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Recently, amultigranulation rough set (MGRS) has become a new direction in rough set the-

ory,which is basedonmultiple binary relationson theuniverse.However, it isworthnoticing

that the original MGRS can not be used to discover knowledge from information systems

with various domains of attributes. In order to extend the theory of MGRS, the objective of

this study is to develop a so-called neighborhood-based multigranulation rough set (NM-

GRS) in the framework of multigranulation rough sets. Furthermore, by using two different

approximating strategies, i.e., seeking common reserving difference and seeking common

rejecting difference, we first present optimistic and pessimistic 1-type neighborhood-based

multigranulation rough sets and optimistic and pessimistic 2-type neighborhood-based

multigranulation rough sets, respectively. Through analyzing several important properties

of neighborhood-basedmultigranulation rough sets, we find that the new rough sets degen-

erate to the original MGRS when the size of neighborhood equals zero. To obtain covering

reducts under neighborhood-based multigranulation rough sets, we then propose a new

definition of covering reduct to describe the smallest attribute subset that preserves the

consistency of the neighborhood decision system, which can be calculated by Chen’s dis-

cernibility matrix approach. These results show that the proposed NMGRS largely extends

the theory and application of classical MGRS in the context of multiple granulations.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction28

Rough set theory was originally introduced by Pawlak as a tool to deal with vague, uncertain and incomplete data.29

It has been found applicable in knowledge discovery, decision analysis, conflict analysis and pattern recognition. One of30

the applications of rough set theory is to obtain a concept approximation of a universe by two definable subsets called31

lower and upper approximations. It has been known that lower and upper approximation operators in Pawlak’s rough set32

are defined by an equivalence (indiscernibility) relation [24,25]. With respect to different requirements, in the past ten33

years, various extensions of Pawlak’s rough set have been developed. There are two main methods to generalize it. One34

method is to extend an equivalence relation to other binary relations, such as a similarity relation, a tolerance relation, and35

dominance relation [2–5,21–23,26,31,32,34,35,37–40,42,43,51,54–56]. The other is to replace a partition of the universe36

with a covering and obtained the covering rough sets [1,19,57–59]. Particularly, in order to deal with an information system37

with numerical attribute, Lin [13–17] presented the neighborhood-based rough set in the neighborhood information system38

which was originated by Sierpinski and Krieger [36]. Yao studied the neighborhood information system and proposed an39

approximation retrieval model based on it [49]. Furthermore, Hu et al. [6–9] introduced a different neighborhood-based40

rough set for heterogeneous feature selection, which can be used to deal with an information system with heterogeneous41

attributes including categorical attributes and numerical attributes.42

< This is an extended version of the paper presented at the 3rd National Conference on Intelligent Information Processing August 12–14, 2011, Shanxi, China.∗ Corresponding author. Tel.: +86 13063130529.
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From above, however, we can find that all extensional rough sets including neighborhood rough sets are constructed on43

the basis of a single binary relation, which limit the applications of rough set theory. In the view of granular computing, they44

are constructed on a single granulation. Accordingly, Qian et al. [28,29] proposed multigranulation rough set in complete45

information systemaccording to auser’s different requirements or targets of problemsolving.Oneof important contributions46

in MGRS is to describe the lower and upper approximations of the rough set by multiple equivalence relations (multiple47

granulations) instead of a single equivalence relation (a single granulation). In their papers, Qian et al. said that the MGRS48

are useful in the following cases [28]:49

1. We cannot perform the intersection operations between their quotient sets and the target concept cannot be approx-50

imated by using U/(P ∪ Q) which is called a single granulation in those papers.51

2. In the process of some decision making, the decision or the view of each of decision makers may be independent52

for the same project (or a sample, object and element) in the universe. In this situation, the intersection operations53

between any two quotient sets will be redundant for decision making.54

3. Extract decision rules from distributive information systems and groups of intelligent agents through using rough set55

approaches.56

Since then,many researchershaveextended the classicalMGRSbyusingvariousgeneralizedbinary relations. For instance,57

Qian et al. [29] presented a multigranulation rough set based on multiple tolerance relations in incomplete information58

systems. Lin et al. [18] proposed a covering-based pessimistic multigranulation rough set, Xu et al. [45] proposed another59

generalized version, called variable precision multigranulation rough set, and Yang et al. [47] proposed a multigranulation60

rough set based on a fuzzy binary relation. In fact, the basic idea of multi-granulation has been also discussed by Khan61

et al. in Ref. [11]. However, the existing multigranulation rough set theory can not be used to describe the inconsistency62

coming fromaneighborhood information systemwhich consists of numerical and categorical attributes. In order to dealwith63

multi-granulation information with heterogeneous attributes, it is necessary to introduce multiple neighborhood relations64

into a neighborhood information system, and further develop a so-called neighborhood-based multigranulation rough sets65

(NMGRS). In particular, we will present two types of neighborhood multigranulation rough sets, 1-type NMGRS and 2-66

type NMGRS. For each NMGRS, we investigate its optimistic version and pessimistic version, respectively, and discuss their67

properties. In addition, we also given a newdefinition of covering reducts and propose its calculatingmethod,which is based68

on a discernibility matrix approach proposed in the literature [1].69

The paper is organized as follows. In Section 2, we briefly reviewed some basic concepts ofMGRS. In Section 3, a rough set70

based on multi neighborhood relations is presented, called the neighborhood-based multigranulation rough sets (NMGRS),71

and some of its important properties are investigated. In Section 4, we first introduce a concept of covering reduct of the72

neighborhood-based multigranulation rough sets and then employ Chen’s discernibility matrix to reduce attributes in the73

neighborhood-based multigranulation rough sets. Finally, Section 5 concludes this study.74

2. Preliminary knowledge on rough sets75

In this section, we review some basic concepts, which includes Pawlak’s rough set, multigranulation rough sets, and76

neighborhood-based rough sets (see [8,13,24,28]).77

2.1. Pawlak’s rough set78

In many data analysis applications, knowledge and information presentation in rough set theory are realized by an79

information system. An information system is a tuple: S = (U, AT, {Va|a ∈ AT}, {fa|a ∈ AT}), where U is a finite nonempty80

set of objects, AT is a finite nonempty set of attributes, Va is a nonempty set of values of a ∈ AT , and fa : U → Va is an81

information function that maps an object in U to exactly one value in Va.82

In particular, a target information system is given by S = (U, AT ∪ D, {Va|a ∈ AT}, {fa|a ∈ AT}), where AT is a set83

of condition attributes describing the objects, and D is a set of decision attributes that indicate the classes of objects. In84

general, we often consider the decision information systemwith only one decision attribute, because an information system85

with multi decision attributes can be easily transformed into a system with a single decision attribute by considering the86

Cartesian product of the original decision attributes [35,50].87

Each nonempty subset B ⊆ AT determines an indiscernibility relation, defined as RB = {(x, y) ∈ U × U | fa(x) =88

fa(y), ∀a ∈ B}.89

The relation RB partitions U into some equivalence classes given by U/RB = {[x]B|x ∈ U}, where [x]B = {y ∈ U|(x, y) ∈90

RB}.91

For X ⊆ U, sets RBX = ∪{Y ∈ U/IND(B) | Y ⊆ X} and RBX = ∪{Y ∈ U/IND(B) | Y ∩ X �= Ø} are called the lower and92

the upper approximations of X with respect to B, respectively.93

The area of uncertainty or boundary region is

Bn(X) = RBX \ RBX.

Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason (2012),
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In order to measure the imprecision of a rough set, Pawlak [25] recommended for X �= Ø, the ratio αRB(X) = |RBX|
|RBX| , which is94

called the accuracymeasure of X by RB. Roughness is calculated by subtracting the accuracy from αRB : ρRB(X) = 1−αRB(X).95

2.2. Multigranulation rough sets (MGRS)96

In recent years, Qian et al. [28] have proposed a new extension of Pawlak rough set, i.e., multigranulation rough sets97

(MGRS). In themultigranulation roughset theory, a target concept is approximatedbymultiplebinary relations. Furthermore,98

two kinds of important multigranulation rough sets were presented with optimistic and pessimistic strategies, which are99

called optimistic multigranulation rough sets and pessimistic multigranulation rough sets, respectively [28,30].100

Definition 1. Let S = (U, AT, f ) be an information system, A1, A2, . . . , Am ⊆ AT , and X ⊆ U . The optimistic lower

approximation and the upper approximation of X with respect to A1, A2, . . . , Am are denoted by
∑m

i=1 Ai
O
X and

∑m
i=1 Ai

O
X ,

respectively, where

m∑
i=1

Ai

O

X = ⋃{x ∈ U | [x]Ai ⊆ X, for some i ≤ m}, (1)

m∑
i=1

Ai

O

X =∼
m∑
i=1

Ai

O

(∼ X). (2)

Then (
∑m

i=1 Ai
O
X,

∑m
i=1 Ai

O
X) is the optimistic MGRS [24]. The word “optimistic” is used to express the idea that in multiple101

independent granular structures, one needs only at least one granular structure to satisfy with the inclusion condition102

between an equivalence class and a target concept. The upper approximation of the optimistic multigranulation rough set103

is defined by the complement of the lower approximation.104

And the area of uncertainty or boundary region in MGRS is

BnO∑m
i=1

(X) =
m∑
i=1

Ai

O

X

∖
m∑
i=1

Ai

O

X .

The definition of pessimistic MGRS [30] is defined as follows:

m∑
i=1

Ai

P

(X) = {x ∈ U | [x]A1 ⊆ X ∧ [x]A2 ⊆ X ∧ · · · ∧ [x]Am ⊆ X}, (3)

m∑
i=1

Ai

P

(X) =∼
m∑
i=1

Ai

P

(∼ X). (4)

Then (
∑m

i=1 Ai
P
X,

∑m
i=1 Ai

P
X) is the pessimistic MGRS [30]. The word “pessimistic" is used to express the idea that in

multiple independent granular structures, one needs all granular structures to satisfy with the inclusion condition between

an equivalence class and a target concept. The upper approximation of the optimistic multigranulation rough set is also

defined by the complement of the lower approximation. And the area of uncertainty or boundary region in MGRS is

BNP∑m
i=1 Ai

(X) =
m∑
i=1

Ai

P

(X)

∖
m∑
i=1

Ai

P

(X).

2.3. Neighborhood-based rough sets105

In order to make Pawlak’s rough set deal with the information system with heterogeneous attributes, T. Y. Lin et al.106

[14] gave the concept of neighborhood and proposed neighborhood-based rough sets. Since then, many researchers further107

studied the theory of the neighborhood-based rough set [6–10,15,48]. In this section,we especially introduce some concepts108

of neighborhood-based rough sets proposed by Hu [8].109

Definition 2. Let S = (U, AT, f ) be an information system with heterogeneous attributes, X ⊆ U and A, B ⊆ AT are110

categorical and numerical attributes, respectively. The neighborhood granules of objects x induced by A, B, A∪ B are defined111

as112
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Table 1

A target information system with heterogeneous attributes.

Outlook Ultra-ray Temperature Humidity Windy Intensity Play

x1 Sunny Weak 85 85 False 85 No

x2 Sunny Strong 80 90 True 95 No

x3 Overcast Strong 86 85 False 82 Yes

x4 Rainy Middle 70 96 False 91 Yes

x5 Rainy Middle 68 80 False 80 Yes

x6 Rainy Weak 65 70 True 75 No

x7 Overcast Middle 64 65 True 63 Yes

x8 Sunny Strong 72 95 False 90 No

(1) nA(x) = {xi ∈ U | dA(x, xi) = 0};113

(2) nB(x) = {xi ∈ U | dB(x, xi) ≤ δ};114

(3) n(A∪B)(x) = {xi ∈ U | dA(x, xi) = 0 ∧ dB(x, xi) ≤ δ},115

where d is a distance [40] between x and y, δ is a nonnegative number, and “∧” means “and" operator. (1) is designed for116

numerical attributes; (2) is designed for categorical attributes, and (3) is designed for heterogeneous attributes, namely,117

categorical and numerical attributes.118

A neighborhood relation N on the universe can be written as a relation matrix M(N) = (rij)n×n, where

rij =
{
1, d(xi, xj) ≤ δ,

0, otherwise.

Accordingly, we say (U,N) a neighborhood approximation space. If there is an attribute subset in the system generating119

a neighborhood relation on the universe, we can regard this system as a neighborhood information system, denoted by120

NIS = (U, AT,N),whereU is anonemptyfinite set andAT is anattribute set. Inparticular, aneighborhood informationsystem121

is also called a neighborhood decision information system if we distinguish condition attributes and decision attributes,122

denoted by NIS = (U, AT ∪ D,N).123

Example 1. Here, we use an example to illustrate some notions of an information system which consists of categorical and124

numerical attributes. Table 1 shows data set play tennis with heterogeneous attributes, namely, categorical and numerical125

attributes, where U = {x1, x2, . . . , x8}, AT= {outlook, ultra-ray, temperature, humidity, intensity, windy}, D= {play}. Espe-126

cially, Outlook, ultra-ray , and windy are categorical condition attributes, temperature, humidity and intensity are numerical127

condition attributes, and play is a decision attribute. In the sequel, O, U, T, H, W, I will displace outlook, ultra-ray, temper-128

ature, humidity, windy, and intensity, respectively. In Table 1, in order to reduce sample classification error rate caused by129

inconsistent dimension, numerical attribute values are standardized into [0, 1] for computing, see [7].130

Definition 3. Let (U,N) be a neighborhood approximation space. For any X ⊆ U, the lower approximation and upper

approximation of X in U are defined as:

NX = {x ∈ U | n(x) ⊆ X}, (5)

NX = {x ∈ U | n(x) ∩ X �= φ}. (6)

One calls (NX,NX) a neighborhood rough set. Obviously, NX ⊆ X ⊆ NX . The boundary region of X in the approximation131

space is defined as Bn(X) = NX \ NX .132

The size of boundary region reflects the degree of roughness of set X in the neighborhood approximation space (U,N).133

