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Abstract

Multi-label classification is an active research field in machine learning.
Because of the high dimensionality of multi-label data, attribute reduction
(also known as feature selection) is often necessary to improve multi-label
classification performance. Rough set theory has been widely used for at-
tribute reduction with much success. However, little work has been done
on applying rough set theory to attribute reduction in multi-label classifica-
tion. In this paper, a novel attribute reduction method based on rough set
theory is proposed for multi-label data. First, the uncertainties conveyed by
labels are analyzed, and a new type of attribute reduct is introduced, called
complementary decision reduct. The relationships between complementary
decision reduct and two representative types of attribute reducts are also in-
vestigated, showing significant advantages of complementary decision reduct
in revealing the uncertainties implied in multi-label data. Second, a discerni-
bility matrix-based approach is introduced for computing all complementary
decision reducts, and a heuristic algorithm is proposed for effectively com-
puting a single complementary decision reduct. Experiments on real-life data
demonstrate that the proposed approach can effectively reduce unnecessary
attributes and improve multi-label classification accuracy.
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1. Introduction

Multi-label data are omnipresent in real-world problems. In such data,
one instance may be simultaneously associated with multiple labels. For
example, an image may belong to multiple semantic classes, such as beach
and mountain [1]; a piece of music may belong to more than one emotion
class, such as happy-pleasant and relaxing-calm [41]; and a gene may be
related to a set of functional classes, such as metabolism, transcription, and
protein synthesis [5]. Within a multi-label classification framework, each
instance is associated with a set of labels, and the task is to predict the
unknown label sets of test instances by analyzing the known label sets of
training instances.

As in traditional single-label classification problems, multi-label classifi-
cation performance is strongly influenced by the quality of the input features
(or attributes). Irrelevant or unnecessary features may lead to poor classifica-
tion performance because the similarity between patterns from the same class
may be reduced [45]. It is therefore desirable to reduce unnecessary features
and select informative features to obtain more compact classification mod-
els and better generalization. Among various feature selection approaches,
rough set theory, as a concrete granular computing model, has attracted
much attention owing to the following advantages: its ability to discover
data dependencies under the constraint of a limited collection of information
granules, and its ability to reduce the number of attributes contained in a
dataset using the data alone, without any additional information [27, 28, 29].

Feature selection in rough set theory is also called attribute reduction;
it aims to remove unnecessary attributes while retaining the discernibility
of objects under the original attributes. In the past few years, many types
of attribute reduction approaches have been proposed according to various
criteria [3, 4, 8, 11, 17, 22, 33, 42, 44, 47, 49, 52, 53]. For convenience, some
of these techniques are briefly reviewed here. The positive region reduct, dis-
cussed by Grzymała-Busse in [9, 10], is a representative attribute reduction
approach that aims to remove as many unnecessary attributes as possible
while retaining the so-called positive regions, i.e., the consistency informa-
tion. However, this reduct turns out to be too strict with respect to possible
noise and fluctuations in data. A viable alternative that can overcome this
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restriction is the β-reduct, introduced by Ziarko in [53], which removes un-
necessary attributes by allowing a controlled degree of inconsistency. Subse-
quently, Skowron used probabilistic tools to extend the rough set reduction
laws and introduced the entropy reduct in his lectures at Warsaw Univer-
sity in 1993/1994. Following this line of thought, Ślęzak [39] proposed the
approximate entropy reduct, which removes unnecessary attributes while ap-
proximately preserving decision information encoded in terms of information
entropy. More recently, some attribute reduction methods in inconsistent
systems and their relationships have been investigated by Kryszkiewicz [22],
Li et al. [23], and Mi et al. [51]. In addition, because more than one reduct
usually exists for a given dataset, calculation techniques for reducts have
been widely discussed. For example, Skowron and Rauszer [38] developed a
discernibility matrix-based approach to obtain all reducts. Unfortunately, it
has been proved that finding all reducts, or finding an optimal reduct (i.e.,
a reduct with the minimum number of attributes), is an NP-hard problem
[46]. Therefore, many algorithms have also been proposed to find a heuristic
“optimal” reduct [12, 18, 43, 48]. For example, Hu and Cercone [13] proposed
a heuristic attribute reduction algorithm for computing the positive region
reduct; Wang et al. [43] used Shannon’s conditional information entropy
to construct a heuristic attribute reduction algorithm. However, because of
their inefficient data structure and high computational cost, most existing at-
tribute reduction algorithms cannot handle massive data well. Hence, several
efficient strategies have been designed to improve the efficiency of a heuristic
attribute reduction algorithm [16, 24, 31, 32, 36].

To the best of the authors’ knowledge, however, little work has been
done on applying rough set theory to attribute reduction in multi-label clas-
sification. Although directly applying existing attribute reduction methods
to multi-label data is possible, it does not sufficiently take into account the
uncertainties conveyed by labels and, therefore, could be enhanced further.
In this paper, the uncertainties conveyed by labels are analyzed and a new
type of attribute reduct is proposed, called complementary decision reduct.
The relationships between complementary decision reduct and two represen-
tative types of attribute reducts are also investigated, showing significant
advantages of complementary decision reduct in revealing the uncertainties
of multi-label data. Furthermore, a discernibility matrix-based method is
introduced for computing all possible complementary decision reducts, and
a heuristic algorithm is proposed for effectively computing a single comple-
mentary decision reduct.
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The rest of this paper is organized as follows. In Section 2, some ba-
sic notions of rough set theory are reviewed. Multi-label decision table is
then introduced, and the limitations of directly applying existing attribute
reduction methods to multi-label data are analyzed in Section 3. Section
4 introduces a new attribute reduct, referred to as complementary decision
reduct; a discernibility matrix-based approach and a heuristic algorithm are
also considered in this section. Section 5 reports a number of experimental
results on several real-world multi-label datasets, and Section 6 concludes
the paper.

2. Preliminaries

As a basis for further discussion, this section briefly reviews several basic
concepts in rough set theory such as decision table, lower approximation,
upper approximation, and positive region reduct.

In rough set theory, an information system with decision attributes is
called a decision table, denoted by S = (U,A∪D), where U = {x1, x2, · · · , xn}
is a nonempty, finite set of objects; A = {a1, a2, · · · , ap} is a nonempty, finite
set of condition attributes; and D = {d1, d2, · · · , ds} is a nonempty, finite set
of decision attributes. In general, it is assumed that A ∩ D = ∅ and that
each attribute a ∈ A∪D forms a mapping a : U → Va, where Va is the value
domain of a.

Each nonempty subset B ⊆ A determines an indiscernibility relation as
follows:

RB = {(x, y) ∈ U × U : a(x) = a(y), for all a ∈ B}.

The indiscernibility relation RB partitions U into a family of disjoint subsets
given by U/RB = {[x]B : x ∈ U}, where [x]B denotes the equivalence class
determined by x with respect to B, i.e.,

[x]B = {y ∈ U : (x, y) ∈ RB}.

Let X ⊆ U and B ⊆ A. X can be characterized by a pair of lower and
upper approximations:

RB(X) = {x ∈ U : [x]B ⊆ X} =
⋃
{[x]B : [x]B ⊆ X},

RB(X) = {x ∈ U : [x]B ∩X 6= ∅} =
⋃
{[x]B : [x]B ∩X 6= ∅}.
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The lower approximation is called the positive region ofX and can be denoted
alternatively as POSB(X); X is called a rough set with respect to B if and
only if RB(X) 6= RB(X).

Attribute reduction is one of the most important topics in rough set
theory, and numerous methods have been proposed according to various cri-
teria. Among existing methods, positive region reduct, first discussed by
Grzymała-Busse in [9] and [10], is a representative method.

Definition 1. Let S = (U,A ∪D) be a decision table, and let B ⊆ A. The
subset B is a positive region reduct of S if and only if B satisfies the following
conditions:

(1) POSB(D) = POSA(D),
(2) POSB′ (D) 6= POSA(D) for any B′ ⊂ B,

where POSB(D) =
r⋃
i=1

POSB(Di) and D1, D2, · · · , Dr are decision classes,

generated by the indiscernibility relation

RD = {(x, y) ∈ U × U : d(x) = d(y), for all d ∈ D}.

If B only satisfies condition (1), it is said that B is a positive region consistent
set.

3. Multi-label data

This section first presents the definition of a multi-label decision table
and then analyzes the limitations of applying existing attribute reduction
approaches to multi-label data.

3.1. Multi-label decision table
Multi-label data can be represented as a multi-label decision table under-

stood as a tuple S = (U,A, L), where

• U = {x1, x2, · · · , xn} is a nonempty finite set of objects;

• A = {a1, a2, · · · , ap} is a nonempty finite set of condition attributes,
called the condition attribute set; and

• L = {l1, l2, · · · , lq} is a nonempty finite set of labels, called the label
set.
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Each condition attribute a ∈ A forms a surjective function a : U → Va,
where Va is the value domain of a; each label l ∈ L forms a surjective function
l : U → Vl, where Vl = {0, 1} is the value domain of l. If the object x is
associated with label l, then l(x) = 1; otherwise, l(x) = 0.

Some conventions in multi-label classification are as follows:
(1) The condition attribute set A and the label set L are disjoint, i.e.,

A ∩ L = ∅.
(2) In multi-label classification, it is usually assumed that each object in

U is associated with at least one label from the label set L [7, 20]. This
means that unlabeled objects are irrelevant to multi-label classification and
are not taken into account in this setting. Note that this convention is a
prerequisite for the proposed approach, as discussed in Section 4.

(3) Each label from L is associated with at least one object in U [35].
The following example depicts a multi-label decision table in more detail:

Example 1. A multi-label decision table S = (U,A, L) is presented in Table
1, where U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}, A = {a, b, c}, and
L = {l1, l2, l3}. It can be seen that each object in U is associated with at least
one label from L and that each label from L is associated with at least one
object in U .

