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Clustering is one of the most important data mining techniques that partitions data according to some
similarity criterion. The problems of clustering categorical data have attracted much attention from
the data mining research community recently. As the extension of the k-Means algorithm, the k-Modes
algorithm has been widely applied to categorical data clustering by replacing means with modes. In this
paper, the limitations of the simple matching dissimilarity measure and Ng’s dissimilarity measure are
analyzed using some illustrative examples. Based on the idea of biological and genetic taxonomy and
rough membership function, a new dissimilarity measure for the k-Modes algorithm is defined. A distinct
characteristic of the new dissimilarity measure is to take account of the distribution of attribute values on
the whole universe. A convergence study and time complexity of the k-Modes algorithm based on new
dissimilarity measure indicates that it can be effectively used for large data sets. The results of compar-
ative experiments on synthetic data sets and five real data sets from UCI show the effectiveness of the
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new dissimilarity measure, especially on data sets with biological and genetic taxonomy information.
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1. Introduction

The widespread use of computer and information technology
has made extensive data collection in business, manufacturing
and medical organizations a routine task. This explosive growth
in stored data has generated an urgent need for new techniques
that can transform the vast amounts of data into useful knowledge.
Data mining is, perhaps, most suitable for this need [1].

In data mining, clustering is a widely used technique that parti-
tions a data set consisting of n points embedded in an m-dimen-
sional space into k distinct clusters such that the data points
within the same cluster are more similar to each other than to data
points in other clusters. Essentially, clustering is performed accord-
ing to the similarity or dissimilarity among objects. The similarity
or dissimilarity between two objects is generally based on differ-
ence in corresponding attribute values. In a clustering algorithm,
the similarity or dissimilarity between objects is usually measured
by a distance function. The smaller the distance, the more similar
the two objects are considered to be. The most commonly used dis-
tance function is the Minkowski metric that includes the Euclidean
distance and the Manhattan distance as special cases. However,
Minkowski metric is only for numeric data, and it becomes difficult
to capture this notion for categorical attributes. Therefore, the
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computation of similarity or dissimilarity between categorical data
objects in unsupervised learning is very important.

Roughly speaking, the current approaches to similarity or dis-
similarity measures of categorical values can be classified into
the following four categories.

1.1. Simple matching approaches

Simple matching is a common approach in which comparison of
two identical categorical values yields a difference of zero while
comparison of two distinct categorical values yields a difference
of one. The idea of simple matching has been utilized in many
categorical clustering algorithms in [2-4] including the k-Modes
algorithm and its variants, such as the k-Modes algorithm [5],
fuzzy k-Modes algorithm [6], fuzzy k-Modes algorithm with fuzzy
centroid [7], and k-prototype algorithm [8]. However, simple
matching often results in clusters with weak intrasimilarity [9],
and disregards the similarity hidden between categorical values
[10]. A valuable dissimilarity measure is introduced for k-Modes
clustering algorithm by Ng et al. [9], that extends the standard
simple matching approach by taking account of the frequency of
mode components in the current cluster.

1.2. Co-occurrence approaches

Gibson et al. [11] pointed out that the similarity of two categor-
ical values refers to their co-occurrence with a common value or a
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set of values. Some algorithms based on the idea of co-occurrence
of categorical value are proposed. ROCK [12] uses the concept of a
link to measure the similarity between categorical patterns. A mea-
sure Link(p;,p;) is defined as the number of common neighbors be-
tween two patterns p; and p; for ROCK. The objective of the
algorithm is to group together patterns that have a relatively large
number of links. CACTUS [13] defines the similarity between pat-
terns by looking at the support of two attribute values, which is
the frequency of two values appearing in patterns together. The
higher the support is, the more similarity the two attribute values
are. Based on the co-occurrence probability of two categorical val-
ues, a distance metric is presented by Ahamad and Dey [14] for
mixed numeric and categorical data clustering. The significance
of an attribute towards the clustering process is also hidden in this
distance metric.