In the neighborhood rough set, δ can be considered as a parameter to control the granularity level at which we analyze the134

classification task.135

3. Neighborhood multigranulation rough sets136

In this section, we extend the classical MGRS to neighborhood-based multigranulation rough sets (NMGRS). We propose137

two types of neighborhoodmultigranulation rough sets according to different representations of neighborhood information138

granules by Definition 3. In the first case, a granular space induced by a neighborhood relation on the universe can be139

regarded as a set of mixed information granules induced by both a similarity relation and an indiscernibility relation in140

the view of granular computing [53]. If the approximations of a target concept are described by these mixed information141

granules, we call this rough set a 1-type neighborhood multigranulation rough set in this paper, denoted by 1-type NMGRS.142

In the second case, if the approximations of a target concept are described by multiple neighborhood relations, we call this143

rough set a 2-type neighborhood multigranulation rough set, denoted by 2-type NMGRS.144
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In the following, we will give the definitions of optimistic 1-type NMGRS and optimistic 2-type NMGRS and the defin-145

itions of pessimistic versions, respectively. Conveniently, we mainly discuss the properties of the optimistic versions. The146

pessimistic versions can be done similarly. We hence omit them in this paper.147

3.1. 1-type neighborhood multigranulation rough sets (1-type NMGRS)148

As we know, the incomplete MGRS is based on multiple tolerance relations, which sometimes can be also regarded149

as a neighborhood relation [7]. However, these existing multigranulation versions still can not deal with data sets with150

heterogeneous attributes. Therefore, it is necessary to develop a new rough set based on multiple neighborhood relations151

to deal with hybrid data. Simply, we first investigate the approximation of a target set induced by mixed granules on the152

universe, which can be regarded as a simple neighborhood multigranulation rough set, just 1-type NMGRS.153

Definition 4 (1-type NMGRS). Let NIS = (U, AT,N) be a neighborhood information system, A ⊆ AT a categorical attribute

set, B ⊆ AT a numerical attribute set,A∪B ⊆ AT amixed attribute set;U/A,U/B, andU/(A∪B) represent a partition and two

coverings of the universe U, respectively. For any X ⊆ U, the optimistic multigranulation lower and upper approximations

of X with respect to A, B in U are defined in the following:

(A + B)OX = {x ∈ U | nA(x) ⊆ X ∨ nB(x) ⊆ X}, (7)

(A + B)
O
X =∼ (A + B)O(∼ X). (8)

By Definition 4, we can see that the lower and upper approximations of X of optimistic 1-type NMGRS satisfy duality

property, i.e., the upper approximation canbedefinedby the complement of the lower approximation. The area of uncertainty

or boundary region is defined as

BnO(A+B)(X) = (A + B)
O
X \ (A + B)OX.

We call ((A + B)OX, (A + B)
O
X) an optimistic 1-type NMGRS. Obviously, the optimistic 1-type NMGRS can degenerate into154

the original optimistic multigranulation while δ = 0. The original MGRS is a special instance of 1-type NMGRS.155

Theorem1. Let NIS = (U, AT,N) be a neighborhood information system, A, B ⊆ AT categorical and numerical attribute subsets,156

respectively. For any X ⊆ U, then157

(A + B)
O
X = {x ∈ U | (nA(x) ∩ X �= ∅) ∧ (nB(x) ∩ X �= ∅)}.158

Proof. By Definition 4, we have that159

x ∈ (A + B)
O
X ⇔ x ∈∼ (A + B)O(∼ X)160

⇔ x /∈ (A + B)O(∼ X)161

⇔ nA(x) � (∼ X) ∧ nB(x) � (∼ X)162

⇔ nA(x) ∩ X �= ∅ ∧ nB(x) ∩ X �= ∅.163

This completes the proof. �164

ByTheorem1,we can see that though the optimisticmultigranulationupper approximation is definedby the complement165

of the optimistic multigranulation lower approximation, it also can be constructed by objects with nonempty intersection166

with the target concept in terms of each granular structure.167

Proposition 1. Let NIS = (U, AT,N) be a neighborhood information system, ∀A, B ⊆ AT, and ∀X ⊆ U, then168

(1) (A + B)OX = AX ∪ BX,169

(2) (A + B)
O
X = AX ∩ BX.170

Proof. (1) Let x ∈ AX (x ∈ U), note that AX = {x ∈ U | nA(x) ⊆ X}, but x ∈ (A + B)OX , hence AX ⊆ (A + B)OX . Similarly,171

BX ⊆ (A + B)OX . So (A + B)OX ⊇ AX ∪ BX . And, for x ∈ (A + B)OX , from (7), we have either nA(x) ⊆ X , then x ∈ AX or172

nB(x) ⊆ X , then x ∈ BX , therefore x ∈ AX ∪ BX , namely, (A + B)OX ⊆ AX ∪ BX . Therefore, (A + B)OX = AX ∪ BX .173

(2) From above and (8), we have (A + B)
O
X =∼ (A + B)O(∼ X) =∼ (A(∼ X) ∪ B(∼ X)) = A(X) ∩ B(X).174

This completes the proof. �175

Corollary 1. BnO(A+B)(X) ⊆ BnA(X) ∪ BnB(X).176

In what follows, we will illuminate the difference between the 1-type NMGRS and classical Pawlak’s rough sets through177

employing Example 2.178

Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason (2012),

http://dx.doi.org/10.1016/j.ijar.2012.05.004

http://dx.doi.org/10.1016/j.ijar.2012.05.004


IJA 7487 No. of pages: 14, Model 3G
19/6/2012

6 G. Lin et al. / International Journal of Approximate Reasoning xxx (2012) xxx–xxx

Example 2 (Continued from Example 1). Let X = {x1, x2, x3, x7}. Here we compute the neighborhood granules of samples179

with δ = 0.1. A partition and two coverings are induced from Table 1 as follows:180

Let A = {O,W} ⊆ AT be a categorical attribute subset. According to Definition 2, the information granules induced by A181

are listed. nA(x1) = {x1, x8} = nA{x8}, nA(x2) = {x2}, nA(x3) = {x3}, nA(x4) = {x4, x5} = nA{x5},nA(x6) = {x6}, nA(x7) =182

{x7}. Obviously, they form a covering of the universe, i.e., U/A = {{x1, x8}, {x2}, {x3}, {x4, x5}, {x5, x4}, {x6}, {x7}, {x8, x1}}183

which is a granular structure on U, then AX = {x2, x3, x7} and AX = {x1, x2, x3, x7, x8}.184

Let B = {T,H} ⊆ AT be a numerical attribute subset. Then, we have that nB(x1) = {x1, x2, x3} = nB(x3), nB(x2)185

= {x2, x1, x3, x4, x8}, nB(x4) = {x4, x2, x8}, nB(x5) = {x5, x6}, nB(x6) = {x6, x5, x7}, nB(x7) = {x7, x6}, nB(x8) =186