Table 1: A multi-label decision table S = (U,A,L)

U a b c l1 l2 l3

x1 1 2 1 1 0 0

x2 3 2 2 0 1 0

x3 1 2 1 1 0 1

x4 2 3 1 1 0 1

x5 2 3 1 0 0 1

x6 1 2 2 0 1 0

x7 2 3 1 1 1 1

x8 1 2 2 1 1 1

x9 1 1 2 0 1 1

x10 3 1 1 1 1 1

x11 1 1 2 1 1 0
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3.2. Limitations of existing attribute reduction approaches for multi-label
data

This section is mainly devoted to analyzing the limitations of directly
applying existing attribute reduction approaches to multi-label data.

For a multi-label decision table S = (U,A, L), each label attribute can be
viewed as a binary decision attribute, and then an indiscernibility relation
RL can be formed as follows:

RL = {(x, y) ∈ U × U : l(x) = l(y), for all l ∈ L}.
RL partitions U into a family of mutually exclusive subsets given by U/RL =
{D1, D2, · · · , Dr}, where D1, D2, · · · , Dr are decision classes. By taking into
account the indiscernibility relationRL and the corresponding decision classes,
most existing attribute reduction approaches can be directly applied to multi-
label data. As an example, the positive region reduct will be considered here,
and the problem of deleting irrelevant or unnecessary condition attributes in
a multi-label decision table will be addressed. The following example illus-
trates this process:

Example 2. For the multi-label decision table S = (U,A, L) given in Table
1, it can be calculated that

U/RA = {X1, X2, X3, X4, X5, X6}
= {{x1, x3}, {x2}, {x4, x5, x7}, {x6, x8}, {x9, x11}, {x10}},

U/RL = {D1, D2, D3, D4, D5, D6, D7}
= {{x1}, {x2, x6}, {x3, x4}, {x5}, {x7, x8, x10}, {x9}, {x11}}.

Hence, POSA(D) = {x2, x10} = X2 ∪X6. This implies that the other equiv-
alence classes X1, X3, X4, and X5 in U/RA are all uncertain with respect to
the label set L. For example, consider the equivalence class X1 = {x1, x3}.
Note that x1 and x3 are indiscernible with respect to A, whereas their respec-
tive label sets {l1} and {l1, l3} are discernible with respect to L. This means
that X1 is uncertain with respect to the label set L. Furthermore, it can be
determined that

U/R{a,b} = {Y1, Y2, Y3, Y4, Y5}
= {X1 ∪X4, X2, X3, X5, X6}
= {{x1, x3, x6, x8}, {x2}, {x4, x5, x7}, {x9, x11}, {x10}},

U/R{a,c} = {Z1, Z2, Z3, Z4, Z5}
= {X1, X2, X3, X4 ∪X5, X6}
= {{x1, x3}, {x2}, {x4, x5, x7}, {x6, x8, x9, x11}, {x10}}.
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Because X1, X4 and X5 are all uncertain with respect to L, they can be safely
merged without any information loss. In other words, removing attribute c
or b is valid from the perspective of rough set theory. Moreover, it is possible
to determine that no more attributes can be removed from {a, b} or {a, c}.
Hence, both {a, b} and {a, c} are positive region reducts.

However, note that all objects in X1 must be associated with label l1 and
may be associated with label l3, and that all objects in X4 must be associated
with label l2 and may be associated with labels l1, l3. Hence, the uncertainties
of X1 and X4 are different, and the equivalence class Y1, which is the union
of X1 and X4, cannot preserve the uncertainties conveyed by labels. This
implies that {a, b} is not an appropriate attribute reduct.

By contrast, X4 and X5 share the certain label l2 and the uncertain labels
l1 and l3, and, hence, Z4 = X4 ∪X5 preserves the uncertainties conveyed by
labels. Therefore, the reduct {a, c} is more valuable in reducing redundant
attributes for multi-label data than {a, b}.

Through the above analysis, it is clear that some positive region reducts
are not appropriate for multi-label data because they cannot preserve the un-
certainties conveyed by labels. In fact, because the computation of positive
region reduct must refer to the indiscernibility relation RL, the uncertainties
conveyed by labels are not thoroughly analyzed. In addition, note that most
existing attribute reduction methods also consider the uncertainties charac-
terized by RL, meaning that they have the same limitations for multi-label
data as positive region reduct. Hence, it is necessary to reconsider attribute
reduction methods for multi-label data to improve their ability to model the
uncertainties implied in multi-label data.

4. New attribute reduction approach for multi-label data

This section introduces a new type of attribute reduct, referred to as
complementary decision reduct. The relationships between complementary
decision reduct and two representative types of attribute reducts will also be
investigated, and significant advantages of complementary decision reduct in
revealing the uncertainties implied in multi-label data will be demonstrated.
Furthermore, a discernibility matrix-based method is introduced for comput-
ing all complementary decision reducts, and a heuristic algorithm is proposed
for effectively computing a single complementary decision reduct.
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4.1. Complementary decision reduct in multi-label decision table
To characterize the label information implied in multi-label data, the

following definition is presented:

Definition 2. Let S = (U,A, L) be a multi-label decision table, where A =
{a1, a2, · · · , ap} and L = {l1, l2, · · · , lq}. Given a label li ∈ L, a label infor-
mation set with respect to li is defined as follows:

Ei = {x ∈ U : li(x) = 1}.

A label information set is the set of all objects having the label. Accord-
ing to Convention 2 regarding multi-label decision table, ∪qi=1Ei = U , i.e.,
E1, E2, · · · , Eq form a cover of U .

Two particular functions will now be presented to characterize the uncer-
tainties implied in multi-label data.

Definition 3. Let S = (U,A, L) be a multi-label decision table, P (L) be
the power set of label set L, and E1, E2, · · · , Eq be q label information sets.
Given a subset B ⊆ A, a coarse decision function CB : U → P (L) and a fine
decision function FB : U → P (L) are defined as follows:

CB(x) = {li : x ∈ RB(Ei)} = {li : [x]B ∩ Ei 6= ∅}, x ∈ U,

FB(x) = {li : x ∈ RB(Ei)} = {li : [x]B ⊆ Ei}, x ∈ U.

A coarse decision function CB(x) is the set of labels associated with at least
one object in [x]B. In other words, CB(x) is the union of the label sets of all
objects in [x]B. Similarly, FB(x) is the set of labels associated with all objects
in [x]B, i.e., the intersection of the label sets of all objects in [x]B. Hence,
coarse decision function and fine decision function represent, respectively, all
possibly associated labels and all certainly associated labels for the objects
in [x]B. These functions are illustrated by the following example:

Example 3. For the multi-label decision table S = (U,A, L) given by Table
1, the coarse decision function and the fine decision function with respect to
A can be calculated as follows:

CA(x1) = CA(x3) = {l1, l3},
CA(x2) = {l2},
CA(x4) = CA(x5) = CA(x7) = {l1, l2, l3},
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CA(x6) = CA(x8) = {l1, l2, l3},
CA(x9) = CA(x11) = {l1, l2, l3},
CA(x10) = {l1, l2, l3},

FA(x1) = FA(x3) = {l1},
FA(x2) = {l2},
FA(x4) = FA(x5) = F(x7) = {l3},
FA(x6) = FA(x8) = {l2},
FA(x9) = FA(x11) = {l2},
FA(x10) = {l1, l2, l3}.

The following proposition shows some intuitive properties of coarse deci-
sion function and fine decision function:

Proposition 1. Let S = (U,A, L) be a multi-label decision table, and let
B,C ⊆ A. Then,

(1) If B ⊆ C, then FB(x) ⊆ FC(x) ⊆ CC(x) ⊆ CB(x).
(2) For any x ∈ U , CB(x) 6= ∅.
(3) If [x]B = [y]B, then CB(x) = CB(y) and FB(x) = FB(y).

Proof. (1) Because B ⊆ C, [x]C ⊆ [x]B.
If li ∈ FB(x), then x ∈ RB(Ei), i.e., [x]B ⊆ Ei. Because [x]C ⊆ [x]B,

[x]C ⊆ Ei, and, hence, li ∈ FC(x). Therefore, FB(x) ⊆ FC(x).
If lj ∈ FC(x), then x ∈ RC(Ej), i.e., [x]C ⊆ Ej. It is possible to obtain

[x]C ∩ Ej 6= ∅. Then, lj ∈ CC(x). Therefore, FC(x) ⊆ CC(x).
If lk ∈ CC(x), then x ∈ RC(Ek), i.e., [x]C ∩ Ek 6= ∅. Because [x]C ⊆ [x]B,

it follows that [x]B ∩ Ek 6= ∅. Hence, lk ∈ CB(x). Therefore, CC(x) ⊆ CB(x).
(2) If there exists x ∈ U such that CB(x) = ∅, then [x]B ∩ Ei = ∅, i =

1, 2, · · · , q. Hence, [x]B∩(E1∪E2∪· · ·∪Eq) = ∅. On the other hand, because
∪qi=1Ei = U , it follows that [x]B ∩ (E1∪E2∪ · · · ∪Eq) = [x]B ∩U = [x]B 6= ∅.
This is a contradiction.

(3) The desired conclusion is straightforward by the definitions of CB(x)
and FB(x) and the fact that [x]B = [y]B.

Now, complementary decision consistent set can be defined using coarse
decision function and fine decision function.

10
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Definition 4. Let S = (U,A, L) be a multi-label decision table, and let B ⊆
A. If CB(x) = CA(x) and FB(x) = FA(x) for all x ∈ U , it can be said
that B is a complementary decision consistent set of S; otherwise, B is a
complementary decision inconsistent set.

According to Proposition 1 (1) and Definition 4, for a given multi-label
decision table S = (U,A, L) and B ⊆ A, it can be concluded that, if B is
inconsistent, then any subset of B is also inconsistent.

Next, the definition of a complementary decision reduct is presented.

Definition 5. Let S = (U,A, L) be a multi-label decision table, and let B ⊆
A. If B is a complementary decision consistent set and no proper subset of B
is a complementary decision consistent set, then B is called a complementary
decision reduct of S.

A complementary decision reduct is the minimal set of condition at-
tributes that simultaneously preserves the invariances of coarse decision func-
tion and fine decision function for all objects in U . In other words, a comple-
mentary decision reduct is an essential part of a multi-label decision table,
which suffices to preserve the uncertainties implied in multi-label data. In
general, a multi-label decision table may have more than one complementary
decision reduct.

