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Feature selection is an active area of research in pattern recognition, machine learning and artificial intel-
ligence, which greatly improves the performance of forecasting or classification. In rough set theory, attri-
bute reduction, as a special form of feature selection, aims to retain the discernability of the original
attribute set. To solve this problem, many heuristic attribute reduction algorithms have been proposed
in the literature. However, these methods are computationally time-consuming for large scale datasets.
Recently, an accelerator was introduced by computing reducts on gradually reducing the size of the uni-
verse. Although the accelerator can considerably shorten the computational time, it remains a challeng-
ing issue. To further enhance the efficiency of these algorithms, we develop a new accelerator for
attribute reduction, which simultaneously reduces the size of the universe and the number of attributes
at each iteration of the process of reduction. Based on the new accelerator, several representative heuris-
tic attribute reduction algorithms are accelerated. Experiments show that these accelerated algorithms
can significantly reduce computational time while maintaining their results the same as before.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Feature selection is a preprocessing step in many applications
including pattern recognition, machine learning, and data mining.
Attribute reduction is regarded as a special form of feature selec-
tion in rough set theory and aims to retain the discriminatory
power of the original attribute set [21,22,25,44]. In databases of
practical applications (Image processing, Bioinformatics, Astron-
omy, Finance, etc.), the number of objects is very large and the
dimension (the number of attributes) is very high as well
[1,2,4,24]. It is well known that attributes irrelevant to recognition
tasks may deteriorate the performance of learning algorithms
[6,27]. In other words, storing and processing irrelevant attributes
could be computationally very expensive. To address this issue,
irrelevant attributes, as pointed out in [6,29], can be omitted,
which will not severely affect the classification (recognition) accu-
racy. Therefore, the omission of some irrelevant attributes would
be desirable relative to the costs involved [20].

According to how to combine the feature subset search with the
construction of the classification model, feature selection tech-
niques can be organized into three categories: wrapper strategy
[11], filter strategy [4], and embedded strategy [30]. The wrapper
strategy uses a classifier to assess feature subsets and train a learn-
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ing machine for every feature subset considered. The interaction
between feature subset search and classification model is its signif-
icant advantage. However, it thus is usually time-consum-
ing[11,30]. The filter strategy employs another evaluation
criterion different from the target classification scheme, and there-
fore usually does not involve any learning machine in the features
selection process [4]. The embedded strategy generates candidate
subsets by means of the methods used in filter strategy, and
searches an optimal subset of features based on the classifier con-
struction. The embedded methods combine the advantages of
wrapper methods and filter methods, that they include the interac-
tion with the classification model, while at the same time being far
less computational than wrapper methods [30]. This paper focuses
on the filter strategy in order to pursue both computational effi-
ciency and solution quality regardless of a classification scheme.
In filter methods, some common feature selection criteria are
introduced as stopping conditions, which include information gain
[12], consistency [2], and dependency [18]. These criteria can be di-
vided into two main categories: distance-based and consistency-
based [6]. For consistency-based feature selection, attribute reduc-
tion in rough set theory offers a systematic theoretic framework,
which does not attempt to maximize the class separability but
rather to retain the discernible ability of original attribute sets
for the objects from the universe [9,36].

In recent years, many methods have been proposed and exam-
ined for finding reducts. Skowron [33] proposed an attribute
reduction algorithm using a discernibility matrix, which can find
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all reducts. Kryszkiewicz and Lasek [10] proposed an approach to
the discovery of minimal sets of attributes functionally determin-
ing a decision attribute. Hu and Cercone [8] proposed a heuristic
attribute reduction method, called positive-region reduction,
which remains the positive region of target decision unchanged.
Furthermore, many researchers introduced various information
entropies (Shannon’s entropy, complement entropy, combination
entropy, etc.) to measure the uncertainty of an information table,
and constructed the corresponding attribute reduction algorithms
[13,14,16,17,28,38,39]. To handle hybrid data with numerical and
categorical features, fuzzy rough set model and rough fuzzy set
model were employed to obtain attribute reducts [5–
7,31,32,37,42]. In addition, b-reduct proposed by Ziarko provides
a suite of reduction methods in the variable precision rough set
model [47]. By means of the tolerance rough set model, Parthaláin
and Shen presented a new approach to deal with real-valued data,
which can retaining dataset semantics [19]. Yao and Zhao intro-
duced attribute reduction in decision-theoretic rough set models
in the context of different classification properties, which provided
a new insight into the problem of attribute reduction [45].

These attribute reduction algorithms mentioned above can be
divided into two categories: finding all reducts (or an optimal re-
duct) and finding one reduct [3,46]. However, it has been proved
to be an NP-hard problem to find all reducts [43]. By contrast, heu-
ristic algorithms (finding one reduct) can efficiently lessen the
computational burden of attribute reduction [5,6,8,13,14,28,
34,41]. In this paper, we efforts to further improve the efficiency
of heuristic algorithms. For convenience of our further develop-
ment, we classify these attribute reduction methods in terms of
heuristics into four categories: positive region reduction [8,21–
23], Shannon’s entropy reduction [34,35], complement entropy
reduction [13,15] and combination entropy reduction [28]. Each
of these heuristic methods can extract a single reduct from a given
decision table and preserves the particular property of the decision
table. Although these heuristic methods are much faster, attribute
reduction still remains a computationally difficult problem when
data sets are large. To overcome this difficulty, Qian and Liang
[29] proposed an accelerator for attribute reduction based on posi-
tive approximation. The heuristic methods based on the accelera-
tor can significantly decrease the time consuming and obtain the
same attribute reduct as their original versions. In [26,40], this idea
of accelerator was extended to incomplete data and hybrid data,
and these corresponding accelerators can significantly improved
the performance of attribute reduction algorithms. However, by
means of the accelerator, only the insignificant objects are re-
moved from datasets in each iteration of computing reducts. It
has been observed that the number of attributes in datasets can
also largely affect the efficiency of attribute reduction. This moti-
vates the idea of this paper. In order to further improve the perfor-
mance of the heuristic attribute reduction methods, we develop a
new accelerator by gradually reducing not only the size of universe
but also the number of attributes in each iteration of attribute
reduction. By incorporating the new accelerator into each of the
above four representative heuristic attribute reduction methods,
we obtain their accelerating versions. Numerical experiments
show that each of the improved methods can obtain the same
attribute subset as its corresponding original method while
greatly saving computational cost, especially for the large scale
datasets.