{x8, x2, x4}. Similarly, they form a covering of the universe, i.e., U/B = {{x1, x2, x3}, {x2, x1, x3, x4, x8}, {x3, x1, x2}, {x4, x2,187

x8}, {x5, x6}, {x6, x5, x7}, {x7, x6}, {x8, x2, x4}}. Therefore we have that BX = {x1, x3}, BX = {x1, x2, x3, x4, x6, x7, x8}.188

Based on U/A and U/B induced by A and B, we have the optimistic lower and upper approximations of X in U,189

respectively, (A + B)OX = {x1, x2, x3, x7} = A(X) ∪ B(X), (A + B)
O
X =∼ (A + B)O(∼ X) = {x1, x2, x3, x7, x8} =190

A(X) ∩ B(X).191

Furthermore, By the term (3) in Definition 2, we have that U/(A ∪ B) = {{x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}}.192

Obviously, U/(A ∪ B) also forms a covering of the universe U. Then, we have (A ∪ B)X = {x1, x2, x3, x7}, (A ∪ B)X =193

{x1, x2, x3, x7}. Easily, (A ∪ B)X ⊇ (A + B)OX , (A ∪ B)X ⊆ (A + B)
O
X .194

As a result of this example, we have the following results.195

Proposition 2. Let NIS = (U, AT,N) be a neighborhood information system, A, B ⊆ AT categorical and numerical attribute196

subsets, respectively. For any X ⊆ U, then197

(1) (A + B)OX ⊆ (A ∪ B)X,198

(2) (A + B)
O
X ⊇ (A ∪ B)X.199

Proof. (1) For any x ∈ (A + B)OX , by Definition 4, it follows that x ∈ nA(x) and x ∈ nB(x). Hence x ∈ nA(x) ∩ nB(x). But200

nA(x) ∩ nB(x) ⊆ n(A∪B)(x) for all x ∈ U. Therefore, x ∈ (A ∪ B)X , i.e. (A + B)OX ⊆ (A ∪ B)X .201

(2) From Pawlak’s rough set theory, we know (A ∪ B)X =∼ (A ∪ B)(∼ X), applying the result of (1), we have that202

(A ∪ B)(∼ X) ⊇ (A + B)O(∼ X). Hence, ∼ (A ∪ B)(∼ X) ⊆∼ (A + B)O(∼ X), i.e., (A + B)
O
X ⊇ (A ∪ B)X .203

This completes the proof. �204

Proposition 2 shows that the optimistic lower approximation is not more than the Pawlak’s lower approximation, while205

the optimistic upper approximation is not less than the Pawlak’s upper approximation.206

Corollary 2. BnO(A+B)(X) ⊇ Bn(A∪B)(X).207

Corollary 3. Let NIS = (U, AT,N) be a neighborhood information system, A, B ⊆ AT categorical and numerical attribute

subsets, respectively, and X ⊆ U. Then

α(A∪B)(X) ≥ αO
(A+B)(X).

Proof. They are straightforward from the definition of accuracy measure of X .208

In what follows, we further clarify the difference between multigranulation rough sets and classical rough sets. It can be209

illustranted from the following four aspects.210

(1) Multigranulation rough set theory is a strategy for information fusion through single granulation rough sets. Here,211

neighborhood-basedmultigranulationroughsets is a simple information fusionmethodbyoperations ‘∨’(conjunction)212

or‘∧’(disjunction).213

(2) In fact, there are some other fusion strategies [20,45–47]. For instance, in the literature [45], Xu et al. introduced a214

supporting characteristic function and a variable precision parameterβ called information level to investigate a target215

concept under majority granulations.216

(3) It is Proposition 2 that embodies the difference between classic rough sets and multigranulation rough sets.217

(4) With regard to some special information systems, such asmulti-source information systems, distributive information218

systems and groups of intelligent agents, the classical rough sets can not deal with these information systems, but219

multigranulation rough sets can. �220

Proposition 3. Let NIS = (U, AT,N) be a neighborhood information system, A, B ⊆ AT categorical and numerical attribute221

subsets, respectively, X ⊆ U, and δ1, δ2 two nonnegative numbers. If δ1 ≥ δ2, then

Please cite this article in press as: G. Lin et al., NMGRS: Neighborhood-based multigranulation rough sets, Int. J. Approx. Reason (2012),
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(1) (A + B)δ1
OX ⊆ (A + B)δ2

OX,222

(2) (A + B)δ1
O
X ⊇ (A + B)

O

δ2
X.223

Proof. (1) Let X ⊆ U, assume that (A + B)δ
OX = {x | nδ

A(x) ⊆ X ∨ nδ
B(x) ⊆ X}, for any x ∈ U. If δ1 ≥ δ2, we obviously have224

n
δ1
A (x) ⊆ n

δ2
A (x) and n

δ1
B (x) ⊆ n

δ2
B (x). So for any x ∈ n

δ1
A (x) ⊆ X , we have x ∈ n

δ2
A (x) ⊆ X . Similarly, for any x ∈ n

δ1
B (x) ⊆ X ,225

we have x ∈ n
δ2
B (x) ⊆ X . Therefore, we have x ∈ (A + B)δ2

OX if x ∈ (A + B)δ1
OX . Hence, (A + B)δ1

OX ⊆ (A + B)δ2
OX .226

(2) Similarly, we can prove that (A + B)δ1
O
X ⊇ (A + B)δ2

O
X .227

This completes the proof. �228

Proposition 3 shows that the size of lower approximation of X under a 1-type optimistic neighborhood-basedmultigran-229

uation rough set will become much larger with the value of the parameter δ being much bigger. Its upper approximation230

has the inverse conclusion.231

Proposition 4. Let NIS = (U, AT,N) be a neighborhood information system, A, B ⊆ AT categorical and numerical attribute232

subsets, respectively, and X, Y ⊆ U. If X ⊆ Y, then233

(1) (A + B)OX ⊆ (A + B)OY,234

(2) (A + B)
O
X ⊆ (A + B)

O
Y.235

Proof. (1) If X ⊆ Y , then X ∩ Y = X . Then we have236

(A + B)OX = (A + B)O(X ∩ Y)237

= A(X ∩ Y) ∪ B(X ∩ Y)238

= ((AX ∩ AY) ∪ (BX ∩ (BY)239

= ((AX ∩ AY) ∪ BX) ∩ ((AX ∩ AY) ∪ BY)240

= ((AX ∪ BX) ∩ (AY ∪ BX)) ∩ (AX ∪ BY) ∩ (AY ∪ BY)241

= ((A + B)OX ∩ (A + B)OY) ∩ ((AY ∪ BX) ∩ (AX ∪ BY))242

⊆ ((A + B)OX ∩ (A + B)OY) ⊆ (A + B)OY .243

Hence, (A + B)OX ⊆ (A + B)OY .244

(2) If X ⊆ Y , then X ∪ Y = Y . Then we have245

(A + B)
O
Y = (A + B)

O
(X ∪ Y)246

= A(X ∪ Y) ∩ B(X ∪ Y)247

= (AX ∪ AY) ∩ (BX ∪ BY)248

= ((AX ∪ AY) ∩ BX) ∪ ((AX ∪ AY) ∩ BY)249

= (AX ∩ BX) ∪ (AY ∩ BX) ∪ (AX ∩ BY) ∪ (AX ∩ BY)250

= (A + B)
O
X ∪ (A + B)

O
Y ∪ (AX ∩ BY) ∪ (AX ∪ BY)251

⊇ ((A + B)
O
X ∪ (A + B)

O
Y) ⊇ (A + B)

O
X.252

Hence, (A + B)
O
Y ⊇ (A + B)

O
X .253

This completes the proof. �254

Corollary 4. Let NIS = (U, AT,N) be a neighborhood information system, A, B ⊆ AT categorical and numerical attribute

subsets, respectively, and X ⊆ U. If δ1, δ2 are two nonnegative numbers and δ1 ≥ δ2, then

αO
(A+B)δ1

(X) ≤ αO
(A+B)δ2

(X).