1.3. Probabilistic approaches

Conceptual clustering algorithms in [15,16] for handling data
with categorical values use conditional probability estimate to de-
fine relations between groups or clusters. The category utility (CU)
measure [17] defines a probability matching strategy to measure
the usefulness of a class in correctly predicting feature values,
and the idea is also adopted in the system COBWEB [18] and its
derivatives [19,20]. AUTOCLASS [21] assumes a classical finite mix-
ture distribution model on the data and uses Bayesian method to
derive the most probable class distribution for the data with some
prior information. Wong et al. proposed a discrete-valued data
clustering algorithm DECA [22], which has been used in bimolecu-
lar data clustering [23]. Chiu et al. [24] proposed a distance mea-
sure for dealing with mixed-type attributes in large database.
Their techniques are derived from a probabilistic model in which
the distance between two clusters is equivalent to the decrease
in the log-likelihood function as for merging. An entropy-based
categorical data clustering algorithm COOLCAT [25] finds a set of
initial clusters, and then incrementally adds patterns to the clus-
ters according to the criterion that minimizes the expected entropy
of the clusters.

1.4. Distance hierarchy approaches

Distance hierarchy [10,26-28] extends the concept of hierarchy
[29] by associating each link with a weight representing a distance
to facilitate the computation of distance between categorical
values. However, such an approach needs domain experts to
incorporate knowledge, e.g., the general-specific relationship, for
facilitating further mining of clustering results.

Other similarity or dissimilarity measures for categorical data
clustering algorithms include Gower’s similarity coefficient [30],
Goodall’s similarity measure [31,32], and Gowda’s dissimilarity
measure [33].

Rough set theory introduced by Pawlak [34] is a kind of sym-
bolic machine learning technology for categorical value informa-
tion systems with uncertainty information [35-37]. In recent
years, rough set theory has received a great deal of attention in
some of the clustering literature. Parmar et al. [38] proposed a
new algorithm min-min-roughness (MMR) for clustering categori-
cal data based on rough set theory, which has the ability to handle
the uncertainty in the clustering process. By defining outlying par-
tition similarity based on the concept of rough set, outliers on the
key attribute subset rather than on the full dimensional attribute
set of data set can be mined [39]. Using the notion of rough mem-
bership function from rough set theory, Jiang et al. [40] defined the
rough outlier factor for outlier detection. Chen and Wang [41] pre-
sented an improved clustering algorithm based on rough set and
Shannon’s Entropy theory. Herawan et al. [42] proposed a new

technique called maximum dependency attributes for selecting
clustering attribute based on rough set theory by taking into ac-
count the dependency of attributes of the database. Cao et al.
[43] proposed a framework for clustering categorical time-evolving
data based on rough membership function and sliding window
technique.

In this paper, the limitations of simple matching dissimilarity
measure and Ng's dissimilarity measure are revealed using some
illustrative examples. Based on the idea of biological and genetic
taxonomy, we introduce a new rough membership-based dissimi-
larity measure between two objects by taking into account the
distribution of attribute values in the universe. Furthermore, the
dissimilarity measure between a mode of a cluster and an object
is given by improving Ng's dissimilarity measure. The proposed
dissimilarity measure is utilized in the k-Modes algorithm, the
algorithm convergence is proved and the corresponding time com-
plexity is analyzed as well. The scalability and clustering effective-
ness of the k-Modes algorithm with the proposed dissimilarity
measure are demonstrated on synthetic data sets and five standard
data sets downloaded from the UCI Machine Learning Repository
[44], respectively.

The organization of the rest of this paper is as follows. In Section
2, two kinds of new dissimilarity measures, between two objects
and between a mode and an object, for the k-Modes algorithm
are defined. Convergence and time complexity of the k-Modes
algorithm with the proposed measure are analyzed in Section 3.
In Section 4, experimental results on the synthetic data sets and
five real data sets demonstrate the scalability and effectiveness
of the k-Modes algorithm based on the new dissimilarity measure
by comparison with other dissimilarity measures. Section 5
concludes the paper.

