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a b s t r a c t

Support vector machine (SVM) has been a promising method for classification and regression areas due
to its solid statistical foundations, such as margin maximization and kernel methods. However, SVM is
not typically used for large-scale data mining problems because its training complexity is highly de-
pendent on the dataset size. This paper presents an improved granular support vector machine learning
model based on hierarchical and dynamical granulation, namely, HD_GSVM, to solve the low learning
efficiency and generalization performance problem of traditional granular support vector machines
(GSVM). For HD_GSVM, the original data will be mapped into a high-dimensional space by a Mercer
kernel. Then, the data are divided into several granules, and those granules near the approximate hy-
perplane are extracted and re-granulated on a subtle level by their density and radius degree. Finally, the
decision hyperplane will be obtained through all of the granules at different hierarchical and dynamical
granulation levels effectively. During the granulation process, the granulation level of all granules can be
dynamically changed continuously. With this method, different classification information can be ob-
tained from different levels of granules; to meet a variety of needs for various practical problems from
different perspectives. The experimental results on the UCI benchmark datasets demonstrate that the
proposed HD_GSVM model can improve the generalization performance greatly with high efficiency
synchronously.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Support vector machine (SVM) introduced by Vapnik [1] is an
effective method for solving pattern recognition and regression
problems such as handwritten recognition, face image recognition,
and time series prediction. At present, SVM has become a research
hotspot of machine learning. In the applications of SVM, researchers
pay considerable attention to its learning efficiency and general-
ization performance, and some scholars have already proposed
novel approaches to improve them of SVM [2–9]. Although some
achievements have been made, unlike traditional pattern recogni-
tion and machine learning, real-world data mining applications
often involve large numbers of data records. Thus, it is too ex-
pensive to perform multiple scans on the entire dataset, and it is
also infeasible to place the dataset in memory. Therefore, the stu-
dies on how to improve the learning efficiency and generalization
nd Information Technology,
performance of SVM by combining it with other artificial in-
telligence methods still have important theoretical and practical
value.

Granular computing is a new concept and computing paradigm
in the domain of information processing [10,11]. It covers all of the
studies regarding theories, methods, techniques and tools of
granulation. In addition, it can be used to process uncertain, fuzzy,
incomplete, and large-scale information. The essence of granular
computing is to find an approximate solution, which is simple and
low-cost, to replace the exact solution by using inaccurate and
large-scale information to achieve the tractability, robustness, and
low cost to better describe the real world of intelligent systems or
intelligent control. In a word, the combination of granular com-
puting with intelligence computing approaches is becoming a
hotspot to stablish efficient algorithms for complex problems.

To improve the performance of traditional SVM, granular sup-
port vector machine (GSVM), which combines statistical learning
theory and granular computing theory, is first proposed by Tang
[12]. In general, a GSVM first creates a sequence of information
granules in the original data space and then learns on some of
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Fig. 1. The basic structure diagram of GSVM model.
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these granules when necessary. Finally, it aggregates information
in these granules at a suitable and abstract level. The basic struc-
ture diagram of GSVM is shown in Fig. 1. This method can obtain
better generalization for a linear separable classification problem;
and also increase “linear separability” for a linear non-separable
problem (or even transfer a linear non-separable problem to a
totally linear separable problem). Compared with traditional SVM,
the training speed of GSVM can be greatly improved, and a sa-
tisfactory generalization performance can be obtained as well.

In fact, long before Tang, several other scholars had already
proposed a few effective SVM models, which could be regarded as
the prototype of GSVM, such as the classical “Chunking Algorithm”

[1], “Decomposed Algorithm” [13], “SMO Algorithm” [14], and
“LIBSVM Algorithm Library” [15].

Additionally, some scholars have already designed a number of
specific GSVM algorithms, such as GSVM models based on clus-
tering. A clustering based GSVM approach divides the original data
into a number of granules by combining commonly used cluster-
ing methods with certain evaluation rules, and it takes them into
classification or regression after choosing granules with more in-
formation (such as granules that include more support vectors)
[16].

Some GSVM models based on a geometric technique are de-
signed, such as a method based on the distance between samples,
and the approximate best hyperplane is proposed by Cheng et al.
[17]. It considers two geometric aspects simultaneously: the first is
the distance between samples and the approximate best hyper-
plane, and the second is the distance between the approximate
best hyperplane and the obtained hyperplane.

Considering the difference in granulation on the kernel space
and the original space, a GSVM model based on a kernel space is
proposed by Guo et al. [18], and the rules of granulation on kernel
space were given through geometric analysis. However, these
approaches may not be effective for some datasets, where the
distance between data can not be measured by European distance.

In addition, Tang et al. [19] presented a GSVM model based on
particle swarm optimization and it is an intuitive and easy-to-
implement algorithm from the swarm intelligence community.
This approach is applicable to fault classification and outperforms
several previous methods. Pai et al. [20] presented a GSVM model
based on fraud warning, which integrates sequential forward se-
lection, SVM and a classification and regression tree, and it can be
used to overcome information overload problems. Deb et al. [21]
combine artificial neural networks with SVM. By changing the
parameters of neural networks, the model can effectively reduce
the dataset size and maintain compressed data agreement with
the original data in the distribution, but the interpretability of this
model is absent. Moreover, other models, such as granular support
vector machine based on Association Rule [22], Rough Sets [23]
and Decision Trees [24], are also discussed by many scholars.

Presently, some scholars also have summarized the GSVM
model study, such as Ding et al. [25] summarized the GSVM model
with two classes: the original space GSVM and the feature space
GSVM. In this paper, the scholars presented the GSVM models
based on original granulation space systematically, and summar-
ized the GSVM model based on kernel space. In another paper,
Ding et al. [26] summarized three special GSVM model that Fuzzy
SVM, Rough SVM and Quotient Space SVM. In literature [27], some
traditional GSVM methods and the kernel GSVM are compared
and presented in detailed.