Intuitively, different condition attributes may play different roles in pre-
serving the uncertainties implied in multi-label data. In the following discus-
sion, these attributes are partitioned into two classes: dispensable attributes
and indispensable attributes.

Definition 6. Let S = (U,A, L) be a multi-label decision table, and let B ⊆
A. An attribute a ∈ B is dispensable in B with respect to L if for all x ∈ U ,
CB(x) = CB−{a}(x) and FB(x) = FB−{a}(x); otherwise, a is indispensable in
B with respect to L.

If an attribute is dispensable in a multi-label decision table, it can be
removed without changing the uncertainties of the decision table. However,
an indispensable attribute carries information essential to the decision table
and cannot be removed.

According to Definition 4 and Definition 6, it is easy to establish the
relationship between indispensable attribute and inconsistent set, as shown
in the following proposition:

11
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Proposition 2. Let S = (U,A, L) be a multi-label decision table, and let
B ⊆ A be a complementary decision consistent set. Then, a ∈ B is an
indispensable attribute in B if and only if B − {a} is an inconsistent set.

Next, another fundamental concept of rough set theory, the core, which
can be interpreted as the most characteristic part of the condition attributes
in a multi-label decision table, will be presented.

Definition 7. Let S = (U,A, L) be a multi-label decision table. The set of
all indispensable attributes in A is called the core of A and is denoted by
CORE(A).

The following proposition establishes the relationship between the core
and all complementary decision reducts:

Proposition 3. Let S = (U,A, L) be a multi-label decision table, and let
{Ri|i = 1, · · · , k} be the set of all complementary decision reducts of S. Then,
it follows that

CORE(A) =
k⋂

i=1

Ri.

Proof. Let a ∈ CORE(A). Then, it can be concluded that a ∈ Ri for every
i = 1, 2, · · · , k. Otherwise, there exists one reduct Ri such that a /∈ Ri.
Because Ri = Ri−{a}, Ri−{a} is also a reduct. This implies that Ri−{a}
is a consistent set. On the other hand, a ∈ CORE(A) means that a is an
indispensable attribute in A. Note that A is also a consistent set; hence, by
Proposition 2, A−{a} is an inconsistent set. Therefore, Ri−{a} ⊆ A−{a}
is an inconsistent set. This is a contradiction.

Conversely, let a ∈ ⋂k
i=1Ri. Suppose that a /∈ CORE(A), i.e., a is

a dispensable attribute in A. Because A is a consistent set, A − {a} is a
complementary decision consistent set of S. In this case, there must exist at
least one reduct R such that R ⊆ A − {a}. Therefore, a ∈ ⋂k

i=1Ri ⊆ R ⊆
A− {a}, i.e., a ∈ A− {a}, which is a contradiction.

Proposition 3 states that the core is contained in every complementary
decision reduct. Figure 1 provides a visual presentation of the relationship
between the core and all complementary decision reducts.

Now, the relationship between complementary decision reduct and posi-
tive region reduct will be investigated.
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Reduct 2

Reduct 1

Reduct 3

Core

Figure 1: Relationship between the core and all complementary decision reducts

Theorem 1. Let S = (U,A, L) be a multi-label decision table, and let B ⊆ A.
If B is a complementary decision reduct of S, then B must be a positive region
reduct of S.

Proof. For any A′ ⊆ A, according to the definition of positive region, it is
known that x ∈ POSA′ (D) is equivalent to [x]A′ ⊆ POSA′ (D), and, more-
over, that [x]A′ ⊆ POSA′ (D) if and only if the label sets of all objects in
[x]A′ are identical. Combining the definitions of CA′ (x) and FA′ (x), it fol-
lows that x ∈ POSA′ (D) if and only if CA′ (x) = FA′ (x). This means that if
x ∈ POSA′ (D), then the label set of every object in [x]A′ must be CA′ (x).

Let B ⊆ A be a complementary decision reduct of S. Then, for all x ∈ U ,
the following assertions can be made:

(1) CA(x) = CB(x) and FA(x) = FB(x).
(2) For any B′ ⊂ B, B′ is a complementary decision inconsistent set.
By Assertion (1),

x ∈ POSA(D)⇐⇒ CA(x) = FA(x)
⇐⇒ CB(x) = CA(x) = FA(x) = FB(x)
⇐⇒ x ∈ POSB(D).

That is, POSA(D) = POSB(D). This implies that B is also a positive region
consistent set.

Next, it is proven that B must also be a positive region reduct. If not,
suppose that there exists B′ ⊂ B such that POSA(D) = POSB′ (D). Let
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x ∈ POSA(D). Then, it follows that CA(x) = FA(x), and the label set
of every object in [x]A is CA(x). Because POSA(D) = POSB′ (D), it is
known that CB′ (x) = FB′ (x) and that the label set of every object in [x]B′

is CB′ (x). Considering B′ ⊂ B ⊆ A, it follows that [x]A ⊆ [x]B′ . Hence, the
label set of every object in [x]A is CB′ (x). This means that CA(x) = CB′ (x).
Therefore, CA(x) = CB′ (x) = FB′ (x) = FA(x), which contradicts Assertion
(2). Therefore, B is a positive region reduct.

Note that the converse of Theorem 1 is not always true, i.e., a positive
region reduct may not be a complementary decision reduct, as illustrated by
Example 4.
Example 4 (Continued from Example 3). For the multi-label decision table
S = (U,A, L) given by Table 1,

C{a}(x1) = {l1, l2, l3} 6= CA(x1),

C{b}(x2) = {l1, l2, l3} 6= CA(x2),

C{c}(x2) = {l1, l2, l3} 6= CA(x2),

F{a,b}(x1) = ∅ 6= FA(x1),

C{b,c}(x2) = {l1, l2, l3} 6= CA(x2),

C{a,c}(x) = CA(x),

F{a,c}(x) = FA(x) for any x ∈ U.
Therefore, the unique complementary decision reduct {a, c} can be obtained.

Considering Example 2, it is known that {a, b} and {a, c} are two positive
region reducts. Therefore, the positive region reduct {a, c} is a complementary
decision reduct, whereas {a, b} is not.

Furthermore, it is known that {a, c} is more valuable in reducing unneces-
sary attributes than {a, b}. Hence, the complementary decision reduct is more
appropriate for multi-label data than the positive region reduct. The reason
for this is that the coarse decision function and the fine decision function
represent, respectively, all possibly associated labels and all certainly associ-
ated labels for each object in U and, hence, can more reasonably characterize
the uncertainties implied in multi-label data than the indiscernibility relation
RL.

Note that most existing attribute reduction methods also consider the un-
certainties characterized by RL. Therefore, for multi-label data, complemen-
tary decision reduct has significant advantages over most existing attribute
reduction methods.
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4.2. Relationship between complementary decision reduct and generalized de-
cision reduct

Complementary decision reduct may be easily confused with generalized
decision reduct [21, 40], which is one of the important types of attribute
reducts in rough set theory.

For a multi-label decision table S = (U,A, L), each label attribute can
be viewed as a binary decision attribute, and then it can be considered as
a special type of decision table. The concept of generalized decision reduct
can be rewritten as follows:

Let S = (U,A, L) be a multi-label decision table, whereA = {a1, a2, · · · , ap}
and L = {l1, l2, · · · , lq}. Given a subset B ⊆ A, a generalized decision func-
tion with respect to B is defined by ∂B : U → P (×l∈LVl) with

∂B(x) = {L(y) : y ∈ [x]B}, x ∈ U,

where P (×l∈LVl) is the powerset of Cartesian product ×l∈LVl and L(y) =
(l1(y), l2(y), · · · , lq(y)) is a Boolean value vector, which represents the set of
labels associated with y.

Let S = (U,A, L) be a multi-label decision table. A subset B ⊆ A is a
generalized decision consistent set of S if and only if ∂B(x) = ∂A(x) for all
x ∈ U . If B is a minimal generalized decision consistent set (with respect to
inclusion), then B is called a generalized decision reduct of S.

The following example can be used to illustrate the difference and the
relationship between complementary decision reduct and generalized decision
reduct:

Example 5. For the multi-label decision table S = (U,A, L) given in Table
1, it is known that

U/RA = {X1, X2, X3, X4, X5, X6}
= {{x1, x3}, {x2}, {x4, x5, x7}, {x6, x8}, {x9, x11}, {x10}},

U/R{a,b} = {X1 ∪X4, X2, X3, X5, X6}
= {{x1, x3, x6, x8}, {x2}, {x4, x5, x7}, {x9, x11}, {x10}},

U/R{a,c} = {X1, X2, X3, X4 ∪X5, X6}
= {{x1, x3}, {x2}, {x4, x5, x7}, {x6, x8, x9, x11}, {x10}},

U/R{b,c} = {X1, X2 ∪X4, X3, X5, X6}
= {{x1, x3}, {x2, x6, x8}, {x4, x5, x7}, {, x9, x11}, {x10}}.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Hence, the generalized decision function with respect to A can be calculated
as follows:

∂A(x1) = ∂A(x3) = {(1, 0, 0), (1, 0, 1)}
= {{l1}, {l1, l3}},

∂A(x2) = {(0, 1, 0)} = {{l2}},
∂A(x4) = ∂A(x5) = ∂A(x7) = {(1, 0, 1), (0, 0, 1), (1, 1, 1)}

= {{l1, l3}, {l3}, {l1, l2, l3}},
∂A(x6) = ∂A(x8) = {(0, 1, 0), (1, 1, 1)}

= {{l2}, {l1, l2, l3}},
∂A(x9) = ∂A(x11) = {(0, 1, 1), (1, 1, 0)}

= {{l2, l3}, {l1, l2}},
∂A(x10) = {(1, 1, 1)} = {{l1, l2, l3}}.

Furthermore, it can be determined that

∂{a,b}(x6) = {(1, 0, 0), (1, 0, 1), (0, 1, 0), (1, 1, 1)}
= {{l1}, {l1, l3}, {l2}, {l1, l2, l3}}
6= ∂A(x6),

∂{a,c}(x6) = {(0, 1, 0), (1, 1, 1), (0, 1, 1), (1, 1, 0)}
= {{l2}, {l1, l2, l3}, {l2, l3}, {l1, l2}}
6= ∂A(x6),

∂{b,c}(x2) = {(0, 1, 0), (1, 1, 1)}
= {{l2}, {l1, l2, l3}}
6= ∂A(x2).