The rest of study is organized as follows. A brief review of rela-
tive basic concepts in Section 2. In Section 3, through analyzing the
rank preservation of four representative significant measures of
attributes, we develop a new accelerator based on the perspective
of objects and attributes. Experiments on ten datasets in UCI ma-
chine learning repository show that the four representative heuris-
tic algorithms based on the proposed accelerator outperform their
original counterparts in terms of time consuming in Section 4.
Then, conclusion and future work come in Section 5.
2. Preliminaries

In this section, we review some basic concepts such as indis-
cernibility relation, partition, significance measures and forward
attribute reduction algorithms.

2.1. Rough approximations

An information table is a 4-tuple S = (U,A,V, f) (for short
S = (U,A)), where U is a non-empty and finite set of objects, called
a universe, and A is a non-empty and finite set of attributes, Va is
the domain of the attribute a, V =

S
a2AVa and f:U � A = V is a func-

tion f(x,a) 2 Va for each a 2 A [21–23].
An indiscernibility relation RB = {(x,y) 2 U � Ujf(x,a) = f(y,a),

"a 2 B} was determined by a non-empty subset B # A. U/RB = {[x]B-

jx 2 U} (just as U/B) indicates the partition of U resulted from RB,
where [x]B denotes the equivalence class determined by x with re-
spect to B, i.e., [x]B = {y 2 Uj(x,y) 2 RB}.

Furthermore, given an information table S = (U,A) and an object
subset X # U, B # A, one can construct a rough set of X on the uni-
verse by elemental information granules in the following
definition:

BX ¼ [f½x�Bj½x�B # Xg; and BX ¼ [f½x�Bj½x�B \ X – ;g;

where B X and BX are called B-lower approximation and B-upper
approximation with respect to B, respectively. The order pair
hBX;BXi is called a rough set of X.

There are two kinds of attributes for a classification problem,
which can be characterized by a decision table DT = (U,C [ D) with
C \ D = Ø, where an element of C is called a condition attribute, C is
called a condition attribute set, an element of D is called a decision
attribute, and D is called a decision attribute set.

Given a decision table DT = (U,C [ D), B # C, U/D = {Y1, Y2, -
. . . , Yn}, the lower and upper approximations of the decision attri-
bute set D are defined as

BD ¼ fBY1;BY2; . . . ;BYng; and BD ¼ fBY1;BY2; . . . ;BYng:

Let POSðU;CÞB ðDÞ ¼
Sn

i¼1BYi, which is called the positive region of D
with respect to B in the decision table DT = (U,C [ D).

2.2. Four representative significance measures of attributes

In heuristic attribute reduction methods, attribute significance
measure is a crucial factor. Therefore, we will introduce four repre-
sentative significance measures here, which are based on positive
region, Shannon’s conditional entropy, complement conditional
entropy and combination conditional entropy.

� Positive region (PR) was first employed in a heuristic attribute
reduction algorithm, called positive region reduction, which
keeps the positive region of target decision unchanged [8].
� Shannon’s conditional entropy (SCE) was introduced to search

reducts of a decision table [34,38]. This reduction algorithm
calls Shannon’s entropy reduction, which remains the condi-
tional entropy of target decision. Shannon’s conditional entropy
of B with respect to D in DT = (U,C [ D) is denoted as
HðU;CÞðDjBÞ ¼ �
Xm

i¼1

pðXiÞ
Xn

j¼1

pðYjjXiÞ logðpðYjjXiÞÞ;
where pðXiÞ ¼ jXi j
jUj and pðYjjXiÞ ¼

jXi\Yj j
jXi j

, and X is a non-empty set.
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� Complement conditional entropy (PCE) was defined to measure
the uncertainty and applied to reduce redundant attribute of a
decision table [13,14]. The reduction method based on the
entropy is called complement entropy reduction, which can
preserve the conditional entropy of a given decision table. The
conditional entropy of B with respect to D in DT = (U,C [ D) is
denoted as
EðU;CÞðDjCÞ ¼
Xm

i¼1

Xn

j¼1

jYj \ Xij
jUj

jYc
j � Xc

i j
jUj ;
where Yc
j and Xc

i are the complements of Yj and Xi, respectively.
� Combination conditional entropy (CCE) is based on the intui-

tionistic knowledge content nature of information gain, which
can be used to obtain attribute reducts [28]. The reduction
method can remain combination conditional entropy of a given
decision table. The conditional entropy of B with respect to D in
DT = (U,C [ D) is defined as
CEðU;CÞðDjCÞ ¼
Xm

i¼1

jXij
jUj

C2
jXi j

C2
jUj
�
Xn

j¼1

jXi \ Yjj
jUj

C2
jXi\Yj j

C2
jUj

 !
;

where C2
jXi j ¼

jXi j�ðjXi j�1Þ
2 denotes the number of pairs of the objects

which are not distinguishable from each other in the equivalence
class Xi.

The corresponding significance measures based on the mea-
sures mentioned above are given as follows.

Let DT = (U,C [ D) be a decision table and B # C. For "a 2 B, the
inner significance measures of a based on positive region, Shan-
non’s conditional entropy, complement conditional entropy and
combination conditional entropy are respectively defined as

Siginner
1 ða;B;C;D;UÞ ¼ cðU;CÞB ðDÞ � cðU;CÞB�fagðDÞ;

Siginner
2 ða;B;C;D;UÞ ¼ HðU;CÞðDjB� fagÞ � HðU;CÞðDjBÞ;

Siginner
3 ða;B;C;D;UÞ ¼ EðU;CÞðDjB� fagÞ � EðU;CÞðDjBÞ;

Siginner
4 ða;B;C;D;UÞ ¼ CEðU;CÞðDjB� fagÞ � CEðU;CÞðDjBÞ;

where cðU;CÞB ðDÞ ¼ POSðU;CÞB ðDÞj j
jUj .

By means of the inner significant measures, the definition of
core [13,21,28,38] can be denoted as follows:

Let S = (U,C [ D) be a decision table and a 2 C. If
Siginner

D ða;C;C;D;UÞ > 0ðD ¼ 1;2;3;4Þ, then a is a core attribute of
S in the context of type D.

Furthermore, we suppose S = (U,C [ D) be a decision table and
B # C. For "a 2 C � B, the outer significance measures of a based
on positive region, Shannon’s conditional entropy, complement
conditional entropy and combination conditional entropy are
respectively defined as

Sigouter
1 ða;B;C;D;UÞ ¼ cðU;CÞB[fagðDÞ � cðU;CÞB ðDÞ;

Sigouter
2 ða;B;C;D;UÞ ¼ HðU;CÞðDjBÞ � HðU;CÞðDjB [ fagÞ;

Sigouter
3 ða;B;C;D;UÞ ¼ EðU;CÞðDjBÞ � EðU;CÞðDjB [ fagÞ;

Sigouter
4 ða;B;C;D;UÞ ¼ CEðU;CÞðDjBÞ � CEðU;CÞðDjB [ fagÞ;

where cðU;CÞB ðDÞ ¼ POSðU;CÞB ðDÞj j
jUj .