Although these models are based on different granulation
methods, such as clustering, neural networks and matrix decom-
position, the nature of it is only granulated on the same abstract
level, and the classification information may be largely lost. Al-
though they can improve the learning efficiency, they have some
losses in generalization performance mainly for the following two
reasons: first, after granulation, the data distribution may be dif-
ferent in the original space than in the kernel space. Second, tra-
ditional GSVM often take granulation only once before training
and take some informational samples (such as the center of
granules) in the same abstract granulation level to replace the
whole granule when training. Therefore, data distribution errors
are inevitable. These two aspects may reduce the generalization
ability of GSVM [19].

This paper presents a support vector machine model based on
hierarchical and dynamical granulation, which first maps the origi-
nal data into a high-dimensional space to reveal the features that are
implicit in the original sample space. Then, the data are divided into
some granules, and those granules near the approximate hyperplane
are extracted and re-granulated at the subtle level by their density
degree and radius degree. Finally, the decision hyperplane will be
obtained through all of the granules on different abstract levels ef-
fectively. Compared with traditional GSVM models, the proposed
HD_GSVM can largely improve the generalization performance with
high learning efficiency simultaneously.

The remainder of this paper is organized as follows. We begin
by presenting the traditional SVM model and SVM based on
granulation, and we introduce the shortage of traditional SVMs
based on the granulation model (Section 2). In Section 3, we de-
scribe the HD_GSVM method based on initial granulation, re-
granulation and SVM training in three parts. In Section 4, we si-
mulate experiments and discuss the advantages of the HD_GSVM
model with high efficiency and high testing accuracy. In Section 5,
we conclude this paper and present the shortage of this model.
2. SVM and GSVM overview

Support vector machine (SVM) is a learning system that uses a
hypothesis space of linear functions in a high dimensional feature
space, trained with a learning algorithm from an optimization theory.
This learning strategy, introduced by Vapnik and his co-workers, is a
very powerful method that in the few years since its introduction has
already outperformed most systems in a wide variety of applications.
SVM is based on two ideas: margin maximization and nonlinear
classification using kernels. Let us assume a binary classification
problem and a training set D comprising l labeled training samples
{( )} ∈ ∈ { − }=x y x R y, with and 1, 1i i i

l
i

n
i1 . The purpose of SVM

classification is to obtain a classifier ( ) =f f x y: i i from data to their
labels. In a machine learning problem, the complexity of the classi-
fication function f greatly influences the performance achieved.
Thus, in general, a highly complex function fits training data per-
fectly, but gives a poor generalization performance on unlabeled
data. If the training data are linearly separable in the feature space,
we can obtain the decision function:

ϕ( ) = ( ) + ( )f x w x b 1T

where w is a weight vector, b is a bias, and ( ) ≥yf x 1i i for l
labeled samples. For unlabeled data x, if ( ) >f x 0, the data are
classified into Class 1, and if ( ) <f x 0, the data are classified into
Class �1.

If the classification problem is not linearly separable in the
feature space, the optimal separating hyperplane can be obtained
by solving the following soft margin optimization problem:
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∑ξ ξ( ) = ‖ ‖ +
( )=

Minimize Q w w C,
1
2 2i

l

i
2

1

ϕ ξ( ( ) + ) ≥ − = ⋅⋅⋅ ( )Subject to y w x b i l1 , 1, 2, , 3i
T

i i

where C is the regularization parameter that determines the
tradeoff of model complexity and classification error, and ξi is the
slack variable for xi. The dual optimization problem is:

∑ ∑( ) = − ( )
( )= =

Maximize Q a a a a y y K x x
1
2

,
4i

l

i
i j

l

i j i j i j
1 , 1

∑ = ≤ ≤
( )=

Subject to y a a C0, 0
5i

l

i i i
1

where ( )K x x,i j is a kernel function that is given by
ϕ ϕ( ) = ( ) ( )K x x x x,i j i j . Any function that satisfies Mercer's theorem

[1] can be used as a kernel function such as the Gaussian kernel

( )( )σ( ) = −‖ − ‖K x x x x, exp / 2i j i j
2 2 and the polynomial kernel

( ) = ( + )K x x x x, 1i j i
T

j
p.

Granular support vector machine (GSVM), which combines
statistical learning theory and granular computing theory, is first
proposed by Tang. To better explain the HD_GSVM model, we give
the generalization performance analysis of the traditional GSVM
model first. Suppose k granules are produced after granulation,
and a new training set * ⊆X X with some samples belonging to k
granules is constructed (Suppose there are *l samples in

* * <X l l, ).
Suppose the classifier *f is obtained on new training set *X .

Clearly, there is a performance difference between f and *f . For
the original dataset X , after granulation, replacement and other
operations, the actual training set *X may no longer follow the
distribution ( )P x y, but a new distribution *( )P x y, ( ( )P x y, is the
distribution of X and *( )P x y, is the distribution of *X . In *X ,
generally, *( )P x y, is different from ( )P x y, ). The actual training
dataset *X and original dataset X may not meet the conditions of
independent and identically distribution, and thus, some training
and testing data would not be classified correctly (see Fig. 2).