It means that each of the attribute subsets {a, b}, {a, c}, and {b, c} is not a
generalized decision reduct of S. In other words, no attribute can be removed
from A under the condition ∂B(x) = ∂A(x) for all x ∈ U . Consequently,
there exists the unique generalized decision reduct {a, b, c}.

Now, let us compute a complementary decision reduct of S. Comparing
U/RA with U/R{a,c}, it is easy to know that we need to check the condition of
complementary decision reduct only for X4 and X5. The unions of the label
sets of X4 = {x6, x8} and X5 = {x9, x11} are equal, i.e., {l1, l2, l3}, and the
intersections of the label sets of them are also equal, i.e., {l2}. Thus X4 and
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X5 can be safely merged without altering the unions and the intersections of
all label sets of the equivalence classes X4 and X5 in U/RA. In other words,
the attribute b can be removed from A. The further examination shows that
{a, c} is also minimal. As a result, {a, c} is a complementary decision reduct
of S.

In fact, more mathematically viewing the definitions of complementary
decision reduct and generalized decision reduct can bring a profound com-
prehension about the essential difference of them.

Let V = (v1, v2, · · · , vq) and W = (w1, w2, · · · , wq) be two q-dimensional
Boolean value vectors. Define the disjunction (and) and the conjunction (or)
of V and W as follows:

V ∨W = (v1 ∨ w1, v2 ∨ w2, · · · , vq ∨ wq),

V ∧W = (v1 ∧ w1, v2 ∧ w2, · · · , vq ∧ wq).
Consider the definition conditions of CB(x) and FB(x) in Definition 3.

It should be note that [x]B ∩ Ei 6= ∅ if and only if there exists y ∈ [x]B
such that li(y) = 1. So ∨∂B(x) = ∨{L(y) : y ∈ [x]B} represents CB(x) in
semantical equivalence; in other words, both ∨∂B(x) and CB(x) represent
the set of labels associated with at least one object in [x]B, i.e., the union
of the label sets of all objects in [x]B. Analogously, [x]B ⊆ Ei if and only if
li(y) = 1 for any y ∈ [x]B. So ∧∂B(x) = ∧{L(y) : y ∈ [x]B} represents FB(x)
in semantical equivalence; in other words, both ∧∂B(x) and FB(x) represent
the set of labels associated with all objects in [x]B, i.e., the intersection of
the label sets of all objects in [x]B.

For a multi-label decision table S = (U,A, L), the above analysis indi-
cates that a generalized decision reduct B is requested to preserve the label
vector collection ∂A(x) = {L(y) : y ∈ [x]A}, i.e., ∂B(x) = ∂A(x) for all x ∈ U .
Contrastively, a complementary decision reduct B is requested to simultane-
ously preserve the results of ∂A(x) under the operations ∨ and ∧, CA(x) and
FA(x), i.e., CB(x) = CA(x) and FB(x) = FA(x) for all x ∈ U .

Note that preserving the label vector collection ∂A(x) = {L(y) : y ∈ [x]A}
apparently implies preserving the two label subsets CA(x) and FA(x), so a
generalized decision consistent set must be a complementary decision con-
sistent set, but the converse is always not true, i.e., a complementary de-
cision consistent set may not be a generalized decision consistent set. This
means that a generalized decision reduct must be a complementary decision
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consistent set, but not necessarily be a complementary decision reduct; a
complementary decision reduct is even not a generalized decision consistent
set. Moreover, because complementary decision reduct searches a minimal
attribute subset in a larger range than that in which generalized decision
reduct does, complementary decision reduct may be more compact than gen-
eralized decision reduct.

4.3. Discernibility matrix of complementary decision reduct
This section presents a discernibility matrix-based method [38] for com-

puting all complementary decision reducts. For purposes of discussion, two
lemmas on coarse decision function and fine decision function are presented.

Lemma 1. Let S = (U,A, L) be a multi-label decision table, and let B ⊆ A.
Then, the following conditions are equivalent:

(1) For any x ∈ U , CB(x) = CA(x).
(2) For any x, y ∈ U , if CA(x) 6= CA(y), then [x]B ∩ [y]B = ∅.

Proof. “(1) =⇒ (2)”. If there exist x, y ∈ U such that [x]B ∩ [y]B 6= ∅, then
[x]B = [y]B. By Proposition 1 (3), it follows that CB(x) = CB(y). Note that
CB(x) = CA(x) and that CB(y) = CA(y). Then, it follows that CA(x) = CA(y).

“(2) =⇒ (1)”. By Proposition 1 (1), CA(x) ⊆ CB(x) for any x ∈ U . Hence,
it is necessary only to prove CB(x) ⊆ CA(x) for any x ∈ U .

If li ∈ CB(x), then [x]B ∩ Ei 6= ∅. Suppose that y ∈ [x]B ∩ Ei. Because
y ∈ [x]B, [y]B ∩ [x]B 6= ∅. According to Condition (2), CA(x) = CA(y).
Moreover, because y ∈ Ei, it follows that [y]A ∩ Ei 6= ∅. This means that
li ∈ CA(y) = CA(x). Therefore, it can be concluded that CB(x) ⊆ CA(x) for
any x ∈ U .

Hence, CB(x) = CA(x) holds for any x ∈ U .

Similarly to the proof of Lemma 1, the following lemma can be derived:

Lemma 2. Let S = (U,A, L) be a multi-label decision table, and let B ⊆ A.
Then, the following conditions are equivalent:

(1) For any x ∈ U , FB(x) = FA(x).
(2) For any x, y ∈ U , if FA(x) 6= FA(y), then [x]B ∩ [y]B = ∅.

Now, from Lemmas 1 and 2, it is possible to derive the following judgment
theorem regarding complementary decision consistent set:
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Theorem 2 (Judgment theorem of complementary decision consistent set).
Let S = (U,A, L) be a multi-label decision table, and let B ⊆ A. Then, B is
a complementary decision consistent set if and only if, for any x, y ∈ U , the
following two conditions both hold:

(1) If CA(x) 6= CA(y), then [x]B ∩ [y]B = ∅.
(2) If FA(x) 6= FA(y), then [x]B ∩ [y]B = ∅.

Theorem 2 also facilitates a discernibility matrix-based method for com-
puting all complementary decision reducts.

Definition 8. Let S = (U,A, L) be a multi-label decision table, and let
U/RA = {X1, X2, · · · , Xm}. Denote

∆ = {([x]A, [y]A) : CA(x) 6= CA(y) or FA(x) 6= FA(y)}.
Denote by ak(Xi) the value of ak with respect to the objects in Xi, and define

M(Xi, Xj) =

{
{ak ∈ A : ak(Xi) 6= ak(Xj)}, (Xi, Xj) ∈ ∆;
A, (Xi, Xj) /∈ ∆.

Then, M(Xi, Xj) is called a complementary decision discernibility attribute
set and M = (M(Xi, Xj), i, j ≤ m) is called a complementary decision dis-
cernibility matrix.

For the complementary decision discernibility matrix, the following prop-
erty can be established:

Proposition 4. A discernibility matrix M = (M(Xi, Xj), i, j ≤ m) satisfies
the following properties:

(1) M is a symmetric matrix, i.e., for any i, j ≤ m, M(Xi, Xj) =
M(Xj, Xi).

(2) Elements on the main diagonals are all A, i.e., for any i ≤ m,
M(Xi, Xi) = A.

(3) For any i, s, j ≤ m, M(Xi, Xj) ⊆M(Xi, Xs) ∪M(Xs, Xj).

Proof. The proofs of (1) and (2) are straightforward. It is necessary only to
prove (3). Suppose that there exists ak ∈ A such that if ak ∈ M(Xi, Xj),
then ak /∈ M(Xi, Xs) ∪ M(Xs, Xj). According to Definition 8, it follows
that ak(Xi) = ak(Xs) and ak(Xs) = ak(Xj). Hence, ak(Xi) = ak(Xj), i.e.,
ak /∈M(Xi, Xj), which is a contradiction.
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The following discussion establishes the connection between complemen-
tary decision consistent set and discernibility matrix:

Proposition 5. Let S = (U,A, L) be a multi-label decision table, and let
B ⊆ A. Then, B is a complementary decision consistent set if and only if
B ∩M(Xi, Xj) 6= ∅ for all (Xi, Xj) ∈ ∆.

Proof. “=⇒”. For any (Xi, Xj) ∈ ∆, there exist x, y ∈ U such that Xi = [x]A
and Xj = [y]A. From the definition of ∆, it follows that CA(x) 6= CA(y) or
FA(x) 6= FA(y). Because B is a complementary decision consistent set, it can
be concluded that [x]B∩ [y]B = ∅ by Theorem 2. Therefore, there exists ak ∈
B such that ak(x) 6= ak(y), i.e., ak(Xi) 6= ak(Xj). Hence, ak ∈ M(Xi, Xj),
i.e., B ∩M(Xi, Xj) 6= ∅.

“⇐=”. Let (Xi, Xj) ∈ ∆. Because B ∩ M(Xi, Xj) 6= ∅ holds for all
(Xi, Xj) ∈ ∆, there exists al ∈ B such that al ∈M(Xi, Xj). Then, it follows
that al(Xi) 6= al(Xj), i.e., al(x) 6= al(y) for [x]A = Xi and [y]A = Xj. This
fact yields [x]B ∩ [y]B = ∅. It can then be concluded that, if (Xi, Xj) ∈ ∆,
i.e., CA(x) 6= CA(y) or FA(x) 6= FA(y), then [x]B ∩ [y]B = ∅. It then follows
from Theorem 2 that B is a complementary decision consistent set.

Next, the concept of a discernibility function for computing complemen-
tary decision reduct is introduced.