2.3. Forward attribute reduction algorithms

In rough set theory, many heuristic attribute reduction algo-
rithms have been designed to achieve efficiently attribute reducts,
in which forward greedy search strategy is common
[5,6,8,13,15,29,34]. In general, starting with an attribute with the
maximal inner significance measure, a forward greedy attribute
reduction approach takes an attribute with the maximal outer
importance into the attribute reduct in each loop until this subset
satisfies the stopping criterion, which yields an attribute reduct.
Formally, a forward greedy attribute reduction algorithm can be
written as follows.

Algorithm 1. [8,29,38]. General forward greedy attribute reduc-
tion algorithm

Input: Decision table S = (U,C [ D);
Output: One reduct red.
Step 1: red Ø;//red is the pool to conserve the selected

attributes
Step 2: Compute Siginner(ak,C,C,D,U), k 6 jCj;
Step 3: Put ak into red, where Siginner(ak,C,C,D,U) > 0;
Step 4: While EF(U,C)(red,D) – EF(U,C)(C,D) Do//This provides a

stopping criterion.
{red red [ {a0}, where Sigouter(a0,red,C,D,U) =
max{Sigouter(ak,red,C,D,U),ak 2 C � red}};

Step 5: return red and end.

3. Rank preservation of significance measures of attributes
It is well known that each of the significance measures of attri-
butes provides some heuristic information for forward attribute
reduction algorithms. In this section, to further improve the perfor-
mance of these attribute reduction algorithms, we will focus on the
rank preservation of the four significance measures of attributes
from the perspective of decreasing the number of objects and attri-
butes simultaneously.

In order to prove the rank preservation of a significance mea-
sure of attributes, we need the following lemma.

Lemma 3.1. Let 0 6 ai; bi 6 1; i ¼ 1; 2; . . . ; n;
Pn

i¼1ai ¼ 1, andPn
i¼1bi ¼ 1. If

Pn
i¼1ai � bi ¼ 1, then $1 6 u 6 n such that au = bu = 1

and ak = bk = 0 for "k – u.
Proof. By means of the existing conditions, we have that

Xn

i¼1

ai � bi ¼
Xn

i¼1

ai � 1�
Xn

j¼1;j–i

bj

 ! !
¼
Xn

i¼1

ai �
Xn

i¼1

ai �
Xn

j¼1;j–i

bj

 !

¼ 1�
Xn

i¼1

ai �
Xn

j¼1;j–i

bj

 !
:

Thus, one has

Xn

i¼1

ai � bi ¼ 1() 1�
Xn

i¼1

ai �
Xn

j¼1;j–i

bj

 !
¼ 1

()
Xn

i¼1

ai �
Xn

j¼1;j–i

bj

 !
¼ 0

() ai �
Xn

j¼1;j–i

bj ¼ 0; for 8i 6 n

() ai ¼ 0 or
Xn

j¼1;j–i

bj ¼ 0; for 8i 6 n

Furthermore, because of
Pn

i¼1ai ¼ 1, there exists u 6 n such that
au – 0. Therefore

Pn
j¼1;j–ubj ¼ 0, i.e., bk = 0, for"k – u. And because

of
Pn

j¼1bj ¼ 1, we can obtain bu = 1.
Then, we have

Pn
j¼1;j–kbj ¼ 1, for "k – u, thus ak = 0, for "k – u,

i.e.,
Pn

i¼1;i–uai ¼ 0. So, it is obvious that au = 1.
That is to say, $u 6 n such that au = bu = 1 and ak = bk = 0 for

"k – u. h

Based on Lemma 3.1, we give the following theorem.
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Theorem 3.1. Let DT = (U,C [ D) be a decision table, B # C. If
E(U,C)(DjB) = E(U,C)(DjC), then POSðU;CÞB ðDÞ ¼ POSðU;CÞC ðDÞ and
U0B=B ¼ U0C=C, where U0B ¼ U � POSðU;CÞB ðDÞ;U0C ¼ U � POSðU;CÞC ðDÞ.
Proof. By the existing condition B # C, it is obvious that U/B � U/
C. Without any loss of generalization, we suppose that U/C = {X1, -
X2, . . . , Xm}, U/B = {X1,X2, . . . , Xu�1, Xu+1, . . . , Xv�1, Xv+1, . . . , Xm, Xu -
, Xu+1, . . . , Xv�1, Xv+1, . . . , Xm, Xu [ Xv} and U/D = {Y1, Y2, . . . , Yn}, then

EðU;CÞðDjCÞ � EðU;CÞðDjBÞ ¼
Xm

i¼1

Xn

j¼1

jXi \ Yjj
jUj

Yc
j � Xc

i

��� ���
jUj

�
Xm

i¼1;i–u;v

Xn

j¼1

jXi \ Yjj
jUj

Yc
j � Xc

i

��� ���
jUj

�
Xn

j¼1

jðXu [ XvÞ \ Yjj
jUj

Yc
j � ðXu [ XvÞc

��� ���
jUj

¼
Xn

j¼1

jXu \ Yjj þ jXv \ Yjj
jUj

� jXu � Yjj þ jXv � Yjj
jUj �

Xn

j¼1

jXu \ Yjj
jUj

� jXu � Yjj
jUj �

Xn

j¼1

jXv \ Yjj
jUj

jXv � Yjj
jUj

¼
Xn

j¼1

jXu \ Yjj
jUj

jXv j � jXv \ Yjj
jUj

þ
Xn

j¼1

jXv \ Yjj
jUj

jXuj � jXu \ Yjj
jUj

¼
Xn

j¼1

jXujjXv jðluj þ lvj � 2luj � lvjÞ
jUj2

;

where lij ¼
jXi\Yj j
jXi j

;0 6 lij 6 1.
Furthermore, because E(U,C)(DjC) � E(U,C)(DjB) = 0, we have that

Xn

j¼1

ðluj þ lvj � 2luj � lvjÞ ¼ 0()
Xn

j¼1

luj þ
Xn

j¼1

lvj

¼ 2
Xn

j¼1

luj � lv j () 2

¼ 2
Xn

j¼1

luj � lv j ()
Xn

j¼1

luj � lvj ¼ 1:

According to Lemma 3.1, if
Pn

j¼1luj � lvj ¼ 1, then $w 6 n such that
luw = lvw = 1 and luj = lvj = 0 for j 6 n (j – w), that is to say, the
equivalent classes Xu and Xv belong to the same decision class,

i.e., Xu, Xv # Yw. Thus, Xu [ Xv # POSðU;CÞB ðDÞ and Xu;Xv # POSðU;CÞC ðDÞ.
And because of U/C = {X1,X2, . . . , Xm} and U/B = {X1, X2, -

= {X1, X2, . . . , Xu�1, Xu+1, . . . , Xv�1, Xv+1, . . . , Xm, Xu [ Xv}, the objects

in POSðU;CÞB ðDÞ is the same as the ones in POSðU;CÞC ðDÞ, and the
equivalence classes in U0C are identical with the ones in U0B.