Therefore, for a GSVM model, the optimal classification hy-
perplane *f is only suitable for *X but not for X . Therefore, the
generalization performance of GSVM may be greatly reduced. To
reduce the model error of a traditional GSVM model, this paper
will focus on improving the generalization performance of GSVM
from three aspects: (1) perform the granulation and SVM training
in the same space to eliminate inconsistencies. (2) Different
granules are granulated on different abstract granulation levels by
the density and other factors. If the granule has more classification
information, it is granulated at a small granulation level; other-
wise, it is granulated at a large granulation level. Using this
method, more classification information is obtained with a minor
size training set. (3) Classification informational samples obtained
from different abstract granulation levels are trained by SVM at
the same time. In this way, the distribution difference by data
operations may be reduced and the generalization performance
will be improved greatly while maintaining a high learning
efficiency.
Misclassified testing Misclassified training and testing 

Fig. 2. Misclassified data in several regions.
3. Support vector machine based on hierarchical and dyna-
mical granulation

At present, most studies of GSVM concentrate on statistic
granulation, but studies on the hierarchical and dynamical gran-
ulation method are still absent. This paper improves the SVM
based on the granulation algorithm presented by Tang et al. [12];
and a new SVM method based on hierarchical and dynamical
granulation to solve the low generalization performance of tradi-
tional GSVM models. This method maps the original data into a
high-dimensional space to reveal the features that are implicit in
the original sample space and divide the data into several granules
first. Then, it extracts those granules near the approximate hy-
perplane as informational granules and re-granulates them dy-
namically at a subtle level by their density degree and radius de-
gree. Finally, the decision hyperplane will be obtained through all
of the granules at different abstract levels effectively.

3.1. Initial granulation based on kernel

Generally, traditional GSVM training is in high-dimensional
space and it divides granules and replaces data with granules in
low-dimensional space. So the inherent distribution feature after
data replacement with granules may not be reflected well in high
dimension feature space, and then the prediction function may not
be appropriate. This paper adopts a kernel granular support vector
machine algorithm, which firstly maps the original data into a
high-dimensional space, and then divides granules by some stra-
tegies so as to obtain high-dimensional granules. At last, SVM
learning is accomplished by them. It can solve the problems with
different distributions in low-dimensional space (Original training
dataset) and high-dimensional space (Compressed training data-
set). Therefore, the granulation of this paper is processed in the
high-dimensional kernel feature space by the kernel granulation
methods. To improve the generalization performance, the kernel
k-means clustering is selected as the granulation method of
HD_GSVM, because it can obtain the same radius granules, and the
errors generated from the granulation and replacement of gran-
ules (that is the radius of superballs) will counteract each other
[18].

For a given original training set = {( )} ∈− =
−X x y x R, ,i i i

l
i

n
0 1 1

0 1

∈ { − }yand 1, 1i are classification labels. After nonlinear map-

ping Φ, the samples in high-dimensional space RN are denoted as
Φ= { ( ) } =X x y,i i i

l
0 1. Samples are divided into k1 granules, that is,

Φ= { ( )}− =
−X xi j j

l
1 1

i1 ( −l i1 is the number of data in the ith granule on the
first granulation level of the ith granule and −X i1 on the first
granulation level; and the number 1 of −X i1 presents these gran-
ules at the first granulation level). Each granule can be regarded as
a super ball, and the center and radius are defined as follows.

Definition 1. (Center and Radius of a Granule Super Ball Xi) For
a general granule super ball Xi, each N dimensional granule is
called a granule super ball after granulation (For simplicity, the ith
granule super ball corresponding to the ith granular is still de-
noted as Xi). The center μi and radius ri of the ith granule super ball
are defined as follows.
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According to Definition 1, the distance from any sample xj to
the ith granule super ball Xi in N dimensional space is

∑ ∑ ∑( ) = ( ) − ( ⋅ ) + ( )
( )= = =

d x X K x x
l

K x x
l

K x x, ,
2 1

,
8

j i j j
i p

l

j p
i p

l

q

l

p q
1

2
1 1

i i i

where the granulation is accomplished iteratively by using
granule super balls and related measurements. The main steps of
the granule dividing algorithm are summarized as follows.

Algorithm 1. Initial Granule dividing algorithm.
Step1: Select k1 samples randomly as the center of k1 granules.
Step2: Classify samples according to formula (8) by nearest
neighbor approach in kernel space.

Step3: Adjust the centers of k1 granules by formula (6), and ob-
serve whether there are changes in these centers. If so, go back to
step 2. Else, go to step 4.

Step4:End the algorithm and obtain the divided granules
{ … }− − −X X X, , , k1 1 1 2 1 1

.

3.2. Hierarchical and dynamical granulation

For granules μ{ } { } { }− = − = − =X r, andi i
k

i i
k

i i
k

1 1 1 1 1 1
1 1 1 are the corre-

sponding centers and radiuses of them. The centers μ{ }− =i i
k

1 1
1 are

used as the actual training set of GSVM. The approximate hyper-
plane f1 can be obtained by SVM training on this actual training

set. However, for the difference of μ{ }− = Xandi i
k

1 1 0
1 , the general-

ization performance loss of the classifier is large and the results of
classification are poor. To solve this problem, the obtained hy-
perplane will be corrected by granulation for some granules by the
distance of the samples and the approximate hyperplane f1 and
the density of these informational granules. To better present the
HD_GSVM model, we give the Definition of the distance from a
granule to the hyperplane.

Definition 2. (Distance from a Granule to the Hyperplane) For a
general granule Xi, in N dimensional space, the distance from a
granule Xi to the general hyperplane Φ= ⋅ ( ) +f y w x b: is defined
as.

μ

α

α α

( ) =
( − )⋅ +

+
−

=
∑ ∑ ( ) +

∑ ⋅ ⋅ ⋅ ⋅ ( )
−

( )

= ∈

∈
∈

d X f
w b

w
r

y K x x b

y y K x x
r

,
, 1

1

,

,
9

i
i
T

i

l k
l

j SVs j j j k

j SVs

k SVs
j k j k j k

i

2

1
1i

i

where SVs is the set of support vectors. For the SVM, the dis-
tance between the support vector and classification hyperplane is
equal to one. Then, the Definition of the information granule and
the granule density is given based on Definition 2.

Definition 3. (Informational granule extraction) For the general
granule Xi and general hyperplane f , if the distance ( )d X f,i be-
tween a granule Xi and approximate hyperplane f is smaller than
one, the granule Xi is called the informational granule.

Because the informational granules are samples for the GSVM
model and because the distance between the SVs and the ap-
proximate hyperplane is equal to one, the informational granules
overlap with the margin area of the approximate classifier f .