2. New dissimilarity measures for the k-Modes algorithm

In this section, we first review some basic concepts of rough set
theory, such as categorical information system, indiscernibility
relation and rough membership function. Then, a new dissimilarity
measure between two objects is defined based on rough member-
ship function. Furthermore, a new dissimilarity measure between
the mode of a cluster and an object is introduced for the k-Modes
algorithm.

The data is assumed to be in a table, where each row (tuple)
represents facts about an object. A data table is also called an infor-
mation system. Objects in the real world are sometimes described
by categorical information system.

Definition 1. Formally, a categorical information system is a
quadruple IS = (U,A,V,f), where:

U, the nonempty set of objects, called the universe;

A, the nonempty set of attributes;

V, the union of all attribute domains, i.e., V = | JscaVq, Where V, is
the domain of attribute a and it is finite and unordered;

f: Ux A -V, a mapping called an information function such
that for any x € U and a € A, fx,a) € V,.

Definition 2. Let IS = (U,A,V,f) be a categorical information system
and P C A, a binary relation IND(P), called indiscernibility relation,
is defined as:

IND(P) = {(x,y) eUx U|VaeP, f(x,a)=f(y,a)}.
Informally two objects are indiscernible in the context of a set

of attributes if they have the same values for those attributes.
IND(P) is an equivalence relation on U and IND(P) = (", < pIND({a}).
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The relation IND(P) induces a partition of U, denoted by
UJ/IND(P) = {[x]p|x € U}, where [x]p denotes the equivalence class
determined by x with respect to P, i.e., [x]p = {y € U|(x,y) € IND(P)}.

Definition 3 [34]. Let IS=(U,A,V,f) be a categorical information
system, P C Aand X C U. The rough membership function
uk - U —[0,1] is defined as:
Xl NX]|
ph(x) = L
* |[Xlp|
The rough membership function quantifies the degree of rela-

tive overlap between the set X and the equivalence class [X]p to
which x belongs.

In classical set theory, either an element belongs to a set or it
does not. The corresponding membership function is the character-
istic function of the set, i.e., the function takes values 1 and 0,
respectively. However, the rough membership function takes val-
ues between 0 and 1.

2.1. A new dissimilarity measure between two objects

Now, we take account of the similarity between two objects
with respect to some attribute by virtue of the rough membership
function.

Definition 4. Let IS = (U,A,V,f) be a categorical information system,
and P C A.For any a € Pand x, y € U, a similarity measure between
objects x and y with respect to a is defined as:

X N}

e

Sima(x.y) = iy, (X) =

In Definition 4, the domain of the rough membership function is
an object y of U, not the universe U. The degree of relative overlap
between the object x and the object y means the similarity be-
tween the object x and the object y.

The similarity Simy(x,y) can be also described as:

.  fxa) =f.a)
Simg(x,y) = Yo f(x,0) =f(z.a)’

where

1, if f(x,a) # f(y.a),
0, otherwise.

foxa) =f(y.a) = {

For similarity measure Sim,(x,y), the following is valid.

Property 1. Let IS= (U,A,V,f) be a categorical information system,
and P C A. For any a € P and x, y € U, we have:

(1) Symmetry Simg(x,y) = Simg(y, X).
(2) Minimum Simy(x,y) = 0 iff f(x,a) # f(y,a).
(3) Maximum  Simg(x,y) =1 iff x=y and |[x]iq| = 1.

By (2) in Property 1, we know that Sim,(x,y) = 0 if and only if the
objects x and y belong to different equivalence classes of a, in other
words, x and y can be distinguished by a. Given an attribute g, (3) in
Property 1 means that an object is only similar to itself and the
similarity achieves to the maximum value 1, only when it is differ-
ent from every other object with respect to attribute a.

Since Simq(x,y) = m if y € [x](q), any two objects in the same

equivalence class have the same similarity, also the similarity
value monotonically decreases with the size of the equivalence
class. Formally, we have the following proposition.