Therefore, if U/B � U/C and E(U,C)(DjB) = E(U,C)(DjC), then
POSðU;CÞB ðDÞ ¼ POSðU;CÞC ðDÞ and U0B=B ¼ U0C=C. h

Theorem 3.1 states, for two different decision tables, the equiv-
alence classes that are not in the positive regions of them are iden-
tical with each other if the partition derived from the condition
attribute set in one decision table is coarser than the one in the
other and the values of complement conditional entropy of these
two tables are equal.
Theorem 3.2 [29]. Let DT = (U,C [ D) be a decision table, B # C,
then

ð1Þ Sigouter
1 ða;B;C;D;UÞ ¼ jU

0
Bj
jUj Sigouter

1 ða;B;C;D;U0BÞ;

ð2Þ HðU;CÞðDjBÞ ¼ jU
0
Bj

2

jUj2
HðU

0
B ;CÞðDjBÞ;

ð3Þ EðU;CÞðDjBÞ ¼ jU
0
Bj

2

jUj2
EðU

0
B ;CÞðDjBÞ;

ð4Þ CEðU;CÞðDjBÞ ¼ jU
0
Bj

2

jUj2
CEðU

0
B ;CÞðDjBÞ;

where U0B ¼ U � POSðU;CÞB ðDÞ.

By means of Theorem 3.2, the inherent relationships between
the outer significance measures based on positive region, Shan-
non’s conditional entropy, complement conditional entropy and
combination conditional entropy in (U,C [ D) and in ðU0B;C [ DÞ
were revealed.

Theorem 3.3. Let DT = (U,C [ D) be a decision table, B # B0 # C. If
Sigouter

3 ða;B;C;D;UÞ ¼ 0 for 8a 2 C � B0, then Sigouter
3 ða;B0;C;D;

UÞ ¼ 0, where D=1, 2, 3, 4.
Proof. By the existing condition Sigouter
3 ða;B;C;D;UÞ ¼ 0, i.e. E(U,C)

(DjB [ {a}) = E(U,C)(DjB) and Theorem 3.1, we have that
POSðU;CÞB ðDÞ ¼ POSðU;CÞB[fagðDÞ;U

0
B ¼ U0B[fag and U0B=B ¼ U0B[fag=ðB [ fagÞ.

For convenience, we suppose

U0B=B0 ¼ fX1;X2; . . . ;Xpg;U0B[fag=ðB
0 [ fagÞ ¼ fX 01;X

0
2; . . . ;X 0pg

ðXi ¼ X 0i for 8i 6 pÞ;

POSðU;CÞB ðDÞ=B0 ¼ fXpþ1;Xpþ2; . . . ;Xmg;

POSðU;CÞB[fagðDÞ=ðB
0 [ fagÞ ¼ fX 0pþ1;X

0
pþ2; . . . ;X0lgðl P mÞ:

By means of different values of D, four cases will be considered
in the following proof.

(1) D = 1
Because of B0 � B, it is obvious that U0B=B0 ¼ U0B[fag=ðB

0 [ fagÞ,
and then POSðU;CÞB0 ðDÞ ¼ POSðU;CÞB0[fagðDÞ. Thus, we can obtain that
POSðU;CÞB0 ðDÞ ¼ [ XijXi # Yj;Xi 2 U0B=B0;Yj 2 U=D
� �
[ POSðU;CÞB ðDÞ

¼ [ X0ijX
0
i # Yj;X

0
i 2 U0B[fag=B0;Yj 2 U=D

n o
[ POSðU;CÞB[fagðDÞ

¼ POSðU;CÞB0[fagðDÞ:
Furthermore, we can obtain that

� �

Sigouter

1 ða;B0;C;D;UÞ ¼ 1
jUj � jPOSðU;CÞB0[fagðDÞj � jPOSðU;CÞB0 ðDÞj

¼ 0:
(2) D = 2
By the condition B0 � B, it is easy to obtain
U0B=B0 ¼ U0B[fag=ðB

0 [ fagÞ; POSðU;CÞB ðDÞ# POSðU;CÞB0 ðDÞ and
POSðU;CÞB[fagðDÞ# POSðU;CÞB0[fagðDÞ. Therefore, we can obtain that
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¼ 0:
(3) D = 3
From the existing condition B0 � B, we have that
U0B=B0 ¼ U0B[fag=ðB

0 [ fagÞ; POSðU;CÞB ðDÞ# POSðU;CÞB0 ðDÞ and
POSðU;CÞB[fagðDÞ# POSðU;CÞB0[fagðDÞ. Therefore, we can obtain that
Sigouter
3 ða;B0;C;D;UÞ ¼ HðU
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0
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¼ 0:
(4) D = 4
By means of B0 � B, it is obvious that
U0B=B0; POSðU;CÞB ðDÞ# POSðU;CÞB0 ðDÞ and POSðU;CÞB[fagðDÞ# POSðU;CÞB0[fagðDÞ.
Therefore, we have that
Sigouter
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¼0:
In any case, for each of D, if Sigouter
3 ða; B;C;D;UÞ ¼ 0 for "a 2 C � B0,

then Sigouter
D ða; B0;C;D;UÞ ¼ 0. h
Theorem 3.3 states that the significance measures based on po-
sitive region, Shannon’s conditional entropy, complement condi-
tional entropy and combination conditional entropy of a with
respect to the attribute set B0 (B0 is a superset of B) are zero if the
significance measure based on complement conditional entropy
of a with respect to B is zero.

Corollary 3.1. Let DT = (U,C [ D) be a decision table, B # B0 # C. If

B�3 ¼ a Sigouter
3 ða;B;C;D;UÞ ¼ 0; a 2 C � B0

���n o
,

B��D ¼ a Sigouter
D ða;B0;C;D;UÞ ¼ 0; a 2 C � B0

���n o
, then

B�3 # B��D ;

where D = 1, 2, 3, 4.