Definition 4. (Granule density) For a general granule Xi, suppose
= { } =X xi i

j
j
l

1
i is the ith granule and μi is the center of Xi. The density

ρi of granule Xi is defined as follows.

( )( )( ) ( )

ρ
μ

=
∑ ( )

=
∑ ∑ ∑ − ∑ +

=

= = = = 10

l

d x

l

K x x K x x K x x

,

, , ,

i
i

j
l

i i
j

i

j
l

l p
l

q
l

p q l p
l

p i
j

i
j

i
j

1

1
1

1 1
2

1

i

i
i

i i
i

i

The HD_GSVM method takes the initial granulation method on

training dataset X and obtains the first level granules { }− =
X i i

k
1 1

1 by
using Algorithm 1. The centers and radiuses of them are

μ{ } { }− = − =randi i
k

i i
k

1 1 1 1
1 1 , and the initial approximate hyperplane f1

on the first granulation level is obtained on the approximate
training set μ{ }− =i i

k
1 1

1 on the first granulation level. Second, we

extract the informational granules ( ){ }{ ′} { ′} ⊆− =
′

− =
′

− =
X X Xj j

k
j j

k
i i

k
1 1 1 1 1 1

1 1 1 ,

and the centers and radiuses corresponding to these informational
granules are μ{ ′} { ′}− =

′
− =

′randj j
k

j j
k

1 1 1 1
1 1 . Then, we compute the density

{ ′}− =
′density j j

k
1 1

1 of these informational granules { ′}− =
′X j j

k
1 1

1 . For the jth
informational granule ′−X j1 on the first granulation level, we divide
it with the following formula.

=
′ × ′

_ ( )
−

− −
⎡
⎢
⎢
⎢

⎤
⎥
⎥
⎥k

r density

d para 11
j

j j
1

1 1

_d para is the parameter granulation. When the density of a
granule is large, we can think this granule has more classification
information. So, we need re-granulation to this granule, and we
mine the detailed classification information of it. Similarly, if the
radius of a granule is large and if the center of it is used to replace
the whole granule training set, more generalization performance
loss may be produced, and we need re-granulation to this granule
and we mine the detailed classification information of it. Suppose
the jth informational granule ′−X j1 is the ith granule of all original

granule set { }− =X i i
k

1 1
1 granules. Similarly, for the other informational

granules on the first granulation level, we divide them by Algo-
rithm 1 and we can obtain the granules set { }− =X i i

k
2 1

2 on the second

granulation level (Certainly, { }− =X i i
k

2 1
2 contains granules from the

first level that are not informational granules. At the same time,
several old informational granules are replaced by new sub-
granules by dividing). If the ith granule of the first granulation
level is not an informational granule, the corresponding =−k 1i2

does not need dividing. Obviously, = − ′ + ∑ =
′

−k k k kj
k

j2 1 1 1 1
1 . Then,

the centers and radiuses of the second granulation level granules
are μ{ } { }− = − =randi i

k
i i

k
1 1 1 1

1 1 can be computed by formulas (6) and (7),
and the initial approximate hyperplane f2 on the second granu-

lation level is obtained on the approximate training set μ{ }− =i i
k

2 1
2 on

the second granulation level. This procedure is processed until
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there are no informational samples that need re-granulation, and
the last classifier flast is obtained by our HD_GSVM method. The
feature of the HD_GSVMmethod is that the information extraction
and granulation process is hierarchical and dynamical processing.
Thus, a granule far from the present approximate hyperplane fi is
not an information granule on this granulation level, but this
granule may transfer into an informational granule on the next
granulation level because the approximate classifiers of different
granulation levels are different.

3.3. Hierarchical and dynamical granulation SVM algorithm

The HD_GSVM method maps the original data into a high-di-
mensional space to reveal the features that are implicit in the
original sample space and that divide the data into several gran-
ules first. Then, it extracts those granules near the approximate
hyperplane as informational granules and re-granulates them
dynamically at a subtle level by their density and radius degree.
Finally, the decision hyperplane will be obtained through all of the
granules on different abstract levels effectively. The HD_GSVM
method can improve the generalization performance greatly with
high learning efficiency synchronously.

SVM based on hierarchical and dynamical granulation contains
three steps (see Fig. 3): the first step is initial granulation based on
kernel space and initial SVM training on the first granulation level.
The second step is hierarchical and dynamical re-granulation itera-
tively and is the most important step of this process. In this step, the
informational granules are extracted by the distance of every granule
to present an approximate hyperplane. Then, we compute the den-
sity of these informational granules to evaluate the classification
Initialize: Suppose the given initial training set is _ = {( )} _
=X x y,i i i

l
0 1 1

0 1, xi

Kernel function: RBF Kernel, the granulation level =lev 0, the granula
Step1: Initial granulation and SVM training.

Granulate initial training set −X0 1 and obtain k1 granules { −X X,1 1 1

Φ= { ( )}− =
−X xi j j

l
1 1

i1 . Then, the granulation level parameter is =lev 1. In in

these granules by formulas (6) and (7), respectively.
Step2: Hierarchical and Dynamical re-granulation.

Step2.1: Training SVM on the compressing samples (Such as centers of

obtain the approximate hyperplane flev.

Step2.2: Compute the distance between every granule of this granula

select the informational granules set { _ ′} =
′Xlev j j

k
1

lev by Definition 3.

Step2.3: Compute the density and radius of these informational granu

granulation process by the radius and density of this granulation level.

needs to re-granulate into the number of sub-granules.