Definition 9. Let S = (U,A, L) be a multi-label decision table, and let
M = (M(Xi, Xj), i, j ≤ m) be a complementary decision discernibility ma-
trix, where A = {a1, a2, · · · , ap}. A complementary decision discernibility
function FS for a multi-label decision table S is a Boolean function of p
Boolean variables ã1, · · · , ãp corresponding to the attributes a1, · · · , ap, re-
spectively, and is defined as follows:

FS(ã1, · · · , ãp) =
∧{∨M(Xi, Xj) i, j ≤ m}

=
∧{∨M(Xi, Xj), (Xi, Xj) ∈ ∆},

where
∨
M(Xi, Xj) is the disjunction of all variables ã such that a ∈M(Xi, Xj).

In the following discussion, ai will be written instead of ãi when no con-
fusion arises.

The complementary decision discernibility function can be used to discern
the set of reducts, as shown by the following proposition:
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Proposition 6. Let S = (U,A, L) be a multi-label decision table. Then, a
subset B ⊆ A is a complementary decision reduct of S if and only if ∧B is
a prime implicant of FS.

Proposition 6 provides a discernibility matrix-based method for comput-
ing all complementary decision reducts. The following example illustrates
the validity of this approach:

Example 6. Consider the multi-label decision table given by Table 1. It
follows that U/RA = {X1, X2, · · · , X6}, where

X1 = {x1, x3}, X2 = {x2}, X3 = {x4, x5, x7},
X4 = {x6, x8}, X5 = {x9, x11}, X6 = {x10}.

According to the calculated results of CA(x) and FA(x) in Example 3,

∆ = {(X1, X2), (X1, X3), (X1, X4), (X1, X5), (X1, X6), (X2, X3), (X2, X4),
(X2, X5), (X2, X6), (X3, X4), (X3, X5), (X3, X6), (X4, X6), (X5, X6)}.

Note that CA(x6) = CA(x8) = CA(x9) = CA(x11) and FA(x6) = FA(x8) =
FA(x9) = FA(x11). Therefore, (X4, X5) /∈ ∆.

The complementary decision discernibility matrix can then be calculated,
with the results shown in Table 2.

Table 2: Complementary decision discernibility matrix M

X1 X2 X3 X4 X5 X6

X1

X2 a, c

X3 a, b a, b, c

X4 c a a, b, c

X5 b, c a, b a, b, c a, b, c

X6 a, b b, c a, b a, b, c a, c

Consequently,

FS = (a ∨ b ∨ c) ∧ (a ∨ c) ∧ (a ∨ b) ∧ (c) ∧ (b ∨ c) ∧ (a)
= a ∧ c.

By Proposition 6, it is known that {a, c} is the unique complementary
decision reduct, which is in accordance with the result in Example 4.
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4.4. Heuristic algorithm for computing complementary decision reduct
According to the discussion in Section 4.3, it is known that all comple-

mentary decision reducts can be obtained from the prime implicants of the
discernibility function. However, finding all the reducts or an optimal reduct
(i.e., a reduct with the minimum number of attributes) has been proved to
be an NP-hard problem [46]. This section discusses how to obtain a single
heuristic “optimal” reduct using certain heuristic techniques.

First, a dependency function is introduced to characterize the degree of
dependency of an attribute subset with respect to label set L in a given
multi-label decision table.

Definition 10. Let S = (U,A, L) be a multi-label decision table, and let
B ⊆ A. Denote

φ(B) =

{
λ, if FB(x) = ∅ for any x ∈ U ;
0, otherwise,

where λ ∈ (0, 1) is a constant. The dependency function of L with respect to
B is defined by 1

γL(B) =

∑
x∈U |FB(x)|+ φ(B)∑

x∈U |CB(x)| .

The dependency function γL(B) reflects the ability of B to approximate
L or the degree of dependency of L on B. If for any x ∈ U , FB(x) = ∅
and CB(x) = L, then γL(B) reaches the minimum value λ

|L|·|U | . If for any
x ∈ U , FB(x) = CB(x), then γL(B) reaches the maximum value of 1. Hence,
λ

|L|·|U | ≤ γL(B) ≤ 1.
If γL(B) = 1, i.e., for any x ∈ U , FB(x) = CB(x), then the label sets of

all objects in [x]B are certain. It can then be said that L totally depends on
B, which is denoted by B =⇒ L; if λ

|L|·|U | ≤ γL(B) < 1, it can be said that L
partially depends on B, which is denoted by B =⇒γ L.

For the dependency function, the following property can be established:

Proposition 7. Let S = (U,A, L) be a multi-label decision table, and let
B1, B2 ⊆ A. If B1 ⊆ B2, then γL(B1) ≤ γL(B2).

1Note that
∑

x∈U |CB(x)| > 0 according to Proposition 1 (2).
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Proof. First, assume that there exists x ∈ U such that FB1(x) 6= ∅. Noting
that B1 ⊆ B2, by Proposition 1 (1), it follows that ∅ 6= FB1(x) ⊆ FB2(x) ⊆
CB2(x) ⊆ CB1(x). This means that 0 <

∑
x∈U |FB1(x)| ≤ ∑x∈U |FB2(x)| ≤∑

x∈U |CB2(x)| ≤∑x∈U |CB1(x)|. Therefore,

γL(B1) =

∑
x∈U |FB1(x)|∑
x∈U |CB1(x)| ≤

∑
x∈U |FB2(x)|∑
x∈U |CB2(x)| = γL(B2).

Next, assume that FB1(x) = ∅ for any x ∈ U . Then,

γL(B1) =
λ∑

x∈U |CB1(x)| ≤
∑

x∈U |FB2(x)|+ φ(B2)∑
x∈U |CB2(x)| = γL(B2).

Therefore, it follows that γL(B1) ≤ γL(B2).

Proposition 7 states that dependency function increases monotonically
with the number of attributes. In other words, as the number of attributes
increases, the ability of condition attributes to approximate label set L also
monotonically increases.

The following theorem states that complementary decision consistent set
can be fully characterized by dependency function:

Theorem 3. Let S = (U,A, L) be a multi-label decision table, and let B ⊆ A.
Then, B is a complementary decision consistent set if and only if γL(A) =
γL(B).

Proof. Note that B ⊆ A. By Proposition 1 (1), it follows that FB(x) ⊆
FA(x) ⊆ CA(x) ⊆ CB(x) for any x ∈ U .

“=⇒”. Suppose that B is a complementary decision consistent set. Then,
for any x ∈ U , it follows that CA(x) = CB(x) and FA(x) = FB(x). This
implies that φ(A) = φ(B). Therefore,

γL(A) =

∑
x∈U |FA(x)|+ φ(A)∑

x∈U |CA(x)| =

∑
x∈U |FB(x)|+ φ(B)∑

x∈U |CB(x)| = γL(B).

“⇐=”. Consider the following two cases:
Case 1. There exists x ∈ U such that FB(x) 6= ∅.

Note that FB(x) ⊆ FA(x). It follows that FA(x) 6= ∅. Recall that
FB(x) ⊆ FA(x) ⊆ CA(x) ⊆ CB(x) for any x ∈ U ; it follows that

0 <
∑

x∈U
|FB(x)| ≤

∑

x∈U
|FA(x)| ≤

∑

x∈U
|CA(x)| ≤

∑

x∈U
|CB(x)|.
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Therefore,

γL(B) =

∑
x∈U |FB(x)|∑
x∈U |CB(x)| ≤

∑
x∈U |FA(x)|∑
x∈U |CB(x)| ≤

∑
x∈U |FA(x)|∑
x∈U |CA(x)| = γL(A).

Combining this result with γL(A) = γL(B), it follows that
∑

x∈U |FB(x)|∑
x∈U |CB(x)| =

∑
x∈U |FA(x)|∑
x∈U |CB(x)| =

∑
x∈U |FA(x)|∑
x∈U |CA(x)| .

This means that
∑

x∈U
|FA(x)| =

∑

x∈U
|FB(x)| and

∑

x∈U
|CA(x)| =

∑

x∈U
|CB(x)|.

It is claimed here that, for any x ∈ U , FA(x) = FB(x) holds. In fact,
if there exists some x∗ ∈ U such that FB(x∗) ⊂ FA(x∗), then |FB(x∗)| <
|FA(x∗)|. Note that FB(x) ⊆ FA(x) holds for any x ∈ U ; it follows that∑

x∈U |FB(x)| <∑x∈U |FA(x)|, which is a contradiction. Similarly, it can be
proved that CA(x) = CB(x) for any x ∈ U . Hence, B is a complementary
decision consistent set.
Case 2. FB(x) = ∅ for any x ∈ U .

Note that CA(x) ⊆ CB(x) holds for any x ∈ U . Combining this with
Proposition 1 (2), it follows that 0 <

∑
x∈U |CA(x)| ≤∑x∈U |CB(x)|. Hence,

1∑
x∈U |CA(x)| ≥

1∑
x∈U |CB(x)| .

Note that
∑

x∈U |FA(x)|+ φ(A) ≥ λ; it follows that

γL(B) =
λ∑

x∈U |CB(x)| ≤
λ∑

x∈U |CA(x)| ≤
∑

x∈U |FA(x)|+ φ(A)∑
x∈U |CA(x)| = γL(A).

Combining this result with γL(A) = γL(B), it follows that

λ∑
x∈U |CB(x)| =

λ∑
x∈U |CA(x)| =

∑
x∈U |FA(x)|+ φ(A)∑

x∈U |CA(x)| .

This implies that
∑

x∈U
|CB(x)| =

∑

x∈U
|CA(x)|,

∑

x∈U
|FA(x)|+ φ(A) = λ < 1.
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Because
∑

x∈U |FA(x)| is a nonnegative integer and φ(A) ≥ 0, it follows
that

∑
x∈U |FA(x)| = 0. This means that FA(x) = ∅ holds for any x ∈ U ,

i.e., that FA(x) = FB(x) = ∅ for any x ∈ U . In addition, it is claimed
here that, for any x ∈ U , CA(x) = CB(x) holds. In fact, if there exists
x∗∗ ∈ U such that CA(x∗∗) ⊂ CB(x∗∗), then |CA(x∗∗)| < |CB(x∗∗)|. Note
that CA(x) ⊆ CB(x) holds for any x ∈ U . It follows that

∑
x∈U |CA(x)| <∑

x∈U |CB(x)|. This contradicts
∑

x∈U |CB(x)| =
∑

x∈U |CA(x)|. Hence, for
any x ∈ U , FA(x) = FB(x) and CA(x) = CB(x) must hold, which means that
B is a complementary decision consistent set.