It is easy to prove this corollary by means of Theorem 3.3.

Theorem 3.4. Let DT = (U,C [ D) be a decision table, B # B0 # C. If
b; c 2 C � B0 � B��D and Sigouter

D ðb;B0;C;D;UÞ > Sigouter
D ðc;B0;C;D;UÞ,

then

Sigouter
D ðb;B0;C 0B;D;U

0
BÞ > Sigouter

D ðc;B0;C 0B;D;U
0
BÞ;

where C0B ¼ C � B�3; B�3 ¼ a Sigouter
3 ða; B; C; D; UÞ ¼ 0; a 2 C � B0

��n o
;

U0B ¼ U � POSðU;CÞB ðDÞ; B��D ¼ a Sigouter
D ða; B0; C;D;UÞ ¼ 0; a 2 C � B0

��n o
;

D ¼ 1; 2;3;4.
Proof. In terms of the different values of D, we will give the proof
from the following four cases.

(1) D = 1
By the existing condition Sigouter

1 ðb;B0;C;D;UÞ >
Sigouter

1 ðc;B0;C;D;UÞ and Theorem 3.2, we have that
Sigouter
1 ðb;B0;C;D;U0BÞ > Sigouter

1 ðc;B0;C;D;U0BÞ:
From the existing condition b; c 2 C � B0 � B��1 and Corollary 3.1, it is

obvious that b; c R B�3, where B�3 ¼ a Sigouter
3 ða;B;C;D;UÞ ¼

��n
0; a 2 C � B0:g;B��1 ¼ a Sigouter

1 ða;B0;C;D;UÞ ¼ 0; a 2 C � B0
��n o

. There-

fore, we have that B0 \ B�3 ¼ ; and
0 0� � 0 0� �� �
Sigouter
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0
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¼ Sigouter
1 ðb;B0;C;D;U0BÞ:
In similarity,
Sigouter
1 ðc;B0;C 0B;D;U

0
BÞ ¼ Sigouter

1 ðc;B0;C;D;U0BÞ:
Therefore, one has

outer 0 0 0 outer 0 0 0
Sig1 ðb;B ;CB;D;UBÞ > Sig1 ðc;B ;CB;D;UBÞ:
(2) D = 2
By the existing condition Sigouter

2 ðb;B0;C;D;UÞ >
Sigouter

2 ðc;B0;C;D;UÞ and Theorem 3.2, we have that
Sigouter
2 ðb;B0;C;D;U0BÞ > Sigouter

2 ðc;B0;C;D;U0BÞ:
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From the existing condition b; c 2 C � B0 � B��2 and Corollary 3.1, it is

easy to obtain that b; c R B�3, where B�3 ¼ a Sigouter
3 ða; B;C;D;UÞ ¼

��n
0; a 2 C � B0:g;B��2 ¼ a Sigouter

2

��n
ða;B0;C;D;UÞ ¼ 0; a 2 C � B0:g. Thus,

one has that B0 \ B�3 ¼ ; and

outer 0 0 0 ðU0 ;C0 Þ 0 ðU0 ;C0 Þ 0
Sig2 ðb;B ;CB;D;UBÞ ¼H B B ðDjB Þ�H B B ðDjB [fbgÞ
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0
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0
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outer 0 0 0 outer 0 0
Sig2 ðc;B ;CB;D;UBÞ ¼ Sig2 ðc; B ; C;D;UBÞ:
Therefore, one has

outer 0 0 0 outer 0 0 0
Sig2 ðb;B ;CB;D;UBÞ > Sig2 ðc;B ;CB;D;UBÞ:
(3) D = 3
By the existing condition Sigouter

3 ðb;B0;C;D;UÞ >
Sigouter

3 ðc; B0;C;D;UÞ and Theorem 3.2, we have that
Sigouter
3 ðb;B0;C;D;U0BÞ > Sigouter

3 ðc; B0;C;D;U0BÞ:
Furthermore, by means of b; c 2 C � B0 � B��3 and Corollary 3.1, it is
easy to obtain that b; c R B�3, where

B�3 ¼ a Sigouter
3 ða;B;C;D;UÞ ¼ 0; a 2 C � B0

��n o
; B��3 ¼ a Sigouter

1 ða; B0;
��n

C;D;UÞ ¼ 0; a 2 C � B0:g. Therefore, we have that B0 \ B�3 ¼ ; and

outer 0 0 0
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Sig3 ðc;B ;CB;D;UBÞ ¼ Sig3 ðc; B ; C;D;UBÞ:
Therefore, one has

outer 0 0 0 outer 0 0 0
Sig3 ðb;B ;CB;D;UBÞ > Sig3 ðc;B ;CB;D;UBÞ:
(4) D = 4
By the existing condition
Sigouter

4 ðb;B0;C;D;UÞ > Sigouter
4 ðc;B0;C;D;UÞ and Theorem 3.2,

we have that
Sigouter
4 ðb;B0;C;D;U0BÞ > Sigouter

4 ðc; B0;C;D;U0BÞ:
According to b; c 2 C � B0 � B��4 and Corollary 3.1, it is easy to obtain

that b; c R B�3, where B�3 ¼ a Sigouter
3 ða;B;C;D;UÞ ¼

��n
0; a 2 C � B0:g;

B��1 ¼ a Sigouter
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��n o
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outer 0 0 0 outer 0 0 0
Sig4 ðb;B ;CB;D;UBÞ > Sig4 ðc;B ;CB;D;UBÞ:
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0
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Sigouter
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From Theorem 3.4, we can see that the rank of attribute signif-
icance measures can be preserved while the attributes that are
insignificant for complement conditional entropy are removed
and the useless objects for computing reducts are simultaneously
deleted. It should be pointed out that Theorem 3.4 provides the
key theoretical foundation of the accelerating attribute reduction
algorithms in the next section.

4. Accelerator for attribute reduction and experimental analysis

In this section, we first review the accelerator for attribute
reduction proposed in [29]. Furthermore, by means of the rank
preservation of significance measures in Section 3, we introduce
a novel accelerator from the perspective of objects and attributes.
In order to better show the efficiency and effectiveness of the pro-
posed accelerator, a comparison experiment with the accelerator
in [29] will be given.

4.1. Attribute reduction accelerator

In paper [29], an accelerator for attribute reduction (an acceler-
ating reduction algorithm) was proposed through gradually
removing useless objects for computing reducts within each itera-
tion, which is described as follows.