_ =
_ ′ ×

_

⎡
⎢⎢klev j

r densit

d para

lev j

Step2.4: For every granule of the lev granulation level, if it is an info

Algorithm 1; else, if it is not need re-granulated, then ← +lev lev 1.
Step2.5: If there are new granules produced in Step2.4, we compute t
(6) and (7), respectively. Then, we go to Step 2.1; else, we go to Step

Step3: Last training.
Train SVM on the last compressing samples (Such as cen

step, and obtain the last hyperplane flast .
Step4: Algorithm end.
information contained in them. By the density and radius of these
granules, the granule number in the re-granulation process can be
obtained, and we can obtain the smaller granules on the next
granulation level. In this process, the information granule is dyna-
mically changed, if a granule is not informational on this granulation;
however, it changed into an informational granule on the next
granulation level because the hyperplane is improved in this iterative
process. By this method, for the high density training samples, the
most important classification information can be obtained in this
process by the distance of them and the approximate hyperplane,
density and radius. At the same time, for the low density training
samples, granules that are not important for classification can be
deleted in this process and can improve the learning efficiency of the
algorithm. At the last step, we train SVM on different granulation
levels and obtain the last classifier. We only extract abstract (Large)
granules to unimportant samples, but for important samples, we
extract special (Small) granules. Therefore, the HD_GSVM model can
solve the complex data mining problems when the densities of actual
datasets are non-uniform and improve the generalization perfor-
mance greatly with high learning efficiency synchronously.

Because this paper focuses on designing the GSVM model with
high efficiency and good generalization performance in the given
kernel space, selecting suitable kernel functions and parameters
will be not discussed (they are described in Refs. [28–35]). In fact,
the proposed HD_GSVM method can be combined with the ex-
isting kernel selection approaches. The Gaussian kernel is used in
this paper, and the SVM based on hierarchical and dynamical
granulation is as follows.

Algorithm 2. Improved SVM model based on hierarchical and
dynamical granulation.
∈ Rn, and ∈ { − }y 1, 1i , initial granulation number parameter k1,

tion parameter is _d para.

… }− −X, , k2 1 1
based on kernel granulation method of Algorithm 1,

itial granulation process, we can obtain the centers and radiuses of

granules{ _ _ … _ }X X X, , ,lev lev lev k1 2 lev
) of this lev granulation level, and

tion level and the approximate hyperplane flev by formula (9), and

les and compute the granulation number parameter _klev j of the re-

_klev j is presented as the jth granule on the lev granulation level and

_ ′⎤
⎥⎥

ylev j

rmational granule, it is divided into _klev j sub-granules similar to

he centers and radiuses of these new granules by using formulas
3.

ters of granules{ _ _ … _ }X X X, , ,last last last k1 2 last
) of this last granulation



Table 1
Datasets used in experiments.

Datasets Size of training data Size of testing data Features

Thyroid 2800 1500 5
Diabetic 4680 3000 8
Breast_cancer 2000 770 9
Flare_solar 33300 20000 9
Titanic 3000 10255 3

Fig. 4. The testing accuracy variation tendency versus penalty parameter.
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Fig. 3. SVM based on hierarchical and dynamical granulation.
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4. Simulation experiments and discussions

The granulation process plays an important role in the GSVM
model. It determines the granule number obtained from the ori-
ginal training set and the learning efficiency of the algorithm. At
the same time, it determines the classification information ob-
tained in this process and the generalization performance of the
algorithm. If the granule number obtained in this process is too
large, the factual training set may still be large and the learning
efficiency of the algorithm may be too low. However, if it is too
small, very important classification information may be lost in this
process, so the generalization performance may be affected. So,
designing a suitable granulation method is important. This paper
tests the granule number by using the hierarchical and dynamical
granulation of the HD_GSVM model and compares it with the total
number granules of the traditional GSVM model.

The comparisons between the hierarchical and dynamical
granulation of the HD_GSVM model and the statistic granulation
of the traditional GSVM model for generalization performance and
learning efficiency are accomplished by simulation experiments,
and the influence of model parameters on generalization perfor-
mance is also studied. To test the former indexes of these two
methods, this paper selects five labeled binary class datasets with
different sizes and dimensions from the UCI benchmark database
[36]. Every dataset is randomly divided into two parts: training set
and testing set. To make the experiment results more convincing,
all of the datasets are dividing two times randomly and training
two times, respectively. The training and testing data are shown in
Table 1. The Gaussian kernel function is selected as the kernel
function of the GSVM and HD_GSVMmethods, and the parameters
for them are 1.0. In experiment, we find that when kernel para-
meter takes a fixed value, the testing accuracy tendency on most
datasets are as following Fig. 4. So to make the learning process
stable, a large value should be set up for penalty parameter, and
we set 200 for it in this paper. The experiment tests are run on a
PC (2.66 Ghz CPU, 1G RAM), and the experiment platform is
Matlab2008.

4.1. Comparison of granulation

To test the hierarchical and dynamical granulation process of
the HD_GSVMmodel, this paper compares the statistic granulation
of the traditional GSVM method based on clustering with the
dynamical granulation of the HD_GSVM model. We also observe
the granules by using the hierarchical and dynamical granulation
method on every granulation level. For the statistic granulation
method, the granulation number parameters directly determine
the granulation circumstance, so we set the statistic granulation
parameter with 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 for da-
tasets Thyroid, Diabetic, Breast_cancer and Flare_solar, respectively,
and with 5, 10, 15, 20, 25, 30 for dataset Titanic. For the HD_GSVM
method, the initial granulation number parameter and the gran-
ulation parameter itself determine the granulation circumstance,
and we set the initial granulation number parameter similar to the
traditional statistical GSVM method. Moreover, to simplify the
experiments, the granulation parameter _d para takes the statis-
tical one in these experiments. In practice, we can set a suitable
granulation parameter _d para by the special circumstance of the
problems. When _d para is small, the iteration of granulation
procedures is quick but the performance of model may be un-
stable. Conversely, the optimal value is obtained stably with more
times iteration training procedures.

Fig. 5 represents the granules’ number changing on a different
granulation level based on a different initial granulation number
parameter. In these figures, the horizontal axis represents the
granulation level, and the vertical axis represents the granule
number obtained on the corresponding granulation level.