Different attributes may play different roles in determining the depen-
dency level between condition attributes and label set. In the following dis-
cussion, dependency function is used to measure the significance of every
condition attribute:

Definition 11. Let S = (U,A, L) be a multi-label decision table, and let
B ⊆ A. The inner significance measure of a ∈ B is defined by

Siginner(a,B, L) = γL(B)− γL(B − {a}).

Here, Siginner(a,B, L) reflects the extent to which the dependency level
between B and L decreases as a result of removing attribute a from B.
Moreover, the indispensability of an attribute can be characterized by the
inner significance in the following way:

Proposition 8. Let S = (U,A, L) be a multi-label decision table, and let
B ⊆ A be a complementary decision consistent set. Then, a ∈ B is an
indispensable attribute if and only if Siginner(a,B, L) > 0.

Proof. If a ∈ B is an indispensable attribute in B, then it follows from
Proposition 2 that B − {a} is an inconsistent set of S. According to Propo-
sition 7 and Theorem 3, it follows that γL(A) = γL(B) > γL(B − {a}), i.e.,
Siginner(a,B, L) > 0.

Conversely, if Siginner(a,B, L) > 0, then γL(B) > γL(B − {a}). Because
B is a consistent set, according to Theorem 3, it follows that γL(A) = γL(B).
Now, it can be obtained that γL(B) > γL(B−{a}). It follows from Theorem
3 that B − {a} is an inconsistent set of S. From Proposition 2, it is clear
that a is an indispensable attribute.

The following property states that the core of A can also be expressed by
the inner significance measure:
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Proposition 9. For a multi-label decision table S = (U,A, L), it follows that

CORE(A) = {a ∈ A : Siginner(a,A, L) > 0}.

Proof. By the definition of a complementary decision consistent set, it is
known that A is a consistent set. It follows from Proposition 8 that a ∈ A
is an indispensable attribute if and only if Siginner(a,A, L) > 0. According
to the definition of the core of A, it follows that CORE(A) = {a ∈ A :
Siginner(a,A, L) > 0}.

Next, the complementary decision reduct will be characterized by the
dependency function and the inner significance measure.

Theorem 4. Let S = (U,A, L) be a multi-label decision table, and let B ⊆ A.
If γL(A) = γL(B) and Siginner(a,B, L) > 0 for each a ∈ B, then B is a
complementary decision reduct of S.

Proof. The proof is obvious from Theorem 3, Proposition 8, Proposition 2,
and Definition 5.

Next, another attribute significance measure will be presented.

Definition 12. Let S = (U,A, L) be a multi-label decision table, and let
B ⊆ A. The outer significance measure of a ∈ A − B with respect to B is
defined by

Sigouter(a,B, L) = γL(B ∪ {a})− γL(B).

Note that Sigouter(a,B, L) is different from Siginner(a,B, L) because the
former is defined for a /∈ B, whereas the latter is defined for a ∈ B. Fur-
thermore, Sigouter(a,B, L) reflects the extent to which the dependency level
between B and L increases as a result of the addition of a to B; this means
that the larger the value of Sigouter(a,B, L), the more significant a is. Hence,
Sigouter(a,B, L) can be used as a heuristic information to compute a com-
plementary decision reduct.

Based on the above discussion, a heuristic algorithm can be formulated
to search for a complementary decision reduct. This procedure is outlined in
Algorithm 1.

In Algorithm 1, the first step is to compute CORE(A) according to
Proposition 9 in Steps 2-7. Steps 8-19, starting from E = CORE(A), heuris-
tically add to E the attributes that have relatively higher outer significance
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until a complementary decision consistent set is obtained, i.e., γL(E) = γL(A)
by Theorem 3. Then, Step 20 sets RED = E and Steps 21-30 remove redun-
dant attributes from RED according to Proposition 8. Finally, by Theorem
4, a reduct is obtained in Step 31.

The next step is to analyze the time complexity of Algorithm 1. The time
complexity of Steps 2-7 is O(|U ||A|2), and that of Steps 9-19 is O(|U ||A −
E||E|). Moreover, the time complexity of Steps 21-30 is O(|U ||RED|2).
Hence, the time complexity of Algorithm 1 is O(|U ||A|2).

5. Experiments

This section aims to compare the complementary decision reduct algo-
rithm (CDR) with the two other representative attribute reduction algo-
rithms, namely, the positive region reduct algorithm (PRR) [13] and the
Shannon’s condition information entropy reduct algorithm (SCER) [43], in
terms of the number of selected attributes, the running time to compute one
reduct, and six evaluation measures defined below.

Note that all the three algorithms, PRR, SCER, and the proposed algo-
rithm, CDR, use forward greedy search strategies to heuristically compute
an attribute reduct. The difference lies in the dependency functions used in
the search process. For PRR, the dependency function of condition attribute
subset B with respect to decision attribute set D is defined by

γD(B) =
|POSB(D)|
|U | .

For SCER, the dependency function is defined by

H(D|B) = −
m∑

i=1

|Xi|
|U |

n∑

j=1

|Xi| ∩ |Yj|
|Xi|

log(
|Xi| ∩ |Yj|
|Xi|

),

where {X1, · · · , Xm} and {Y1, · · · , Yn} are the partitions generated by B and
D, respectively.

All experiments were conducted on a server with a 16-core 2.40-GHz Intel
Xeon E5-2665 CPU and 32 GB of RAM.

The first step was to collect nine multi-label datasets2 from different do-
mains, and their properties are listed in Table 3.

2The datasets are available at http://mlkd.csd.auth.gr/multilabel.html#Datasets and
http://meka.sourceforge.net/#datasets.
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Algorithm 1 Heuristic algorithm to search for a single complementary de-
cision reduct
Input: a multi-label decision table S = (U,A, L)
Output: a complementary decision reduct of S
1: set E := ∅, RED := ∅, CORE(A) := ∅, and t := 1
2: for a ∈ A do
3: compute Siginner(a,A, L) = γL(A)− γL(A− {a})
4: if Siginner(a,A, L) > 0 then
5: set CORE(A) := CORE(A) ∪ {a}
6: end if
7: end for
8: set E := CORE(A)
9: while γL(E) 6= γL(A) do

10: choose any c∗ ∈ A− E
11: compute Sigouter(c∗, E, L) = γL(E ∪ {c∗})− γL(E)
12: for c ∈ A− E do
13: compute Sigouter(c, E, L) = γL(E ∪ {c})− γL(E)
14: if Sigouter(c, E, L) > Sigouter(c∗, E, L) then
15: set c∗ := c
16: end if
17: end for
18: set E := E ∪ {c∗}
19: end while
20: set RED := E
21: while t do
22: set t := 0
23: for r ∈ RED do
24: if Siginner(r, RED,L) = 0 then
25: set t := 1
26: set RED := RED − {r}
27: break
28: end if
29: end for
30: end while
31: return RED
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Table 3: Brief description of selected multi-label datasets

Dataset Type Number Number Number Domain
of attributes of instances of attributes of labels

Music numerical 593 72 6 media
Scene numerical 2407 294 6 media
Yeast numerical 2417 103 14 biology
Genbase nominal 662 1185 27 biology
Medical nominal 978 1449 45 text
LangLog nominal 1460 1004 75 text
Enron nominal 1702 1001 53 text
Slashdot nominal 3782 1079 22 text
Corel5k nominal 5000 499 374 media

5.1. Evaluation measures
Two groups of measures were employed to evaluate the performance of

label set prediction and the performance of label ranking [37]. The first group
evaluates the performance of label set prediction and involves two notations:

Lx, the set of true labels of instance x;

h : U −→ P(L), the label prediction function, where h(x) is the set of labels
predicted by a multi-label classifier h for instance x.

Hamming Loss Hamming Loss is one of the most important multi-label
evaluation measures, with a wide range of applications in many studies.
It computes the percentage of labels that are predicted incorrectly, i.e.,
cases in which a label not belonging to the instance is predicted or a
label belonging to the instance is not predicted. This measure is defined
by

HammLoss(h) =
1

N

N∑

i=1

1

|L| |h(xi)∆Lxi |,

where ∆ is the symmetric difference between two sets. The smaller the
value of HammLoss(h), the better the performance becomes; perfor-
mance is best when HammLoss(h) = 0.
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F1score F1score is a standard information retrieval measure that combines
precision and recall of predictions over N test instances. The measure
is defined by

F1score =
1

N

N∑

i=1

F1scorei =
1

N

N∑

i=1

2× |h(xi) ∩ Lxi |
|h(xi)|+ |Lxi |

,

where F1scorei corresponds to the harmonic mean between precision
and recall of a prediction for a single instance:

Precisioni =
|h(xi) ∩ Lxi |
|h(xi)|

,

Recalli =
|h(xi) ∩ Lxi |
|Lxi |

.

The value of F1score ranges from 0 to 1; the larger the value, the better
the performance becomes.

The second group of measures concerns the performance of label ranking
for each instance, based on the real-valued scoring function f : U ×L −→ R.
A successful learning system tends to produce larger scores for labels in Lx
than for those not in Lx; in particular, f(x, l1) > f(x, l2) for any l1 ∈ Lx and
l2 /∈ Lx. The scoring function f can be transformed into a ranking function
rankf such that if f(xi, l1) > f(xi, l2), then rankf (xi, l1) < rankf (xi, l2).
The following multi-label evaluation measures are used in this paper:

One Error One Error evaluates how many times the top ranked labels are
not in the set of relevant labels of instances, as defined by

OneError(f) =
1

N

N∑

i=1

Jarg max
l∈L

f(xi, l) /∈ LxiK,

where JπK equals 1 if π holds and 0 otherwise. The smaller the value
of OneError(f), the better the performance becomes.