Proposition 1. Let IS =(U,A,V,f) be a categorical information system,
and P C A Forany x,y, u,ve Uand a € P, if f(x,a) =f(y,a), f(u,a) =
flv,a) and |[x]iq)| < |[u](ay], then Simg(X,y) = Simg(u,v).

Goodall’s similarity measure [31] defined for handling nominal
and numeric features, was first proposed for biological and genetic
taxonomy problems, where unusual characteristics shared by bio-
logical entities is often attributed to closely related genetic infor-
mation resulting in these entities being classified into the same
species. Accordingly, a pair of entities x and y is considered more
similar to each other than another pair of entities u and v, if and
only if the entities x and y exhibit a greater match in feature values
that are less common in the population. In other words, similarity
among objects is decided by the uncommonality of their feature
value matches.

In clustering problems, the above-mentioned principle can help
us define more cohesive, tight clusters where objects grouped into
the same cluster are likely to share special and characteristic fea-
ture values. By this token, the similarity in Definition 4 is in accord
with the principle in Genetic Taxonomy that “the similarity value
is a function of the uncommonality of the feature value within
the universe”.

Following is a definition of dissimilarity between two objects
over several attributes defined in terms of similarity between
objects.

Definition 5. Let IS = (U,A, V,f) be a categorical information system,
and P C A. For any x, y € U, the dissimilarity measure between x
and y with respect to P is defined as:

dl’(x7y) = Zdﬂ(x7y)7

aeP
where

da(x,y) =1 — Simy(x,y).
For the dissimilarity measure dp(x,y), it is easy to prove the fol-
lowing properties.

Property 2. Let IS= (U,A,V,f) be a categorical information system,
and P C A. For any x, y, z € U, we have:

(1) Symmetry dp(x,y) = dp(y, x).
(2) Nonnegativity dp(x,y) = 0.
(3) Triangle Inequality dp(x,y) + dp(y,z) = dp(X,z).

Property 2 shows that the dissimilarity measure dp(x,y) is a dis-
tance metric.

Since first published in 1997, the k-Modes algorithm[5] has be-
come an important technique for solving categorical data cluster-
ing problems in various domains. The k-Modes algorithm extends
the k-Means algorithm by use of a simple matching dissimilarity
measure for categorical objects, modes instead of means for clus-
ters, and a frequency-based method to update modes in the clus-
tering process to minimize the clustering cost function. These
extensions have removed the numeric-only limitation of the k-
Means algorithm and allows the k-Means clustering process to
be used to efficiently cluster large categorical data sets in real
world databases.

The simple matching dissimilarity measure has been used fre-
quently. It is defined following.

Definition 6 ([5]). Let IS=(U,A,V,f) be a categorical information
system, and P C A. For any x, y € U, the simple matching dissim-
ilarity measure between x and y with respect to P is defined as:

DP(Xﬁy) = ZDG(x7y)7

aeP
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where

Da.y) — { L fixa)#f(y.a)
0, otherwise.

It is easy to verify that the function Dp defines a metric space on
the set of categorical objects. Traditionally, the simple matching
approach is often used for binary attributes that are obtained from
categorical attributes. However, the distance between objects com-
puted with the simple matching dissimilarity measure often re-
sults in clusters with weak intrasimilarity and disregards the
similarity embedded in the categorical values.

Let us consider the following example that reveals the limita-
tion of the simple matching dissimilarity measure.

Example 1. In Table 1, five objects x;, X3, X3, X4, X5 are randomly
selected from the lenses data set [44], where P = {age of the patient,
spectacle prescription, astigmatic, tear production rate} is the attri-
bute set, and the distinguished attribute class denotes the outcome
of classification.

Let x3 and xs be the initial cluster centers. By using the simple
matching dissimilarity measure, we have Dp(x3,X3) = Dp(x2,x5) = 1.
This means that we cannot determine to which cluster x, should
be assigned.

However, by Definition 5

dp(X2,x3)=1-1/3+1-1/3+1+1-1/5=94/30,
and
dp(x3,%5)=1+1-1/3+1-1/2+1-1/5=89/30.
It follows that the object x, can be assigned to the second clus-
ter “class = 2" properly.