We can observe from Fig. 5 that the granule numbers increased
by the hierarchical and dynamical granulation level in all cir-
cumstances. However, the increment tendency is quick on the
initial granulation levels but slow on the last granulation levels.
These results may be caused by the initial granulation level be-
cause the density of many granules is large and the radius of many



Fig. 5. Hierarchical and dynamical granulation result on every dataset. (a) Thyroid (b) Diabetic (c) Breast_cancer (d) Flare_solar (e) Titanic.
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Table 2
Granule number of two methods.

Datasets Dynamic granules Statistic granules

Thyroid [44/36/33/66/68/79/89/90/101/
110]

[10/20/30/40/50/60/70/80/
90/100]

Diabetic [344/388/286/371/351/378/382/
387/409/444]

[10/20/30/40/50/60/70/80/
90/100]

Breast_cancer [202/204/205/202/206/177/183/
189/199/191]

[10/20/30/40/50/60/70/80/
90/100]

Flare_solar [77/87/53/94/110/125/116/111/
111/111]

[10/20/30/40/50/60/70/80/
90/100]

Titanic [20/14/21/22/30/31] [5/10/15/20/25/30]

Fig. 6. Relevant dataset distribution of HD_GSVM (K¼50).

Fig. 7. The hyperplane of HD_GSVM on Thyroid (K¼50).

Fig. 8. Relevant dataset distribution of GSVM (K¼50).

Fig. 9. The hyperplane of GSVM on Thyroid (K¼50).
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granules is large, so the granules’ number needed for re-granula-
tion is very large. However, on the last granulation level, with the
decrement of informational granules and the radius of them, the
number of granules needing re-granulation is reduced. Therefore,
the increment of the granulation number is slow on the last
granulation level, and it illustrates that we can obtain important
classification information by the smaller price of granule adding.
We can also find that the granulation level number is smaller than
10 on all datasets except Diabetic. This illustrates that we can
quickly obtain the optimal granulation circumstance by using the
HD_GSVM method on most datasets at a smaller granulation level.
Moreover, different from our estimation, the final granule number
does not increase with an increase in the initial granulation
number parameter. We can select a suitable initial granulation
number parameter on practical problems. Table 2 is the final
granule number of the HD_GSVM method and the traditional
statistical GSVM method. For the traditional GSVM method, these
values are equal to the granulation number parameters. However,
for the HD_GSVM method, these values are larger than the initial
granulation number parameters, and they are determined by the
initial granulation number parameters.

We also give the original datasets distribution, granule centers
distribution and last factual training data distribution on the
Thyroid dataset when the initial granulation parameter of the
HD_GSVM method takes 50 and the statistical granulation para-
meter of the traditional GSVM takes 50 (see Fig. 6–Fig. 9). In Figs. 6
and 8, the original positive and negative samples are represented
by green “þ” and yellow “*”, and the blue “▽” and red “△” present
the positive and negative granule center because these centers did
not existed in the original datasets. So, we use the sample nearest
to the centers of the same class to replace the centers of SVM
training. In Figs. 6 and 8, the blue “þ ” and red “*” present the



Table 3
Testing accuracy of two methods with the same initial granulation number parameters (%).

Datasets Methods Testing accuracy Range
(△(Acc))

Average
(△(Acc))

Thyroid Initial granulation number
parameter

GI¼10 GI¼20 GI¼30 GI¼40 GI¼50 GI¼60 GI¼70 GI¼80 GI¼90 GI¼100 [þ0.9, þ6.9] þ2.57

HD_GSVM 96.5 97.0 96.3 96.6 98.1 98.2 98.7 98.7 97.9 97.7
GSVM 89.6 94.4 95.2 95.5 97.1 96.1 94.5 94.3 96.5 96.8

Diabetic Initial granulation number
parameter

GI¼10 GI¼20 GI¼30 GI¼40 GI¼50 GI¼60 GI¼70 GI¼80 GI¼90 GI¼100 [þ9.2, þ19.5] þ13.6

HD_GSVM 82.6 83.9 79.8 83.4 83.0 83.7 83.7 83.9 84.7 84.2
GSVM 66.6 64.5 70.6 67.5 70.7 69.3 72.3 74.3 70.2 70.9

Breast_cancer Initial granulation number
parameter

GI¼10 GI¼20 GI¼30 GI¼40 GI¼50 GI¼60 GI¼70 GI¼80 GI¼90 GI¼100 [þ10.4,
þ26.4]

þ18.42

HD_GSVM 92.1 91.4 92.2 93.8 92.7 88.7 87.7 88.3 89.9 88.3
GSVM 65.7 65.7 70.8 71.6 74.0 72.7 72.5 75.2 74.8 77.9

Flare_solar Initial granulation number
parameter

GI¼10 GI¼20 GI¼30 GI¼40 GI¼50 GI¼60 GI¼70 GI¼80 GI¼90 GI¼100 [�10.2, þ5.6] þ0.75

HD_GSVM 64.6 65.3 64.1 65.3 65.3 67.7 67.7 56.6 55.7 55.7
GSVM 62.7 59.6 63.5 63.7 61.4 64.3 64.9 66.8 56.8 56.8

Titanic Initial granulation number
parameter

GI¼5 GI¼10 GI¼15 GI¼20 GI¼25 GI¼30 – – – – [þ0.1, þ1.9] þ1.13

HD_GSVM 79.2 78.5 79.2 78.5 79.2 78.5 – – – –

GSVM 77.3 77.3 77.3 77.6 78.4 78.4 – – – –

Table 4
Training time of two methods with the same initial granulation number parameters (ms).