Coverage Coverage evaluates how far it is necessary, on average, to go down
the list of ranked labels to cover all the relevant labels of an instance,
as defined by

Coverage(f) =
1

N

N∑

i=1

max
l∈Lxi

rankf (xi, l)− 1,
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where rankf (xi, l) denotes the position of label l in the ordering induced
by f . The smaller the value of Coverage(f), the better the performance
becomes.

Ranking Loss Ranking Loss evaluates the average fraction of label pairs
that are encountered in reverse order for an instance:

RankLoss(f) =
1

N

N∑

i=1

|{(l, l′)|f(xi, l) ≤ f(xi, l
′
), (l, l

′
) ∈ Lxi × Lxi}|

|Lxi ||Lxi |
,

where Lx = L−Lx is the set of irrelevant labels. The smaller the value
of RankLoss(f), the better the performance becomes; performance is
perfect when Rankloss(f) = 0.

Average Precision Average Precision is the average percentage of labels
ranked above a particular label l of Lx:

AvePrec(f) =
1

N

N∑

i=1

1

|Lxi |
∑

l∈Lxi

|{l′ ∈ Lxi |rankf (xi, l
′
) ≤ rankf (xi, l)}|

rankf (xi, l)
.

The larger the value of AvePrec(f), the better the performance be-
comes; performance is perfect when AvePrec(f) = 1.

Note that these six measures evaluate the performance of a multi-learning
classifier from different aspects; hence, few algorithms can outperform other
algorithms on all these measures.

5.2. Results and Discussion
In the experiments, the numerical attributes, which involve the Music,

Scene, and Yeast datasets, were first discretized into several equal-width
intervals using a discretization algorithm called FIMUS [34]. Then, the three
attribute reduction algorithms were run and their performances were verified
based on ML-kNN [50] (k = 10) with tenfold cross-validation. Here, the
performance in the original space was used as the baseline and is denoted as
ORI.

The average numbers of selected attributes and the average running times
to compute one reduct for the three algorithms are shown in Tables 4 and 5.
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Table 4: Average numbers of selected attributes

Dataset ORI PRR SCER CDR

Music 72 7.1 7.0 7.3
Scene 294 7.7 7.5 7.8
Y east 103 9.0 8.1 8.8
Genbase 1185 39.0 28.8 28.5
Medical 1449 59.3 54.5 54.6
LangLog 1004 85.4 26.6 27.2
Enron 1001 96.4 655.5 83.8
Slahdot 1079 306.2 283.5 281.3
Corel5k 499 251.1 210.7 208.7

Table 5: Average running times (in seconds) to compute one reduct

Dataset PRR SCER CDR

Music 20.86 38.54 11.73
Scene 400.95 639.15 221.75
Y east 150.00 241.54 79.23
Genbase 459.13 393.60 311.80
Medical 5031.80 7690.93 2751.22
LangLog 4218.78 3919.88 1529.96
Enron 11984.09 89113.42 4158.29
Slashdot 245363.68 236033.89 195426.26
Corel5k 442326.15 327186.04 284095.47

From Table 4, it is clear that all the three algorithms could remove some
unnecessary attributes. The reducts obtained by CDR were, however, more
compact than the others, especially for the Enron dataset.

The running time of CDR was also the shortest among the three algo-
rithms on all datasets, as shown in Table 5. This is not surprising if one
inspects the time complexities of the three algorithms, as shown in Table 6.
In fact, in PRR and SCER, the computation of the dependency functions
must be based on the partitions generated by the indiscernibility relations
RA and RL, whereas RA is sufficient for this computation in CDR. Based
on the fast partition algorithm proposed in [48], the time complexity of the
dependency function in PRR is O(|U ||A| + |U ||L|) and that in SCER is
O(|U ||A| + |U |2 + |U ||L|), whereas the time complexity of the dependency
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function in CDR is only O(|U ||A|).

Table 6: Time complexities of the three algorithms

Algorithm Time complexity

PRR O(|U ||A|2 + |U ||A||L|)
SCER O(|U ||A|2 + |U |2|A|+ |U ||A||L|)
CDR O(|U ||A|2)

Another factor that affects the running time is the number of selected
attributes; the smaller the number is, the shorter the running time will be.
This can be clearly observed in the Enron dataset. In addition, all the three
algorithms were not very efficient for large datasets owing to their high time
complexities. For example, the running time of PRR on the Corel5k dataset
reached 5 days, and that of CDR reached 3 days.

Tables 7-12 summarize the performances of all the three algorithms on
the six evaluation measures defined above. In the experiments, paired t-test
was performed using a 0.05 significance level; in Tables 7-12, the symbol
“⊕” indicates that CDR is significantly better than the corresponding algo-
rithm on some measure, “�” indicates that CDR is significantly worse than
the corresponding algorithm, and “∼” indicates that there is no significant
difference between CDR and the corresponding algorithm.

Table 7: Comparison of the Hamming Loss measure (×101) (mean±SD)

Dataset ORI PRR SCER CDR

Music 2.504± 0.143 � 2.953± 0.211 ∼ 2.997± 0.245 ∼ 2.982± 0.188

Scene 1.247± 0.072 � 1.613± 0.053 ∼ 1.573± 0.083 ∼ 1.631± 0.046

Y east 2.104± 0.095 � 2.303± 0.071 ∼ 2.301± 0.075 ∼ 2.316± 0.082

Genbase 0.046± 0.012 ∼ 0.048± 0.028 ∼ 0.049± 0.023 ∼ 0.052± 0.026

Medical 0.153± 0.020 ⊕ 0.149± 0.017 ⊕ 0.141± 0.023 ⊕ 0.135± 0.020

LangLog 0.183± 0.010 ∼ 0.183± 0.008 ∼ 0.183± 0.009 ∼ 0.184± 0.009

Enron 0.520± 0.022 ⊕ 0.511± 0.026 ⊕ 0.523± 0.023 ⊕ 0.505± 0.030

Slashdot 0.521± 0.015 ⊕ 0.455± 0.019 ∼ 0.462± 0.012 ⊕ 0.449± 0.014

Corel5k 0.094± 0.001 ⊕ 0.094± 0.001 ∼ 0.094± 0.001 ∼ 0.094± 0.001

From Tables 7 to 12, the following observations are clear:
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Table 8: Comparison of the F1score measure (mean±SD)

Dataset ORI PRR SCER CDR

Music 0.429± 0.057 � 0.230± 0.045 ∼ 0.235± 0.061 ∼ 0.192± 0.071

Scene 0.474± 0.039 � 0.195± 0.014 ∼ 0.251± 0.030 ∼ 0.192± 0.030

Y east 0.566± 0.019 � 0.477± 0.024 ∼ 0.475± 0.025 ∼ 0.477± 0.019

Genbase 0.954± 0.023 ∼ 0.960± 0.027 ∼ 0.956± 0.025 ∼ 0.946± 0.039

Medical 0.589± 0.056 ⊕ 0.616± 0.050 ⊕ 0.656± 0.051 ⊕ 0.665± 0.052

LangLog 0.027± 0.016 � 0.011± 0.009 ∼ 0.011± 0.010 ∼ 0.010± 0.012

Enron 0.427± 0.030 ⊕ 0.466± 0.025 ∼ 0.431± 0.037 ⊕ 0.482± 0.035

Slashdot 0.057± 0.018 ⊕ 0.255± 0.029 ∼ 0.246± 0.029 ⊕ 0.271± 0.025

Corel5k 0.018± 0.004 � 0.012± 0.006 ∼ 0.008± 0.003 ∼ 0.011± 0.005

Table 9: Comparison of the One Error measure (mean±SD)

Dataset ORI PRR SCER CDR

Music 0.395± 0.064 � 0.506± 0.066 ∼ 0.528± 0.077 ∼ 0.501± 0.075

Scene 0.358± 0.033 � 0.547± 0.033 ∼ 0.507± 0.028 � 0.544± 0.021

Y east 0.252± 0.028 ∼ 0.251± 0.033 ∼ 0.252± 0.033 ∼ 0.252± 0.034

Genbase 0.014± 0.021 ∼ 0.014± 0.020 ∼ 0.009± 0.008 ∼ 0.011± 0.016

Medical 0.249± 0.043 ⊕ 0.237± 0.050 ∼ 0.237± 0.057 ∼ 0.230± 0.058

LangLog 0.804± 0.043 � 0.844± 0.031 ∼ 0.840± 0.021 ∼ 0.858± 0.020

Enron 0.304± 0.037 ⊕ 0.284± 0.034 ∼ 0.309± 0.041 ⊕ 0.271± 0.027

Slashdot 0.641± 0.018 ⊕ 0.543± 0.020 ∼ 0.552± 0.018 ∼ 0.545± 0.023

Corel5k 0.736± 0.014 ∼ 0.719± 0.014 ∼ 0.738± 0.018 ∼ 0.733± 0.017
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Table 10: Comparison of the Coverage measure (mean±SD)

Dataset ORI PRR SCER CDR

Music 2.205± 0.135 � 2.612± 0.237 ∼ 2.570± 0.172 ∼ 2.623± 0.290
Scene 0.787± 0.058 � 1.348± 0.110 ∼ 1.198± 0.072 � 1.315± 0.116
Y east 6.539± 0.173 � 6.830± 0.172 ∼ 6.815± 0.198 ∼ 6.811± 0.226
Genbase 0.573± 0.264 ∼ 0.516± 0.266 ∼ 0.526± 0.258 ∼ 0.579± 0.262
Medical 2.687± 0.504 ∼ 2.776± 0.703 ∼ 2.836± 0.741 ∼ 2.753± 0.746
LangLog 15.323± 1.552 � 16.455± 1.110 ∼ 16.354± 1.077 ∼ 16.368± 1.273
Enron 13.070± 0.922 ∼ 13.193± 0.973 ∼ 13.148± 0.927 ∼ 13.132± 1.085
Slashdot 4.118± 0.207 ⊕ 3.486± 0.204 ∼ 3.472± 0.216 ∼ 3.451± 0.256
Corel5k 114.224± 5.584 ⊕ 112.691± 4.813 ∼ 113.617± 5.265 ∼ 113.244± 4.565

