the density of
the object and overcomes shortcomings of the existing initializa-
tion methods. Furthermore, the time complexity of the proposed
method has been analyzed. We tested the proposed method using
seven real world data sets from UCI Machine Learning Repository
and experimental results have shown that the proposed method
is superior to other initialization methods in the k-modes
algorithm.
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