Algorithm 2. Accelerator for attribute reduction from the per-
spective of objects (ACC1)

Input: Decision table DT = (U,C [ D);
Output: One reduct red.
Step 1: red Ø;//red is the pool to conserve the selected

attributes
Step 2: Compute Siginner(ak,C,C,D,U), k 6 jCj;
Step 3: Put ak into red, where Siginner(ak,C,C,D,U) > 0;// These

attributes form the core of the given decision table
Step 4: i 1 and U1 U;

Step 5: While EFðUi ;CÞðred;DÞ – EFðUi ;CÞðC;DÞ,
Do {Compute the positive region POSðUi ;CÞ

red ðDÞ,
Uiþ1 ¼ Ui � POSðUi ;CÞ

red ðDÞ,
red red [ {a0}, where
Sigouter(a0,red,C,D,Ui+1) = max{Sigouter(ak,red,C,D,Ui+1),
ak 2 C � red},
i i + 1;

Step 6: return red and end.

where EFðUi ;CÞðB;DÞ ¼ EFðUi ;CÞðC;DÞ is the stopping criterion. For
example, while the positive region is employed as the evaluation
function, we have that EFðUi ;CÞðB;DÞ ¼ POSðUi ;CÞ

B ðDÞ and
EFðUi ;CÞðC;DÞ ¼ POSðUi ;CÞ

C ðDÞ.

Comparison with Algorithm 1, the same attribute reducts can
be obtained by using Algorithm 2 (ACC1) while the computational



Table 1
Description of 10 UCI data sets.

Data sets Number of
objects

Number of
attributes

Number of
classes

1 KDDcup10per 494,021 42 13
2 Gisette 13,500 5000 5
3 Ticdate2000 5822 85 2
4 Sat.tst 4435 35 6
5 Final-general 10,104 71 5
6 Arcene train 100 10,000 6
7 Mushroom 5644 22 2
8 Optdigits 3820 64 3
9 Waveform ± noise 5000 24 2

10 Connect 67,557 42 3
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time is significantly reduced. However, in Algorithm 2 (ACC1),
attribute reduction is accelerated only from the perspective of ob-
jects, which limits its performance. In order to further improve the
efficiency of attribute reduction algorithm, a novel accelerator will
be presented in this paper, which is based on the principle that the
rank of attribute significant measures are preserved while the
insignificant attributes to the process of attribute reduction are re-
moved and the useless objects for computing reducts are simulta-
neously deleted within each iteration. In the following, the
description of this accelerator is shown.

Algorithm 3. Accelerator for attribute reduction from the per-
spective of objects and attributes (ACC2)
Table 2
The running time and reducts of Algorithms ACC1-PR and ACC2-PR.

ACC1-PR ACC2-PR

Data sets Original
attributes

Reducts Time (s) Reducts Time (s)

KDDcup10per 42 24 736.743 24 647.447
Gisette 5000 13 2268.281 13 2102.720
Ticdate2000 85 24 1.429 24 1.218
Sat.tst 35 26 0.197 26 0.190
Final-general 71 21 9.961 21 9.516
Arcene train 10,000 4 109.332 4 98.323
Mushroom 22 3 0.360 3 0.324
Optdigits 64 6 1.051 6 1.039
Waveform ± noise 24 14 3.251 14 3.252
Connect 42 34 128.649 34 116.876

Input: Decision table DT = (U,C [ D);
Output: One reduct red.
Step 1: red Ø;//red is the pool to conserve the selected

attributes
Step 2: Compute Siginner(ak,C,C,D,U),k 6 jCj;
Step 3: Put ak into red, where Siginner(ak,C,C,D,U) > 0;// These

attributes form the core of the given decision table
Step 4: i 1,U1 U,C1 C and Cinsig ;;
Step 5: While EFðUi ;CiÞðred;DÞ – EFðUi ;CiÞðC;DÞ; Do {Compute

the positive region POSðUi ;CiÞ
red ðDÞ,

Uiþ1 ¼ Ui � POSðUi ;CiÞ
red ðDÞ,

red red [ {a0}, where Sigouter
D ða0; red;Ci;D;Uiþ1Þ

¼max Sigouter
D ðak; red;Ci;D;Uiþ1Þ; ak 2 Ci � red

n o
,

compute Cinsig, where

Cinsig ¼ a Sigouter
3 ða; red;Ci;D;Uiþ1Þ ¼ 0; a 2 Ci

���n o
,

Ci+1 = Ci � Cinsig,
i i + 1;

Step 6: return red and end.
where EFðUi ;CiÞðB;DÞ ¼ EFðUi ;CiÞðC;DÞ is stopping criterion. For exam-
ple, while the positive region is employed as the evaluation func-
tion, we have that EFðUi ;CiÞðB;DÞ ¼ POSðUi ;CiÞ

B ðDÞ and EFðUi ;CiÞðC;DÞ ¼
POSðUi ;CiÞ

C ðDÞ.
It is obvious that the time complexity of Algorithm 3 (ACC2) is

the same as Algorithm 2 (ACC1). However, because both the size of
universe and the cardinality of attribute set become smaller and
smaller in the process of attribute reduction, the proposed acceler-
ator can further reduce the computational time. Furthermore, we
summarize three factors of the new accelerator as follows.

(1) The computational time of significance measure of every
attribute is further decreased;

(2) The time consuming of computing the stopping criterion is
also significantly reduced;

(3) The same attribute reducts can be obtained using the pro-
posed algorithm as the original algorithm.

4.2. The analysis of algorithms’ efficiency

In this subsection, by means of the proposed accelerator, four
representative heuristic algorithms that employ positive region,
Shannon’s conditional entropy, complement conditional entropy
and combination conditional entropy as heuristic information are
accelerated. For convenience, these accelerated algorithms are de-
noted as ACC2-PR, ACC2-SCE, ACC2-PCE and ACC2-CCE. Further-
more, we will compare the performance of four accelerating
attribute reduction algorithms (ACC1-PR, ACC1-SCE, ACC1-PCE
and ACC1-CCE) in [29] with these accelerated algorithms in this
paper. In the experiment, 10 datasets from Table 1 are employed.
They are all numerical, and have been preprocessed by
discretization.

To display the new algorithms’ efficiency, we compare the com-
putational time and reducts of each original accelerating algo-
rithms with the corresponding new one on the datasets in
Table 1. These algorithms are run on a personal computer with
Windows XP and Intel Core2 Quad CPU Q9400 and 3 GB Memory.
The software being used is Microsoft Visual Studio 2005 and Visual
C#.