Proof. It is straightforward from Proposition 3.255

Similar to the classical pessimistic MGRS’s definition [26], let NIS = (U, AT,N) be a neighborhood information system,

where A, B ⊆ AT are categorical and numerical attributes, respectively. For any X ⊆ U, the lower and upper approximations

of X of the pessimistic 1-type NMGRS in U are described as:

(A + B)PX = {x ∈ U | nA(x) ⊆ X ∧ nB(x) ⊆ X}, (9)

(A + B)
P
X =∼ (A + B)P(∼ X). (10)

Analogously, this multigranulation boundary region of X is

BnP(A+B)(X) = (A + B)
P
X \ (A + B)PX.
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\noindent\textbf{Proof.} (1) Let $X\subseteq U$, assume that
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$\delta_{1}\geq\delta_{2}$, we obviously have
$n_{A}^{\delta_{1}}(x)\supseteq n_{A}^{\delta_{2}}(x)$ and
$n_{B}^{\delta_{1}}(x)\supseteq n_{B}^{\delta_{2}}(x)$. Then, there must exist $x_{0}\in X\subseteq U$, such that
$n_{A}^{\delta_{2}}(x_{0})\subseteq X$ but $n_{A}^{\delta_{1}}(x_{0})\nsubseteq X$. Similarly, there also exists $y_{0}\in X\subseteq U$, such that
$n_{A}^{\delta_{2}}(y_{0})\subseteq X$ but $n_{A}^{\delta_{1}}(y_{0})\nsubseteq X$. Based on Definition 4, we have
$\underline{(A+B)_{\delta_{1}}}^{O}X\subseteq
\underline{(A+B)_{\delta_{2}}}^{O}X$.
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We call ((A + B)PX, (A + B)
P
X) a pessimistic 1-type neighborhood multigranulation rough set. �256

Theorem 2. Let NIS = (U, AT,N) be a neighborhood information system, where A, B ⊆ AT are categorical and numerical257

attributes, respectively. For any X ⊆ U, then (A + B)
P
X = {x ∈ U | (nA(x) ∩ X �= ∅) ∨ (nB(x) ∩ X �= ∅)}.258

Proof. By the above definitions, we have259

x ∈ (A + B)
P
X ⇔ x ∈∼ (A + B)P(∼ X)260

⇔ x /∈ (A + B)P(∼ X)261

⇔ nA(x) � (∼ X) ∨ nB(x) � (∼ X)262

⇔ nA(x) ∩ X �= φ ∨ nB(x) ∩ X �= ∅.263

This completes the proof. �264

Different from the upper approximation of optimistic 1-type neighborhood multigranulation rough set, the upper ap-265

proximation of pessimistic 1-type neighborhood multigranulation rough set is represented as a set in which objects have266

non-empty intersection with the target in terms of at least one granular structure.267

From the above analysis, we can obtain the following two corollaries and one proposition.268

Corollary 5. Let NIS = (U, AT,N) be a neighborhood information system, A, B ⊆ AT categorical and numerical attributes,269

respectively. For any X ⊆ U, then (A + B)
P
X = AX ∪ BX.270

Proof. (A + B)
P
X =∼ (A + B)P(∼ X)271

=∼ (A(∼ X) ∩ B(∼ X))272

=∼ A(∼ X)∪ ∼ B(∼ X)273

= AX ∪ BX .274

This completes the proof. �275

Similarly, other properties of the pessimistic version can be proved by the same method.276

3.2. 2-Type neighborhood multigranulation rough sets (2-type NMGRS)277

Whenmultiple neighborhood relations are used in the neighborhood information system,we call such amultigranulation278

rough set a 2-type neighborhoodmultigranulation rough set, denoted by 2-type NMGRS. Simply, we first investigate how to279

approximate a target concept through two neighborhood relations. For simpleness, we use the denotations A + BX = NX ,280

and A + BX = NX in the following:281

Definition 5 (2-type NMGRS). Let NIS = (U, AT,N) be a neighborhood information system, N1,N2 two neighborhood

relations on the universe U, N1 induced by A1 and B1, N2 induced by A2 and B2, where A1, A2 are two categorical attribute

subsets and B1, B2 are two numerical attribute subsets , and U/A1, U/A2, U/B1, U/B2 are four coverings on the universe U.

Then for any X ⊆ U, the optimistic lower approximation and upper approximation of X in U are defined as

(N1 + N2)
OX = {x ∈ U | n(A1+B1)(x) ⊆ X ∨ n(A2+B2)(x) ⊆ X}, (11)

(N1 + N2)
O
X =∼ (N1 + N2)

O(∼ X). (12)

The area of uncertainty or boundary region is defined as:

BnO(N1+N2)
(X) = (N1 + N2)

O
X \ (N1 + N2)

OX.

We call ((N1 + N2)
OX, (N1 + N2)

O
X) an optimistic 2-type NMGRS based on two neighborhood relations.282

In 2-type NMGRS, n(A+B)(x) represents a neighborhood induced by a heterogeneous attribute subset and n(A+B)(x) =283

{x ∈ U | nA(x) ≤ δ ∨ nB(x) ≤ δ}. However, by the (3) of Definition 2, n(A∪B)(x) = {xi ∈ U | dA(x, xi) = 0∧ dB(x, xi) ≤ δ}.284

It is deserved to point out that let NIS = (U, AT,N) be a neighborhood information system, a partition U/A induced by285

a categorical attribute subset A, and a covering U/B induced by a numerical attribute subset B, then U/(A ∪ B) induced by286

A ∪ B is also a covering of the universe.287

Example 3 (Continued from Example 1). Let X = {x1, x2, x3, x7}, four coverings on the universe U are induced from288

Table 1 as follows:289
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Let A1 = {O,W} ⊆ AT be a categorical attribute subset, from Example 2, it follows that U/A1 = {{x1, x8}, {x2}, {x3},290

{x4, x5}, {x6}, {x7}}. Then A1X = {x2, x3, x7}, A1X = {x1, x2, x3, x7, x8}.291

Let A2 = {O,U} ⊆ AT be a categorical attribute subset, from Table 1, it follows that U/A2 = {{x1}, {x2, x8}, {x3},292