2.2. A new dissimilarity measure between a mode and an object

Taking account of the frequency of mode components in the
current cluster, Ng et al. [9] introduced a valuable dissimilarity
measure into the k-Modes clustering algorithm. Ng's dissimilarity
measure Disp(z;,x;) between a categorical object x; and the mode
of a cluster z; with respect to P is defined as:

Disp(z,X;) = Y _ Disa(21, X:),

aeP
where
1, if i,a),
Disq(z, %) = { ' ! f(Zha.) #J % 0)
1 -m,, otherwise.

|{inc(Xiva) :f(zlva)vxi € Cl}‘

m, =
‘ |ci]

)

and |c/| is the number of objects in the Ith cluster.

For the k-Modes algorithm with Ng’s dissimilarity measure [9],
the simple matching dissimilarity measure is still used in the first
iteration.

Now, we introduce a new dissimilarity measure into the k-
Modes algorithm by using Sim,(x,y) defined in Definition 4.

Table 1
Some objects of lenses data set.

Objects  Age of the Spectacle Astigmatic  Tear production Class
patient prescription rate

X1 1 1 2 2 1

X2 1 2 1 2 2

X3 1 2 2 2 1

X4 2 1 2 2 1

Xs 2 2 1 2 2

Definition 7. Let IS = (U,A,V,f) be a categorical information system,
and P C A. For any x; € U and cluster mode z, for 1 <[ < k, the new
dissimilarity measure between x; and z, with respect to P is defined
as:

NDisp(z;, %)) = Y _ NDisa(z, %),

acP
where

NDis,(z;,x;) = 1 — Simg(z;,X;) x mg.

As opposed to Ng's dissimilarity measure, the similarity
Simg(z;,x;) between x; and z; is included in the proposed measure
NDisy(z;,x;). Therefore, NDis,(z;,x;) and NDisp(z, x;) reflect the princi-
ple of biological taxonomy. It should be noted that the dissimilarity
measure dp(x,y) of two objects is a degenerate form of NDisp(z;,x;)
as the Ith cluster only includes one object.

Example 2. An artificial data set containing 9 objects with three
clusters is given in Table 2, where U = {x1,X2,X3,X4,X5,X6,X7,X3,X9}
and P=A={a;,a5}. z;, 25, z3 denote the cluster modes. Let us
determine object x; should be assigned to which cluster using Ng’s
dissimilarity measure.

Using Ng’s dissimilarity measure it follows that:
Disp(z1,x1)=1-2/3+1-1/3 =1,
Disp(z2,%1)=1-1/3+1-2/3=1.
and
Disp(z3,%1) =1+1-2/3 =4/3.

This means that x; has an undetermined assignment.

Replacing Ng's dissimilarity measure with the proposed dissim-
ilarity measure in Example 2, we have:

NDisp(z1,%1) =1-1/3x2/3+1-1/5x1/3 =77/45,
NDisp(z,%1) =1—-1/3x1/3+1-1/5x2/3 =79/45,
and

NDisp(z3,%1) =1+1—-1/5x2/3 =84/45.

Then the object x; can be determinately assigned into the cluster
Cluster 1.

3. Convergence and complexity analysis

In this section, we give some theorems which guarantee the
convergency of the k-Modes algorithm with the proposed dissimi-
larity measure. In addition, the time complexity of the algorithm is
analyzed.

Table 2
An artificial data set.

Objects

Q
o
Ny

X1
X2
X3

Cluster 1 (z;)
X4
X5
X6
Cluster 2 (z3)
X7
Xg
X9

Cluster 3 (z3)

AR R = W= = N ==
N NNAN NN AN DMWN
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Let IS=(UA,V,f) be a categorical information system, and
P C A. The k-Modes algorithm uses the k-Means paradigm to
cluster categorical data. The objective of clustering a set of n = |U|
objects into k clusters is to find W and Z that minimize:

k

=Y iwliDP(Zl7xi)7 (1)

=1 i=1

subject to:

w;€{0,1}, 1<I<k, 1<ig<n, (2)
Z(Dli:], 1<l<n, (3)
and

n
0<> wp<n, 1<I<k (4)

i1
where k(<n) is a known number of clusters, W =[wy] is a k-by-n
{0,1} matrix, Z =[z1,2,...,2x), and z is the Ith cluster mode with
the attribute set P.