Table 11: Comparison of the Ranking Loss measure (×101) (mean±SD)

Dataset ORI PRR SCER CDR

Music 2.446± 0.286 � 3.381± 0.527 ∼ 3.245± 0.041 ∼ 3.336± 0.602

Scene 1.401± 0.108 � 2.520± 0.207 ∼ 2.216± 0.136 � 2.449± 0.201

Y east 1.852± 0.137 � 2.090± 0.139 ∼ 2.096± 0.155 ∼ 2.089± 0.161

Genbase 0.064± 0.031 ∼ 0.053± 0.036 ∼ 0.056± 0.037 ∼ 0.065± 0.038

Medical 0.414± 0.095 ∼ 0.427± 0.124 ∼ 0.446± 0.143 ∼ 0.426± 0.133

LangLog 1.651± 0.225 � 1.786± 0.171 ∼ 1.777± 0.172 ∼ 1.775± 0.181

Enron 0.921± 0.104 ∼ 0.917± 0.112 ∼ 0.913± 0.102 ∼ 0.900± 0.112

Slashdot 1.728± 0.101 ⊕ 1.429± 0.089 ∼ 1.420± 0.087 ∼ 1.417± 0.099

Corel5k 1.342± 0.064 ⊕ 1.317± 0.056 ∼ 1.332± 0.061 ∼ 1.326± 0.061
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Table 12: Comparison of the Average Precision measure (mean±SD)

Dataset ORI PRR SCER CDR

Music 0.716± 0.031 � 0.644± 0.043 ∼ 0.637± 0.041 ∼ 0.644± 0.049

Scene 0.779± 0.019 � 0.645± 0.024 ∼ 0.676± 0.016 � 0.648± 0.019

Y east 0.736± 0.020 � 0.708± 0.019 ∼ 0.708± 0.021 ∼ 0.707± 0.022

Genbase 0.986± 0.008 ∼ 0.987± 0.009 ∼ 0.987± 0.005 ∼ 0.988± 0.008

Medical 0.808± 0.033 ∼ 0.814± 0.039 ∼ 0.809± 0.042 ∼ 0.816± 0.038

LangLog 0.304± 0.036 � 0.270± 0.022 ∼ 0.267± 0.017 � 0.257± 0.023

Enron 0.635± 0.020 ⊕ 0.641± 0.023 ⊕ 0.634± 0.020 ⊕ 0.652± 0.022

Slashdot 0.500± 0.015 ⊕ 0.574± 0.015 ∼ 0.571± 0.013 ∼ 0.575± 0.017

Corel5k 0.246± 0.006 ∼ 0.254± 0.007 ∼ 0.243± 0.009 ∼ 0.247± 0.009

• CDR was competitive with PRR on all datasets, whether numerical
data or categorical data. For example, CDR was significantly better
than PRR according to the Hamming Loss measure on the Medical and
Enron datasets. This means that the classifier with the help of CDR
was more correct than the others: the original relevant labels were
more likely to be predicted as relevant, and the original non-relevant
labels were more likely to be predicted as non-relevant. CDR was also
significantly better than PRR according to the F1score measure on the
Medical dataset. This means that the prediction of relevant labels by
the classifier with the help of CDR was more exact (corresponding to
high precision) and more complete (corresponding to high recall) than
the other predictions. In addition, CDR was significantly better than
PRR according to the Average Precision measure on the Enron dataset;
hence, the classifier with the help of CDR could be more effective in
predicting the ranking of the relevant labels.

• CDR had better performance than PRR and SCER on the two mea-
sures that are relevant to label prediction: the Hamming Loss measure
and the F1score measure. For example, CDR was significantly better
than PRR and SCER on the Medical dataset.

• CDR had roughly the same performance as SCER on the four measures
that are relevant to label ranking performance for categorical data.
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For example, CDR was significantly better than SCER according to
the One Error and Average Precision measures on the Enron dataset,
whereas the opposite was true with the Average Precision measure on
the LangLog dataset.

• CDR was not as good as SCER on the four measures that are relevant
to label ranking performance for numerical data. For example, CDR
was significantly worse than SCER according to these four measures
on the Scene dataset. In fact, all the three algorithms were worse than
ORI according to all the measures on numerical data. The reason for
this is that all the three algorithms worked with the indiscernibility
of instances and, hence, might be inaccurate owing to discretization.
Therefore, more reasonable attribute reduction methods specific to nu-
merical data should be considered in the future.

• For the categorical data, CDR was slightly better than ORI according
to the two measures that are relevant to label predictive performance,
especially the Hamming Loss measure. For example, CDR was signif-
icantly better than ORI according to the Hamming Loss measure on
four of the datasets. Moreover, CDR had roughly the same perfor-
mance as ORI on the four measures that are relevant to label ranking
performance. For example, CDR was significantly better than ORI ac-
cording to the four measures on the Slashdot dataset, but not on the
LangLog dataset.

In summary, CDR could find more compact reducts than the other meth-
ods in the shortest time and, moreover, had better performance than PRR
and better label predictive performance than SCER. However, all the three
attribute reduction algorithms, including the proposed algorithm, were inef-
fective in handling numerical data, and because of high time complexity, the
three algorithms were also not scalable for large datasets (see Appendix).

6. Conclusions

The complementary decision reduct presented in this paper is a new type
of attribute reduct designed for multi-label data, which aims to remove un-
necessary attributes while preserving the uncertainties conveyed by labels.
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Some of its theoretical properties have been shown here, demonstrating sig-
nificant advantages of complementary decision reduct in revealing the uncer-
tainties implied in multi-label data. A discernibility matrix-based method
and a heuristic algorithm for computing complementary decision reduct have
also been proposed. Experiments show that the proposed attribute reduction
method not only improves classifier performance for categorical data, but is
also competitive with the other two attribute reduction methods on label
predictive performance.

In the future, it is interesting to extend the proposed method to deal with
numerical data, and to improve the implementation of the proposed method
to make it scalable for large datasets [16, 36].
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Appendix. Experiments on a large dataset

One anonymous reviewer has advised to run the proposed algorithm on
the large dataset used in the JRS’12 Data Mining Competition [15], which
consists of 10,000 instances with 25,640 attributes and 83 labels. Unfortu-
nately, because of high time complexity, both the proposed algorithm, CDR,
and the other two attribute reduction algorithms, PRR and SCER, failed to
select valuable attributes on a server with a 16-core 2.80-GHz Intel E5-2680VI
CPU and 256 GB of RAM within 10 days.

The recent work by Janusz and Ślęzak [16] showed the significant perfor-
mance improvements of the attribute reduction algorithms with the help of
some randomization techniques and attribute clustering methods. Inspired
by that, we speed up the proposed algorithm, CDR, and the other two
attribute reduction algorithms, PRR and SCER, by clustering attributes,
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sampling from clusters, and performing attribute reduction in the sample
datasets.

Firstly, the k-means clustering algorithm [14] was employed to automati-
cally cluster the attributes. The cosine distance [26], the Pearson correlation-
based distance [30], and the Chebyshev distance [2] were selected as distance
measures, respectively. The Euclidean distance was excluded because it is
“concentrated” in high-dimensional spaces, i.e., all pairwise distances in high-
dimensional spaces were very similar [6]. In addition, the optimal number of
clusters was obtained by the cluster validity index [25].

Secondly, conditional attributes were randomly sampled from all the clus-
ters, and the sample sizes were determined by a common approach [19].
The sample datasets corresponding to the three distance measures were de-
noted as the cosine-sample dataset, the Pearson-sample dataset, and the
Chebyshev-sample dataset, respectively.

Finally, the three attribute reduction algorithms were run on the above
sample datasets on a server with a 16-core 2.80-GHz Intel E5-2680VI CPU
and 256 GB of RAM, and their performances were compared in terms of the
number of selected attributes, the running time of computing one reduct,
and the six evaluation measures. ML-kNN (k = 10) was used to verify the
performance of the attribute reduct. The performance in the original dataset
was used as the baseline and is denoted as ORI.

The numbers of the selected attributes are shown in Table A.1.

Table A.1: Comparison of the numbers of selected attributes

Sample Dataset ORI PRR SCER CDR

cosine-sample 25640 422 422 422
Pearson-sample 25640 398 399 399
Chebyshev-sample 25640 396 396 396

From Table A.1, we see that the numbers of selected attributes by the
three algorithms were almost same for all sample datasets. Furthermore,
we checked the attribute reducts obtained by the three algorithms and found
that they were almost same. This may be due to the sparseness of the sample
datasets, but it is not assured.

The running times of obtaining one reduct are listed in Table A.2.
It is easy to see from Table A.2 that all the three algorithms were not

very efficient for the sample datasets. This may be due to their high time
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Table A.2: Comparison of the running times (in hours) to compute one reduct

Sample Dataset PRR SCER CDR

cosine-sample 47.0 46.9 46.1
Pearson-sample 48.2 47.9 47.5
Chebyshev-sample 22.2 22.1 22.0

complexities.
The performances of the compared algorithms on the cosine-sample dataset

are shown in Table A.3. For each evaluation measure, the best result is high-
lighted in boldface. The performances of the compared algorithms on the
other two sample datasets are similar and, thus, are omitted.

Table A.3: Comparison of the six evaluation measures on the cosine-sample dataset

Evaluation measure ORI PRR SCER CDR

Hamming loss 0.0385 0.0426 0.0426 0.0426
F1score 0.3247 0.1257 0.1257 0.1257
One error 0.3432 0.5712 0.5712 0.5712
Coverage 19.5811 27.3035 27.3035 27.3035
Ranking loss 0.0889 0.1520 0.1520 0.1520
Average precision 0.5765 0.4039 0.4039 0.4039

From Table A.3, we see that all the three algorithms were not competitive
with ORI on all the measures. This may have been caused by the sampling
methods and the attribute clustering methods. Also note that the three
algorithms had the same performances on all the measures; this is straight-
forward, since the three algorithms had the same attribute reduct.

Although a series of experiments were conducted, the effectiveness of the
proposed algorithm on large datasets has not been verified owing to high
time complexity. Thus, designing efficient attribute reduction algorithms for
large and complex datasets is still an important future work.
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