{x4, x5}, {x6}, {x7}}}. Then A2X = {x1, x3, x7}, A2X = {x1, x2, x3, x7, x8}.293

Let B1 = {T,H} ⊆ AT be numerical attribute subset, from Example 2, it follows that U/B1 = {{x1, x2, x3}, {x2, x1,294

x3, x4, x8}, {x3, x1, x2}, {x4, x2, x8}, {x5, x6}, {x6, x5, x7}, {x7, x6}, {x8, x4, x2}}, we have that B1X = {x1, x3}, B1X={x1, x2,295

x3, x4, x6, x7, x8}.296

Let B2 = {T, I} ⊆ AT be a numerical attribute subset, from Table 1, it follows that U/B2 = {{x1, x2, x3}, {x2, x1, x4, x8},297

{x3, x1}, {x4, x2, x8}, {x5, x6, x8}, {x6, x5}, {x7}, {x8, x2, x4, x5}}. We have that B2X = {x1, x3, x7}, B2X = {x1, x2, x3, x4, x7,298

x8}. From the definition of the optimistic 1-type NMGRS, by computing, we have that (A1 + B1)
OX = {x1, x2, x3, x7},299

(A1 + B1)
O
X = {x1, x2, x3, x7, x8}. And (A2 + B2)

OX = {x1, x3, x7}, (A2 + B2)
O
X = {x1, x2, x3, x4, x7, x8}.300

Then (N1 + N2)
OX = {x1, x2, x3, x7}, (N1 + N2)

O
X = {x1, x2, x3, x4, x7, x8}.301

From Example 2, it follows that A1 ∪ B1X = {x1, x2, x3, x7}, A1 ∪ B1X = {x1, x2, x3, x7}.302

ForU/(A2∪B2) = {{x1}, {x2, x8}, {x3}, {x4}, {x6}, {x7}}, then (A2 ∪ B2)X = {x1, x3, x7}, (A2 ∪ B2)X = {x1, x2, x3, x7, x8}.303

In addition,U/((A1 ∪B1)∪ (A2 ∪B2))={{x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}}, one has (N1∪N2)X=(A1 + B1)
OX∪304

(A2 + B2)
OX = {x1, x2, x3, x7} and N1 ∪ N2X =∼ (N1 ∪ N2)(∼ X) = {x1, x2, x3, x7}.305

Obviously, for the optimistic 2-type neighborhood multigranulation rough set, we have that (N1 + N2)
OX = {x3, x7} ⊆306

{x1, x3, x7} = (N1 ∪ N2)X, and (N1 + N2)
O
X = {x1, x2, x3, x7, x8} ⊇ {x1, x2, x3, x7} = (N1 ∪ N2)X.307

From the definition of approximation and the discussion above, we can get the following properties of the lower and308

upper approximations.309

Proposition 5. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2 two neighborhood relations on the universe310

U. Then for any X ⊆ U, then311

(1) (N1 + N2)
OX ⊆ (N1 ∪ N2)X,312

(2) (N1 + N2)
O
X ⊇ (N1 ∪ N2)X.313

Proof. (1) For any x ∈ (N1 + N2)
OX , fromDefinition5, it follows that x ∈ n(A1+B1) and x ∈ n(A2+B2). Hence, x ∈ n(A1+B1)(x)∩314

n(A2+B2)(x), n(A1+B1)(x) ∧ n(A2+B2)(x) ⊆ n(N1∪N2)(x), we have x ∈ (N1 ∪ N2)X , i.e., (N1 + N2)
OX ⊆ (N1 ∪ N2)X.315

(2) Due to duality property of the lower and upper approximations, (N1 ∪ N2)X =∼ (N1 ∪ N2)(∼ X). Applying the316

result of (1), we have that (N1 ∪ N2)X =∼ (N1 ∪ N2)(∼ X) ⊆∼ (N1 + N2)
O(∼ X) = (N1 + N2)

O
X , i.e., (N1 ∪ N2)X ⊆317

(N1 + N2)
O
X.318

This completes the proof. �319

Corollary 6. BnN1
(X) ∪ BnN2

(X) ⊆ BnO(N1+N2)
(X).320

Corollary 7. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2 two neighborhood relations on the universe

U. Then, for X ⊆ U, one has

αO
(N1+N2)

(X) ≤ α(N1∪N2)(X).

Proof. This is straightforward from the definition of the accuracy measure of X . �321

Proposition 6. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2 two neighborhood relations on the universe322

U, and X ⊆ U. If δ1, δ2 are two nonnegative numbers and δ1 ≥ δ2, then323

(1) (N1 + N2)δ1
OX ⊆ (N1 + N2)δ2

OX,324

(2) (N1 + N2)
O

δ1
X ⊇ (N1 + N2)

O

δ2
X.325

Proof. It can be easily proved similar to Proposition 3.326

Proposition 6 states that the size of lower approximation of X under a 2-type optimistic neighborhood-based multigran-327

uation rough set will become much larger with the value of the parameter δ being much bigger. Its upper approximation328

has the inverse conclusion. �329
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Corollary 8. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2 two neighborhood relations on the universe

U, and X ⊆ U. If δ1, δ2 are two nonnegative numbers and δ1 ≥ δ2, then,

αO
(N1+N2)δ1

(X) ≤ αO
(N1+N2)δ2

(X).

Proposition 7. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2 two neighborhood relations on the universe330

U, and X, Y ⊆ U. If X ⊆ Y, then331

(1) (N1 + N2)
OX ⊆ (N1 + N2)

OY,332

(2) (N1 + N2)
O
X ⊆ (N1 + N2)

O
Y.333

Proof. (1) If X ⊆ Y , X ∩ Y = X . Then334

(N1 + N2)
OX = (N1 + N2)

O(X ∩ Y)335

= N1(X ∩ Y) ∪ N2(X ∩ Y)336

= (N1X ∩ N1Y) ∪ (N2X ∩ N2Y)337

= ((N1X ∩ N1Y) ∪ N2X) ∩ ((N1X ∩ N1Y) ∪ N2Y)338

= (N1X ∪ N2X) ∩ (N1Y ∪ N2X) ∩ (N1X ∪ N2Y) ∩ (N1Y ∪ N2Y)339

= (N1 + N2)
OX ∩ (N1 + N2)

OY ∩ (N1Y ∪ N2X) ∩ (N1X ∪ N2Y)340

⊆ (N1 + N2)
OX ∩ (N1 + N2)

OY341

⊆ (N1 + N2)
OY .342

So (N1 + N2)
OX ⊆ (N1 + N2)

OY .343

(2) If X ⊆ Y , ∼ X ⊇∼ Y , from the result of (1), (N1 + N2)
O(∼ X) ⊇ (N1 + N2)

O(∼ Y). Then, ∼ ((N1 + N2)
O344

(∼ X)) ⊆∼ (N1 + N2)
O(∼ Y), then (N1 + N2)

O
X ⊆ (N1 + N2)

O
Y .345

This completes the proof. �346

Similarly, the pessimistic 2-type neighborhood multigranulation rough set with two neighborhood granulations can be

also defined as follows:

(N1 + N2)
PX = {x | n(A1+B1)(x) ⊆ X ∧ n(A2+B2)(x) ⊆ X}, (13)

(N1 + N2)
P
X =∼ (N1 + N2)

P(∼ X). (14)

The area of uncertainty or boundary region is defined as:

BnP(N1+N2)
(X) = (N1 + N2)

P
X \ (N1 + N2)

PX.