The minimization of F in (1) with the constraints in (2)-(4)
forms a class of constrained nonlinear optimization problems
whose solutions are unknown. The usual method towards optimi-
zation of Fin (1) is to use partial optimization for Z and W. In this
method, we first fix Z and find necessary conditions on W to
minimize F. Then, we fix W and minimize F with respect to Z. This
process can be formulated as the following k-Modes algorithm:

Step 1. Choose k distinct objects z;, z,. ..,z from U as an initial
mode ZV=[z,25,...,2¢] € UK. Determine W' such that
FW,Z") is minimized. Set t = 1.

Step 2. Determine Z*") such that FW®,Z*V) is minimized. If
FWO, Z+ Dy = FwD, 7Y, then stop.

Step 3. Determine W*V such that WY, 21y is minimized. If
FWED, 76y = WD, (1) then stop; otherwise set

t=t+1 and go to step 2.

The convergence of the k-Modes algorithm with the simple
matching dissimilarity measure and with Ng's dissimilarity mea-
sure is proved in [6,9], respectively. By Fn(W,Z) we denote
ZL S, @wiNDisp(z;, x;). Now we consider the convergence of the
k-Modes algorithm with the proposed dissimilarity measure
NDisp(z;,x;).

It is easy to prove the following theorem.

Theorem 1. Let Z be fixed and consider the problem:
min Fy (W, z),
subject to (2)-(4). The minimizer W is given by

. 1, if NDisp(2), X;
conz{o’ ! isp (21, Xi)

otherwise.

< I\JDl.Sp(,%h,Xj)7 1< h < k,

Theorem 2. Let z;=[z;1,2;5,. .., 2 p] be the mode of the Ith (1 <1< k)
cluster and the domain V, of attribute a; be {a}”,a}z).,...,a;"")}
(1 <j < |P|). Denote arbitrary object x; by [X;1,Xi2....X; p]. Then

Fv(W.2) = %F,
2 fa(r wherea

szi

1<t<nfor 1<j<|P|.

I]CUhNDlSp(ZI i) is minimized if and only if

€ Vy, satisfies:

t
xij=a, wli:1}‘ > ku‘xt.j:a}), wzle}‘7

Proof. For a given W, we have:

k n |P|

Z sz,NDlSP 21, X)) Z Z Zw,iNDisaj (21, %)
=1 i=1 =1 i=1 j=1
IP| k |P|

Z @;iNDisq (2, X;) = Z Zl//z.j-,
j=1

=1 j=1 i=1 =1

where y;; = > wiNDis, (2, X;).

Note that all the inner sums ,; of Fy(W,Z) are nonnegative and
independent. Then minimizing Fy(W,Z) is equivalent to
minimizing each inner sum.

By the Definitions 4 and 7, when z;; = a;t), we have:

n
iy = Y _ 0iNDisq (z1,X;)

i=1

C
= > <1 Simq (21, %)) | l“|> Z o

x,raj(') Xij ;éa
1 C.
- ¥ w,,( i ||c“>+ Z o
x”—a I{Gj} :
1 e
:|Cl.',t‘ 1- X )y + |Cl|—‘C{‘.[|
sl 1= g Tar ) + (el =l
2
= || = = x o,
1 T gl < T 154

where ¢j; = {xi € clxij = al(.”}.