Datasets Methods Training time

Thyroid Initial granulation number parameter GI¼10 GI¼20 GI¼30 GI¼40 GI¼50 GI¼60 GI¼70 GI¼80 GI¼90 GI¼100
HD_GSVM 93.8 46.9 46.9 187.5 203.1 265.6 343.8 359.4 468.8 546.9
GSVM 37.5 46.9 31.3 109.4 109.4 171.9 203.1 281.3 343.8 437.5

Diabetic Initial granulation number parameter GI¼10 GI¼20 GI¼30 GI¼40 GI¼50 GI¼60 GI¼70 GI¼80 GI¼90 GI¼100
HD_GSVM 7828.1 10937.5 5093.8 9718.8 8531.3 10062.5 10375 10656.3 12343.8 15312.5
GSVM 37.5 46.9 31.3 78.1 125 187.5 218.8 312.5 390.6 484.4

Breast_cancer Initial granulation number parameter GI¼10 GI¼20 GI¼30 GI¼40 GI¼50 GI¼60 GI¼70 GI¼80 GI¼90 GI¼100
HD_GSVM 3515.6 3500 3421.9 3390.6 3531.3 2453.1 2718.8 2890.6 3234.4 2937.5
GSVM 62.5 31.3 31.3 78.1 125 156.3 218.8 296.9 359.4 453.1

Flare_solar Initial granulation number parameter GI¼10 GI¼20 GI¼30 GI¼40 GI¼50 GI¼60 GI¼70 GI¼80 GI¼90 GI¼100
HD_GSVM 250 343.8 125 406.3 562.5 796.9 656.3 578.1 578.1 578.1
GSVM 155.6 155.6 31.3 62.5 93.8 140.6 156.3 328.1 328.1 328.1

Titanic Initial granulation number parameter GI¼5 GI¼10 GI¼15 GI¼20 GI¼25 GI¼30 – – – –

HD_GSVM 155.6 15.6 155.6 31.3 31.3 46.9 – – – –

GSVM 78.1 15.6 15.6 15.6 15.6 93.8 – – – –
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positive and negative actual training samples in these experi-
ments. Figs. 7 and 9 are the hyperplanes obtained on the Thyroid
dataset when the initial granulation parameter of HD_GSVM and
GSVM take 50. We know from Table 2 that the actual granule
number of the HD_GSVM last training is 68. In these two figures,
we can find amazingly that the samples near the hyperplane of
HD_GSVM are more than GSVM obviously. This illustrates that the
HD_GSVM method can mine more classification information by
hierarchical and dynamical granulation and by combining it with
the density and radius of the granule.
4.2. Comparison of testing results

Tables 3 and 4 are the testing accuracy and the training time of
the two methods with identical initial granulation number para-
meters. In Table 3, the GI presents the initial granulation number
parameter, Range(△(Acc)) presents the upper and lower bound of
the testing accuracy superiority of HD_GSVM by comparing it with
the traditional GSVM and the Average(△(Acc)) presents the aver-
age value of the testing accuracy superiority of HD_GSVM by
comparing it with the traditional GSVM. We find that for the



Table 5
Testing accuracy of two methods with the same actual training granules number (%).

Datasets Methods Testing accuracy Range
(△(Acc))

Average
(△(Acc))

Thyroid Training granules
number

GA¼44 GA¼36 GA¼33 GA¼66 GA¼68 GA¼79 GA¼89 GA¼90 GA¼101 GA¼110 [þ0.0,
þ2.9]

þ0.76

HD_GSVM 96.5 97.0 96.3 96.6 98.1 98.2 98.7 98.7 97.9 97.7
GSVM 96.2 96.1 93.4 96.3 98.1 97.8 98.2 97 97.5 97.5

Diabetic Training granules
number

GA¼344 GA¼388 GA¼286 GA¼371 GA¼351 GA¼378 GA¼382 GA¼387 GA¼409 GA¼444 [þ0.1,
þ2.5]

þ0.96

HD_GSVM 82.6 83.9 79.8 83.4 83.0 83.7 83.7 83.9 84.7 84.2
GSVM 81.3 83.0 79.1 82.8 81.9 83.0 83.5 82.7 84.2 81.8

Breast_cancer Training granules
number

GA¼202 GA¼204 GA¼205 GA¼202 GA¼206 GA¼177 GA¼183 GA¼189 GA¼199 GA¼191 [þ1.8,
þ4.9]

þ2.86

HD_GSVM 92.1 91.4 92.2 93.8 92.7 88.7 87.7 88.3 89.9 88.3
GSVM 88.8 89.6 89.6 88.8 89.6 84.9 84.9 86.1 87.7 86.5

Flare_solar Training granules
number

GA¼77 GA¼87 GA¼53 GA¼94 GA¼110 GA¼125 GA¼116 GA¼111 GA¼111 GA¼111 [�9.6,
þ7.8]

þ0.72

HD_GSVM 64.6 65.3 64.1 65.3 65.3 67.7 67.7 56.6 55.7 55.7
GSVM 57.5 57.5 64.7 57.0 57.4 65.1 65.4 65.4 65.4 65.4

Titanic Training granules
number

GA¼20 GA¼14 GA¼21 GA¼22 GA¼30 GA¼31 – – – – [�0.6,
þ1.5]

þ0.77

HD_GSVM 79.2 78.5 79.2 78.5 79.2 78.5 – – – –

GSVM 77.6 77.3 77.6 78.4 78.4 79.2 – – – –

Table 6
Training time of two methods with the same actual training granules number (ms).