Parallelly, we can present the corresponding properties of this pessimistic version.347

Based on the above conclusions,we extend 2-typeNMGRS based on twoneighborhood relations to that based onmultiple348

neighborhood relations.349

Definition 6. Let NIS = (U, AT,N) be a neighborhood information system, A1, A2, . . . , Am categorical attribute subsets

of AT; B1, B2, . . . , Bm numerical attributes of AT , Ni induced by Ai and Bi for i = 1, 2, . . . ,m, and X ⊆ U. We define an

optimistic multigranulation lower approximation and an upper approximation of X by the following:

m∑
i=1

Ni

O

X = ⋃{x ∈ U | n(Ai+Bi)(x) ⊆ X, i ≤ m}, (15)

m∑
i=1

Ni

O

X =∼
m∑
i=1

Ni(∼ X). (16)

Similarly, the area of uncertainty or boundary region is defined as:

BnO∑m
i=1 Ni

(X) =
m∑
i=1

Ni

O

X

∖
m∑
i=1

Ni

O

X.

We call (
∑m

i=1 Ni
O
X,

∑m
i=1 Ni

O
X) an optimistic 2-type NMGRS based on multiple neighborhood relations.350
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Proposition 8. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2, . . . ,Nm m neighborhood relations on the351

universe U, and X ⊆ U. Then,352

(1)
∑m

i=1 Ni
O
X ⊆ (N1 ∪ N2 ∪ · · · ∪ Nm)X,353

(2)
∑m

i=1 Ni
O
X ⊇ (N1 ∪ N2 ∪ · · · ∪ Nm)X.354

Proof. Ifm = 1, they are straightforward.355

Ifm > 1, we prove them as follows:356

(1) It can be easily proved from Definition 6.357

(2)
∑m

i=1 Ni
O
X =∼ ∑m

i=1 Ni
O(∼ X) ⊇∼ (N1 ∪ N2 ∪ · · · ∪ Nm)(∼ X) = (N1 ∪ N2 ∪ · · · ∪ Nm)X .358

This completes the proof. �359

Corollary 9. Let NIS = (U, AT,N) be a neighborhood system, N1,N2, . . . ,Nm m neighborhood relations on the universe U, and

X ⊆ U. Then,

αO∑m
i=1 Ni

(X) ≤ α(N1∪N2∪···∪Nm)(X).
360

Proposition 9. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2, . . . ,Nm m neighborhood relations on the361

universe U, X ⊆ U, and δ1, δ2 two nonnegative numbers. If δ1 ≥ δ2, then,362

(1) (
∑m

i=1 Ni)δ1
O
X ⊆ (

∑m
i=1 Ni)δ2

O
X,363

(2) (
∑m

i=1 Ni)
O

δ1
X ⊇ (

∑m
i=1 Ni)

O

δ2
X.364

Proof. It can be proved similar to Proposition 3. �365

Corollary 10. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2, . . . ,Nm m neighborhood relations on the

universe U, and X ⊆ U. If δ1, δ2 are two nonnegative numbers, and δ1 ≥ δ2, then the following properties hold.

αO
(
∑m

i=1 Ni)δ1
(X) ≤ αO

(
∑m

i=1 Ni)δ2
(X).

Proposition 10. Let NIS = (U, AT,N) be a neighborhood information system, N1,N2, . . . ,Nm m neighborhood relations on the366

universe U, and X, Y ⊆ U. If X ⊆ Y, then367

(1)
∑m

i=1 Ni
O
X ⊆ ∑m

i=1 Ni
O
Y,368

(2)
∑m

i=1 Ni
O
X ⊆ ∑m

i=1 Ni
O
Y.369

Proof. It is similar to the proof of Proposition 4. �370

Similarly, we can also define the pessimistic 2-type neighborhood multigranulation rough set as the following:

m∑
i=1

Ni

P

X = {x ∈ U | n(A1+B1)(x) ⊆ X ∧ · · · ∧ n(Am+Bm)(x) ⊆ X}, (17)

m∑
i=1

Ni

P

X =∼
m∑
i=1

Ni

P

(∼ X). (18)

Similarly, the area of uncertainty or boundary region is defined as:

BnP∑m
i=1 Ni

(X) =
m∑
i=1

Ni

P

X

∖
m∑
i=1

Ni

P

X.

371

Analogously, we can gain the same results of the pessimistic version with multiple neighborhood granulations.372
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4. Attribute reduction of neighborhood multigranulation rough sets373

In this section, we investigate the reduction of coverings induced by themultiple neighborhood relations. A discernibility374

matrix will be used to compute all the reducts of neighborhood multigranulation rough set. The objective of reduction is to375

select a subset of coverings that can preserve consistence of the neighborhood decision system [1]. Let� = {C1, C2, . . . , Cm}376

be a family of coverings ofU. Ci = {Ki1, Ki2, . . . , Kiti}, where Kij is nonempty subset ofU for j = {1, 2, . . . , ti}. For any x ∈ U,377

(Ci)x = ⋂{Kij | Kij ∈ C, x ∈ Kij}, Cov(Ci) = {(Ci)x|x ∈ U}, �x = ⋂{Kix ∈ Cov(Ci), x ∈ Cix}, and Cov(�) = {�x | x ∈ U}.378

As a result, Cov(Ci) = {(Ci)x|x ∈ U} and Cov(�) = {�x | x ∈ U} are two coverings of U.379

Definition 7. Let � = {C1, C2, . . . , Cm} be a family of coverings of U, D = {d} a decision attribute set, and U/D =380

{D1,D2, . . . ,Dq} a decision partition on U. If for anyx ∈ U, there exists Dj ∈ U/D such that �x ⊆ Dj , then decision system381

(U, �,D) is called a consistent covering decision system and denoted by Cov(�) ≤ U/D.382

Definition 8. Let NIS = (U, AT ∪ D,N) be a neighborhood decision information system, where D = {d}, Ci induced by a383

categorical attribute subset Ai or a numerical attribute subset Bi, i = 1, 2, . . . ,m, and � = {C1, C2, . . . , Cm}m coverings of384

U. We call (U, �,D) a covering neighborhood decision system.385

Definition 9. Let (U, �,D = {d}) be a covering neighborhood decision information system. For Ci ∈ �, if Cov(� − Ci) ≤386

U/D, thenCi is called a superfluous covering relative toD in�, otherwiseCi is called indispensable relative toD in�. For every387

P ⊆ � satisfying Cov(P) ≤ U/D, if every element in P is an indispensable covering, i.e., for any Ci ∈ P, if Cov(P−Ci) �≤ U/D,388

then P is called a relative reduct of � relative to D. The disjunction of all the indispensable elements in � is called the core389

of � to D, denoted by NCoreD(�).The relative reduct of a consistent covering decision system is the subset of coverings to390

ensure the consistency of the decision information system.391

When the attribute reduction of a neighborhood-based multigranultion rough set is to calculate, we will employ the392

discernibility matrix approach proposed by Chen et al. for this objective, which is as follows:393

Definition 10 [1]. Let (U, �,D = {d}) be a consistent covering decision system. Suppose U = {x1, x2, . . . , xn}, by
M(U, �,D), we denote a n × nmatrix (cij), called the discernibility matrix of (U, �,D = {d}), defined as

cij =
{{C ∈ � : (Cxi �⊂ Cxj) ∧ (Cxj �⊂ Cxi)} ∪ {Cs ∧ Ct : (Csxi ⊂ Cxj) ∧ (Csxj ⊂ Cxi)}, d(�xi) �= d(�xj),

�, d(�xi) = d(�xj).