It should be noted that the numbers |c| and \[x,-]{aj}\ are constant
for arbitrary I and j. It means that ;; is minimized iff |cy| is
maximal for 1 <t < n; In other words, i; is minimized iff t=ri.e.,
zj = a ). The result follows. O

We remark that in each iteration of the k-Modes clustering
algorithm using the proposed dissimilarity measure the matrix W
and Z can be updated according to the Theorems 1 and 2, respec-
tively, when the initial mode Z is given.

Theorem 3. The k-Modes algorithm with the proposed dissimilarity
measure converges in a finite number of iterations.

Proof. We first note that there are only a finite number
( H‘P‘lnj) of possible cluster modes Z = (zy, z, . . .,2). We now

show that each possible mode appears at most once in the iteration
process of the k-Modes algorithm. If not, there exist t; # t, such
that Z") = 7z, According to Theorem 1, the k-Modes algorithm
with the proposed measure computes the minimizers W) and
W® for Z=27" and Z = 7", respectively. By Theorem 1, it is
clear that:

F(W®,200) = (W, 2%) = (W), 2).

However, the sequence F(W(9,ZD) generated by the k-Modes
algorithm with the new dissimilarity measure is strictly decreasing.
This is a contradiction. Hence, the result follows. O

Theorem 3 implies that the k-Modes algorithm with the
proposed dissimilarity measure can be used safely.

The pseudo code of the k-Modes algorithm with the proposed
dissimilarity measure is described in Table 3.

Referring to the pseudo code of Table 3, the time complexity of
k-Modes algorithm with the new dissimilarity measure is analyzed
as follows. We only consider the four major computational steps:
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Table 3
The k-Modes algorithm with the proposed dissimilarity measure.

1 Initialize the variable oldmodes as a k x |P|-ary empty array;

2 Randomly choose k distinct objects xq, Xa,...,x, from U

3 and assign [x1,X2,...,Xk] to the k x |P|-ary array variable newmodes;
4 forl=1tok

5 forj=1to |P|

6 calculate the similarity Simg, (x, X) according to Definition 2;

7 end;

8 end;

9 while oldmodes< >newmodes do
10 oldmodes = newmodes;
11 fori=1 to |U]

12 forl=1tok

13 calculate the dissimilarity between the ith object and

14 the Ith mode according to Definition 5, and classify the ith
15 object into the cluster whose mode is closest to it;

16 end;

17 end;

18 forl=1tok

19 find the mode z; of each cluster and assign to newmodes;

20 forj=1to |P|

21 calculate the similarity Simg,(2;,2;) according to Definition 2;
22 calculate my, of Definition 5;

23 end;

24 end;

25 if oldmodes==newmodes

26 break;

27 end;

28 end.

With respect to a given attribute, the time complexity for
computing the similarity of one object with itself according to
Definition 4 is O(|U|) (see Lines 5 and 19 in Table 3).

The computational complexity for assigning the ith object into
the Ith cluster is O(|U||P|k) (see Lines 10-15 in Table 3).

The computational complexity for updating all cluster centers is
O(|U||P|k) (see Line 17 in Table 3).

The computational complexity of my, is O(|U]) (see Line 20 in
Table 3).

Suppose that the iteration times is t, the whole computational
cost of the k-Modes algorithm with the proposed dissimilarity
measure is O(|U||Pk) + t(O(|Ulk + O(|U||P|k))) = O(t|U||P|k). This
shows that the computational cost is linearly scalable to the num-
ber of objects, the number of attributes and the number of clusters.

4. Experimental analysis

In this section, we demonstrate the scalability and efficiency of
the k-Modes algorithms based on three different dissimilarity mea-
sures. In Section 4.1, the experimental environment and evaluation
indexes are described. Section 4.2 presents the scalability on the
evaluation results of the k-Modes algorithms using three different
dissimilarity measures, and Section 4.3 presents the efficiency on
the evaluation results of the k-Modes algorithms using three differ-
ent dissimilarity measures.

4.1. Experimental environment and evaluation indexes

The experiments are conducted on a PC with an Intel Pentium D
processor (2.8 GHz) and 1 G byte memory running the Windows
XP SP3 operating system. The k-Modes algorithms with three dif-
ferent dissimilarity measures are coded in Matlab 7.0 program-
ming language.