4.2.1. ACC1-PR and ACC2-PR
Table 2 shows that comparison of ACC1-PR with ACC2-PR using

the ten datasets in Table 1, in which the comparisons of running
time and reducts of these two algorithms. From Table 2, we can
see that the running time of ACC2-PR is less than ACC1-PR on nine
of 10 datasets, and the same attribute subset can be selected run-
ning these two algorithms ACC1-PR and ACC2-PR, which is deter-
mined by the rank preservation of significance measures in
Section 3. The results shows that ACC2-PR is significant.

Furthermore, we take the datasets Gisette and Wave-
form ± noise for examples to explain the reason why attribute
reduction algorithms are accelerated using the proposed accelera-
tor, as shown in Tables 3 and 4. The tables indicate the number of
objects and attributes within each loop of ACC2-PR. From Table 3,
we can see that the number of objects and the number of attributes
are 1079 and 4839 in the second loop respectively, and the number
of objects and attributes are 1024 and 4610 within the third loop
respectively. It is obvious that a lot of insignificant attributes are
deleted in these loops, while the size of universe is still large.
Therefore, compared with ACC1-PR, the computational time in
the two loops is significantly reduced, which results in the running
time computing the reducts of ACC2-PR is less than ACC1-PR as the
dataset Gisette. Nevertheless, ACC2-PR are not ever faster than
ACC1-PR as all of the datasets. Table 4 shows this case. From Ta-



Table 5
The time consuming and reducts of running Algorithms ACC1-SCE and ACC2-SCE.

Data sets Original
attributes

ACC1-SCE ACC2-SCE

Reducts Time (s) Reducts Time (s)

KDDcup10per 42 24 339.527 24 266.593
Gisette 5000 13 2018.804 13 1890.478
Ticdate2000 85 24 2.268 24 1.752
Sat.tst 35 26 0.197 26 0.190
Final-general 71 21 11.429 21 10.516
Arcene train 10,000 5 140.108 5 133.710
Mushroom 22 4 0.462 4 0.428
Optdigits 64 6 1.261 6 1.252
Waveform ± noise 24 14 3.451 14 3.453
Connect 42 34 187.343 34 185.434

Table 3
The changes of objects and attributes of Dataset Gisette in each iteration of Algorithm
ACC2-PR.

Loop
no.

Number of
objects

Number of
attributes

Number of insignificant
attributes

1 2323 4999 0
2 1079 4839 159
3 1024 4610 228
4 959 4599 10
5 880 4590 8
6 768 4578 11
7 633 4536 41
8 478 4500 35
9 309 4432 67

10 158 4357 74
11 71 4147 209
12 25 3903 243

Table 4
The changes of objects and attributes of Dataset waveform ± noise in each iteration of
Algorithm ACC2-PR.

Loop
no.

Number of
objects

Number of
attributes

Number of insignificant
attributes

1 4999 23 0
2 4994 22 0
3 4958 21 0
4 4835 20 0
5 4466 19 0
6 3591 18 0
7 2377 17 0
8 1167 16 0
9 482 15 0

10 165 14 0
11 110 13 0
12 55 12 0
13 40 11 0

Table 7
The changes of objects and attributes of Dataset waveform ± noise in each iteration of
Algorithm ACC2-SCE.

Loop
no.

Number of
objects

Number of
attributes

Number of insignificant
attributes

1 4999 23 0
2 4998 22 0
3 4984 21 0
4 4830 20 0
5 4413 19 0
6 3433 18 0
7 2050 17 0
8 1167 16 0
9 598 15 0

10 358 14 0
11 259 13 0
12 233 12 0

Table 6
The changes of objects and attributes of Dataset Gisette in each iteration of Algorithm
ACC2-SCE.

Loop
no.

Number of
objects

Number of
attributes

Number of insignificant
attributes

1 2323 4999 0
2 1079 4839 159
3 1060 4610 228
4 1016 4607 2
5 833 4602 4
6 556 4576 25
7 300 4517 58
8 112 4383 133
9 36 4040 342

10 4 3531 508

Table 8
The time consuming and reducts of Algorithms ACC1-PCE and ACC2-PCE.
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ble 4, we can see that the number of insignificant attributes is zero
within each loop of ACC2-PR. That is to say, for the dataset Wave-
form ± noise, ACC2-PR is not superior to ACC1-PR.
Data sets Original
attributes

ACC1-PCE ACC2-PCE

Reducts Time (s) Reducts Time (s)

KDDcup10per 42 24 383.571 24 313.696
Gisette 5000 13 2018.804 13 1890.478
Ticdate2000 85 24 2.074 24 1.591
Sat. tst 35 26 0.198 26 0.190
Final-general 71 20 9.919 20 9.731
Arcene train 10,000 4 144.378 4 135.352
Mushroom 22 4 0.446 4 0.407
Optdigits 64 6 1.195 6 1.162
Waveform ± noise 24 13 3.427 13 3.429
Connect 42 34 202.452 34 191.318
4.2.2. ACC1-SCE and ACC2-SCE
Table 5 shows the running time and reducts of ACC1-SCE and

ACC2-SCE on the 10 datasets in Table 1. From Table 5, we can
see that ACC2-SCE is faster than ACC1-SCE on nine of 10 datasets,
and the attribute subset obtained by ACC2-SCE is the same as
ACC1-SCE, which is determined by the rank preservation of signif-
icance measures in Section 3. The results shows that ACC2-SCE is
efficient.

Furthermore, we take the datasets Gisette and Wave-
form ± noise for examples to explain the reason why attribute
reduction algorithms are accelerated using the proposed accelera-
tor, as shown in Tables 6 and 7. From Table 6, we can see that the
number of objects and the number of attributes are 1079 and 4839
within the second iteration of ACC2-SCE, respectively, and the
number of objects and attributes are 1060 and 4610 within its
third iteration. It is obvious that compared with ACC1-SCE, the run-
ning time of ACC2-SCE is evidently saved within these two loops.
That is because that the number of objects is still very large, while
a lot of insignificant attributes are deleted from the dataset Gisette
in the process of reduction. Nevertheless, ACC2-SCE is not more
efficient than ACC1-SCE as all of the datasets. Table 7 shows this
case. From Table 7, we can see that the number of insignificant
attributes is zero within each loop. That is to say, as dataset Wave-
form ± noise, ACC2-SCE is not better than ACC1-SCE.

4.2.3. ACC1-PCE and ACC2-PCE
Table 8 shows the running time and reducts of ACC1-PCE and

ACC2-PCE on the 10 datasets in Table 1. From Table 8, we can



Table 12
The changes of objects and attributes of Dataset Gisette in each iteration of Algorithm
ACC2-CCE.

Loop
no.