Datasets Methods Training time

Thyroid Training granules number GA¼44 GA¼36 GA¼33 GA¼66 GA¼68 GA¼79 GA¼89 GA¼90 GA¼101 GA¼110
HD_GSVM 93.8 46.9 46.9 187.5 203.1 265.6 343.8 359.4 468.8 546.9
GSVM 171.9 78.1 93.8 281.3 296.9 437.5 531.3 562.5 718.8 859.4

Diabetic Training granules number GA¼344 GA¼388 GA¼286 GA¼371 GA¼351 GA¼378 GA¼382 GA¼387 GA¼409 GA¼444
HD_GSVM 7828.1 10937.5 5093.8 9718.8 8531.3 10062.5 10375 10656.3 12343.8 15312.5
GSVM 13046.9 17734.4 8171.9 15828.1 13703.1 16593.8 17671.9 17843.8 20890.6 25890.6

Breast_cancer Training granules number GA¼202 GA¼204 GA¼205 GA¼202 GA¼206 GA¼177 GA¼183 GA¼189 GA¼199 GA¼191
HD_GSVM 3515.6 3500 3421.9 3390.6 3531.3 2453.1 2718.8 2890.6 3234.4 2937.5
GSVM 3234.4 3312.5 3328.1 3234.4 3406.3 2359.4 2656.3 2875 3171.9 2843.8

Flare_solar Training granules number GA¼77 GA¼87 GA¼53 GA¼94 GA¼110 GA¼125 GA¼116 GA¼111 GA¼111 GA¼111
HD_GSVM 250 343.8 125 406.3 562.5 796.9 656.3 578.1 578.1 578.1
GSVM 343.8 468.8 156.3 468.8 921.9 1187.5 843.8 687.5 687.5 687.5

Titanic Training granules number GA¼20 GA¼14 GA¼21 GA¼22 GA¼30 GA¼31 – – – –

HD_GSVM 155.6 15.6 155.6 31.3 31.3 46.9 – – – –

GSVM 62.5 15.6 15.6 62.5 46.9 46.9 – – – –
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Thyroid dataset, the testing accuracy results of HD_GSVM are [0.9%,
4.4%] larger than GSVM, and the average value of it is 2.57%. For
the Diabetic dataset, the testing accuracy results of HD_GSVM are
[9.2%, 19.5%] larger than GSVM, and the average of it is 13.6%. For
the Breast_cancer dataset, the testing accuracy results of HD_GSVM
are [10.4%, 16.0%] larger than GSVM, and the average of it is 18.42%.
For the Titanic dataset, the testing accuracy results of HD_GSVM
are [0.12%, 1.85%] larger than GSVM, and the average of it is 1.13%.
However, although the average testing accuracy results of
HD_GSVM is 0.75% larger than GSVM, when the initial granulation
parameter takes 80 to 100, the testing accuracy results of
HD_GSVM is smaller than GSVM. This may be because this dataset
is not very suitable to the granulation method of clustering based
on European distance.
Because the training time of SVM model is directly determined

by the actual training samples size, so the training time of
HD_GSVM method is longer than the traditional GSVM method on
datasets Diabetic and Breast_cancer. On other datasets, the training
time of HD_GSVM is a little longer than GSVM method. We can
find from Table 2 the actual granules number vector [344/388/
…/409/444] on Diabetic and granules number vector [202/204/
…/199/191] on Breast_cancer of HD_GSVM are larger than granules
number vectors [10/20/…/90/100] of traditional GSVM obviously.
So the training time of HD_GSVM is larger than GSVM on these
two datasets obviously. The training time of HD_GSVM is longer
than traditional GSVM methods slightly, but comparing with the
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SVM training directly, the efficiency of HD_GSVM is accepted ea-
sily because it improves the generalization performance greatly
with high learning efficiency synchronously.

Besides the former identical granulation number parameter
setting, we also test when the results of granules number are
identical of these two methods. Because the granules number of
GSVM is equal to the initial granulation number parameter, in
these experiments, we set the initial granulation number para-
meters of GSVM method identical with the last hierarchical and
dynamic granules in Table 2, that the factual training granules
numbers are same for these two methods. The testing results are
shown in Table 5. the GA present the actual training granules
number, and the meaning of Range(△(Acc)) and Average(△(Acc))
are same to the former Table 3.

In this table, we can find that except when GA¼53 or GA¼111
of dataset Flare_solar and G¼31 of dataset Titanic, the testing ac-
curacy of HD_GSVM are larger than GSVM on all datasets when the
granules number of them are identical on other circumstances.
Besides, the training time of HD_GSVM is smaller than GSVM for
the statistical granulation of traditional GSVM being on all training
datasets, but for HD_GSVM method, the first granulation are on all
training datasets and the granulation on last granulation level are
on smaller granules. So the training time of HD_GSVM on most
datasets is smaller than GSVM especially when the granules are
large such as Diabetic (Table 6).
5. Conclusions

Because SVM is usually not used for large-scale data mining
problem because training complexity is highly dependent on the
dataset size. This paper presents an improved support vector
machine learning model based on hierarchical and dynamical
granulation, to solve the low efficiency and generalization per-
formance problem for traditional GSVM. For HD_GSVM, the ori-
ginal data will be mapped into a high-dimensional space by
mercer kernel. Then, the data are divided into some granules, and
those granules near to approximate hyperplane are extracted and
re-granulation in subtle level by their density degree and radius
degree hierarchically and dynamically. Finally, the decision hy-
perplane will be obtained through all the granules at different
granulation levels effectively. In the hierarchical and dynamical
granulation process, the granulation level of all granules can be
dynamically changed at different granulation level continuously.
By this method, different classification information on various
granulation levels can be used and we can divide granules on
various levels, to meet variety needs of practical problems. The
HD_GSVM model can improve the generalization performance
greatly with high learning efficiency synchronously and it can be
used into the large scale application problems such as web page
classification, social network, genes or proteins analysis.

Although the HD_GSVM method can improve the general-
ization performance greatly to solve the large scale classification
problem with high learning efficiency. However, similar with tra-
ditional GSVM method, the HD_GSVM method only uses a one-
way granulation method. In future work, we will investigate the
hierarchical and dynamical granulation SVM based on double-di-
rection granulation that contains granulation and combination in
hierarchical and dynamical changing process to enhance the
generalization performance further for large scale classification
problem. Besides, the hierarchical and dynamical granulation
parameter also affects the results of HD_GSVM algorithm, this
paper not discusses it deeply for simplify and setting, so the
hierarchical and dynamical granulation parameter of HD_GSVM
will need to be discussed and researched further by the specific
different features of datasets.
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