In which D = {d} and d(x) is a decision function d : U → Vd of the universe U into value set Vd. For every xi, xj ∈ U, if394

�xi ⊆ �xj , then d(xi) = d([xi]D) = d(�xi) = d(�xj) = d(xj) = d([xj]D). If d(�xi) �= d(�xj), then �xi ∩ �xj = ∅, i.e.,395

�xi �⊂ �xj and�xj �⊂ �xi . But if�xi �⊂ �xj and�xj �⊂ �xi , then either d(�xi) = d(�xj) or d(�xi) �= d(�xj) are possible. For396

this case, if �xi ∩ �xj �= ∅, we have d(�xi) = d(�xj). If d(�xi) = d(�xj), then both �xi �⊂ �xj and �xj �⊂ �xi , or �xi ⊆ �xj397

or �xj ⊆ �xi are possible.398

In the following, we give an example to illustrate the covering reduct of 1-type neighborhood multigranulation rough399

set through using the discernibility matrix approach proposed by Chen et al. The covering reduct of 2-type neighborhood400

multigranulation rough set can be done similarly.401

Example 4. Table 2 depicts a neighborhood decision information system NIS = (U, AT ∪ {d},N) in which AT = {outlook,402

temperature, windy}, {d} = {play}. The numerical attribute value of temperature is standardized into [0, 1] (see [6]) for403

computing and we suppose δ = 0.1. By Definition 2, we have that:404

Let P1 = {O}, then C1 = {{x1, x2, x8}, {x3, x7}, {x4, x5, x6}}.405

Let P2 = {T}, then C2 = {{x1, x2, x3}, {x2, x1, x3, x4, x8}, {x3, x1, x2}}, {x4, x2, x5, x6, x7, x8}; {x5, x4, x6, x7, x8},406

{x6, x4, x5, x7, x8}, {x7, x4, x5, x6, x8}, {x8, x2, x4, x5, x6, x7}}.407

Let P3 = {W}, then C3 = {{x1, x3, x4, x5, x8}, {x2, x7, x6}}.408

Let P4 = {O, T}, then C4 = {{x1, x2}, {x2, x1, x8}, {x3}, {x4, x5, x6}, {x7}, {x8, x2}}.409

Table 2

A playing tennis information system with mixed attributes.

Outlook Temperature Windy Play

x1 Sunny 85 False No

x2 Sunny 80 True No

x3 Overcast 83 False Yes

x4 Rainy 70 False Yes

x5 Rainy 68 False Yes

x6 Rainy 65 True No

x7 Overcast 64 True Yes

x8 Sunny 72 False No
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Let P5 = {O,W}, then C5 = {{x1, x8}, {x2}, {x3}, {x4, x5}, {x6}, {x7}}.410

Let P6 = {W, T}, then C6 = {{x1, x3}, {x2}, {x1, x3}, {x4, x5, x8}, {x6, x7}, {x8, x4, x5}}.411

Let P7 = {O, T,W}, then C7 = {{x1}, {x2}, {x3}, {x4, x5}, {x6}, {x7}, {x8}}.412

And U/D = {{x1, x2, x6, x8}, {x3, x4, x5, x7}}. From Definition 7, we have that �1 = {x1}, �2 = {x2}, �3 = {x3},413

�4 = {x4, x5}, �5 = {x4, x5}, �6 = {x6}, �7 = {x7}, �8 = {x8}.414

Obviously, Cov(�) = {{x1}, {x2}, {x3}, {x4, x5}, {x5, x4}, {x6}, {x7}, {x8}} is a covering on the universe U induced by �.415

Note that the discernibilitymatrix is a symmetric, we only consider its lower triangularmatrix of the discernibilitymatrix

as the following:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

� �

�31 �32 �

�41 � � �

�51 � � � �

� �62 � �64 �65 �

� �72 � � � �76 �

� � �83 �84 �85 � �87 �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where �31 = �76 = �84 = �85 = {C1, C4, C5, C7}, �32 = �87 = {C1, C3, C4, C5, C6, C7}, �41 = �51 = �62 = �72 =416

�83 = {C1, C2, C4, C5, C6, C7}, and �64 = �65 = {C3, C5, C6, C7}.417

f (U, �)(C1, C2, . . . , C7) = {C1 ∨ C4 ∨ C5 ∨ C7} ∧ {C1 ∨ C3 ∨ C4 ∨ C5 ∨ C6 ∨ C7}
∧ {C1 ∨ C2 ∨ C4 ∨ C5 ∨ C6 ∨ C7} ∧ {C3 ∨ C5 ∨ C6 ∨ C7}
= {C1 ∨ C4 ∨ C5 ∨ C7} ∧ {C3 ∨ C5 ∨ C6 ∨ C7}
= (C1 ∧ C3) ∨ (C1 ∧ C6) ∨ (C4 ∧ C3) ∨ (C4 ∧ C6) ∨ C5 ∨ C7.

Finally, all reducts of this neighborhood decision information system are {C1, C3}, {C1, C6}, {C4, C3}, {C4, C6}, {C5}, and418

{C7}.419

Remark: If we consider a simple case, that is each attribute induces a covering (i.e., neighborhood granular structure),420

we draw some interesting conclusions. For example, through calculating the reducts of coverings in the condition part, we421

also can obtain the corresponding attribute reduct. In the last example, from the above reduct of coverings, we can know422

that attribute reducts of this neighborhood information system are {O,W} and {O, T}, and NcoreD(U) = {O} is their core423

attribute.424

5. Conclusions425

To extend the applicable area of MGRS, in this paper, we have proposed 1-type neighborhood-based multigranulation426

rough sets and 2-type neighborhood-based multigranulation rough sets, which can be used to deal with the data sets427

with hybrid attributes. The theoretical analysis shows that the proposed neighborhood multigranulation rough sets are428

generalized versions of original MGRS, in which each of NMGRS will degenerate into the corresponding version of classical429

MGRS. To extract simple decision rules, a concept of covering reduct has also been introduced to describe the smallest430

attribute subset that preserves the lower and upper approximations of all decision classes in NMGRS. These results will431

enrich the multigranulation rough set theory and be very helpful for knowledge discovery from various data sets in the432

context of multiple granulations.433
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