Number of
objects

Number of
attributes

Number of insignificant
attributes

1 6000 4999 0
2 5999 4953 45
3 5980 4952 0
4 5823 4950 1
5 2186 4947 2
6 982 4815 131
7 803 4589 225
8 560 4542 46
9 304 4462 79

10 123 4320 141
11 40 4067 252
12 6 3669 397

Table 9
The changes of objects and attributes of Dataset Gisette in each iteration of Algorithm
ACC2-PCE.

Loop
no.

Number of
objects

Number of
attributes

Number of insignificant
attributes

1 6000 4999 0
2 2283 4953 45
3 1060 4834 118
4 1013 4607 226
5 826 4601 5
6 592 4540 60
7 307 4485 54
8 129 4318 166
9 37 4098 219

10 5 3576 521

Table 10
The changes of objects and attributes of Dataset waveform ± noise within each
iteration of Algorithm ACC2-PCE.

Loop
no.

Number of
objects

Number of
attributes

Number of insignificant
attributes

1 4999 23 0
2 4998 22 0
3 4974 21 0
4 4786 20 0
5 4257 19 0
6 3366 18 0
7 2104 17 0
8 1029 16 0
9 412 15 0

10 141 14 0
11 49 13 0
12 10 12 0

Table 13
The changes of objects and attributes of Dataset waveform ± noise in each iteration of
Algorithm ACC2-CCE.

Loop
no.

Number of
objects

Number of
attributes

Number of insignificant
attributes

1 4999 23 0
2 4998 22 0
3 4974 21 0
4 4786 20 0
5 4257 19 0
6 3366 18 0
7 2132 17 0
8 1029 16 0
9 423 15 0

10 141 14 0
11 50 13 0
12 10 12 0
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see that ACC2-PCE is faster than ACC1-PCE on nine of 10 datasets,
and the reducts obtained by ACC2-PCE is the same as ACC1-PCE,
which is determined by the rank preservation of significance mea-
sures in Section 3. The results shows that ACC2-PCE is significantly
efficient.

Furthermore, we take the datasets Gisette and Wave-
form ± noise for examples to explain the reason why attribute
reduction algorithms are accelerated using the proposed accelera-
tor, as shown in Tables 9 and 10. From Table 9, we can find that the
number of objects and attributes are 2283 and 4953 within the
second iteration, and number of objects and attributes are 1060
and 4834 within the third iteration respectively. Because the num-
ber of objects is still very large and a lot of insignificant attributes
are deleted from these datasets, the running time of ACC2-PCE in
these two iterations is much less than ACC1-PCE. However,
ACC2-SCE is not ever efficient for all datasets. Table 10 shows this
case. From Table 10, we can see that the number of insignificant
Table 11
The time consuming and reducts of running Algorithms ACC1-CCE and ACC2-CCE.

Data sets Original
attributes

ACC1-CCE ACC2-CCE

Reducts Time (s) Reducts Time (s)

KDDcup10per 42 24 342.511 24 282.013
Gisette 5000 13 4095.627 13 3721.957
Ticdate2000 85 24 2.295 24 1.869
Sat.tst 35 26 0.197 26 0.190
Final-general 71 21 10.830 21 9.735
Arcene train 10,000 5 147.122 5 140.522
Mushroom 22 4 0.473 4 0.432
Optdigits 64 6 1.202 6 1.17x2
Waveform ± noise 24 13 3.455 13 3.458
Connect 42 34 206.137 34 199.657
attributes is zero within each iteration. That is to say, as dataset
Waveform ± noise, ACC2-SCE is not better than ACC1-SCE.

4.2.4. ACC1-CCE and ACC2-CCE
Table 11 shows the running time and reducts of ACC1-CCE and

ACC2-CCE on the 10 datasets in Table 1. From Table 11, we can see
that ACC2-CCE is more timesaving than ACC1-CCE on nine of ten
datasets, and the reducts obtained by ACC2-CCE is the same as
ACC1-CCE, which is determined by the rank preservation of signif-
icance measures in Section 3. The results shows that ACC2-CCE is
significantly efficient.

Furthermore, we take the datasets Gisette and Wave-
form ± noise for examples to explain the reason why attribute
reduction algorithms ACC2-CCE are accelerated using the proposed
accelerator, as shown in Tables 12 and 13. From Table 12, we can
see that, as dataset Gisette, the number of objects and attributes
are 5999 and 4953 within the second iteration respectively, and
the size of universe is 982 and the dimension is 4815 within the
sixth iteration. Therefore, the running time of the two iterations
are significantly saved using ACC2-CCE. That is because that the
size of universe is still very big, while numerous insignificant attri-
butes are deleted from the dataset Gisette. However, ACC2-SCE is
not ever efficient for all of the datasets. From Table 13, we can
see that the number of insignificant attributes is zero within each
iteration in the process of reduction on the dataset Wave-
form ± noise. Therefore, we does not save time of computing reduct
using ACC2-CCE for the dataset Waveform ± noise. That is to say, as
dataset Waveform ± noise, ACC2-CCE is not significantly superior
to ACC1-CCE.
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In conclusion, based on the experimental analysis, it should be
stressed that the new accelerating attribute reduction algorithms
(ACC2-PR, ACC2-SCE, ACC2-PCE and ACC2-CCE) are all more effi-
cient than the original accelerating algorithms in most of datasets,
except for the datasets in which there are few insignificant
attributes.

5. Conclusions

A new accelerator for attribute reduction has been proposed in
this paper. We first find that there exist some insignificant attri-
butes in the process of computing reducts, and proof that the sig-
nificance of each attribute remain the same after deleting these
insignificant attributes. We present a general accelerator based
on perspective of objects and attributes. Comparison with the
existing accelerator, the new one can simultaneously decrease
the size of universe and the number of attributes within each iter-
ation of the process of attribute reduction, which is the key point of
further accelerating attribute reduction. Finally, we introduce four
representative heuristic algorithms embedded the new accelerator
based on the positive region, Shannon’s entropy and complement
entropy. Experimental results show that the heuristic algorithms
embedded the proposed accelerator can significantly reduce the
computational time of attribute reduction.

Some future works are planed along the following directions.
First, it would be interesting to investigate how our method can
be extended to obtain attribute reducts from data with missing va-
lue and hybrid data. Second, since our current method requires
continuous values of attribute be discretized, which motivate us
to investigate how different discretization methods affect the per-
formance of the proposed accelerator. Another direction is to ex-
tend our accelerator to the algorithms that deal with regression
problems in which the class label is continuous values. Moreover,
we will make effort to experiment our accelerated algorithms on
genomic microarray data for effectively obtaining informative
gene.
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