To evaluate the efficiency of clustering algorithms, the evalua-

k
tion indexes accuracy defined as AC = Z@‘a‘, is employed in the
experiments, where k is the number of classes of the data, which

is known; g; is the number of objects that are correctly assigned
to the class C(1 <i<k).

4.2. Evaluation on scalability

To compare the scalability of the k-Modes algorithms with three
different dissimilarity measures, the synthetic data sets generated
by the generator described in [45] are used. In the synthetic data
sets, the number of objects varies from 10,000 to 100,000, and
the dimensionality is in the range of 10-50. In all synthetic data
sets, each attribute possesses five different values. To avoid the
influence of the randomness arising from initializing of cluster cen-
ters, each experiment is executed 10 times on the same data set.
Therefore, each value in Figs. 1 and 2 is the average of 10 times
runs.

Fig. 1 shows the scalability over data size of the k-Modes algo-
rithms with three different dissimilarity measures. This study sets
the dimensionality to 10, and the cluster number to 3, and also var-
ies the data size from 10,000 to 100,000. In Fig. 1(a), it can be seen
that the complexity of the k-Modes algorithms with three different
dissimilarity measures are linear with respect to the data size. The
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Fig. 1. Execution time comparison using the k-Modes algorithms with three
different dissimilarity measures: scalability with data size.
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Fig. 2. Execution time comparison using the k-Modes algorithms with three
different dissimilarity measures: scalability with data dimensionality.
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run-time of the k-Modes algorithm using proposed dissimilarity
measure is lower than that of the k-Modes algorithms using Ng's
dissimilarity measure under the same data size. This is because
the number of iterations of the k-Modes algorithm using the pro-
posed dissimilarity measure are less than that of the k-Modes algo-
rithm using Ng’s dissimilarity measure (See Fig. 1(b)). The run-time
of the k-Modes algorithm using the proposed dissimilarity mea-
sure is very close to that of the k-Modes algorithm using Huang’s
dissimilarity measure. Therefore, the k-Modes algorithm using
the proposed dissimilarity measure is also scalable to large data
sets.

Fig. 2 shows the scalability with data dimensions of the k-
Modes algorithms using three different dissimilarity measures. In
the experiment, we fix the data size at 30,000, and the cluster
number at 3, and vary the number of dimensions from 10 to 50.
From the run-time and iteration times, the k-Modes algorithm
with the proposed dissimilarity measure is nearly close that of
the k-Modes algorithm with Ng’s dissimilarity measure, and is
slightly inferior to that of the k-Modes algorithm with Huang's
dissimilarity measure.

4.3. Evaluation on clustering efficiency

In this subsection, to compare the effectiveness of the k-Modes
algorithms with three different dissimilarity measures given by
simple matching dissimilarity measure, Ng’s dissimilarity measure
and the proposed dissimilarity measure, five standard data sets are
downloaded from the UCI Machine Learning Repository [44]. The
data sets’ characteristics are summarized in Table 4.

In the experiment, the objects with missing attribute values are
removed in Lung-cancer data and Breast-cancer data, respectively.
And the 330 outlier records are also removed in Nursery data. We
have carried out 100 runs of the k-Modes algorithm with each
measure on the five standard data sets, respectively. In each run,
the same initial cluster modes were used for all the three different
measures. And the comparison results of the k-Modes algorithm
with each of the three measures on the five data sets are shown
in Table 5. Each value in the table is the average of 100 times
experiments.

According to Table 5, we can find that the clustering perfor-
mance of the k-Modes algorithm using the proposed dissimilarity
measure is superior to the others in the case of the five data sets,
and especially in case of Lung-cancer data, Breast-cancer data
and Mushroom data. In fact, in case of Lung-cancer data, Breast-
cancer data and Mushroom data, some biological and genetic

Table 4

Summary of real data sets’ characteristics.
Data set Objects Attributes Classes
Lung-cancer 32 56 3
Breast-cancer 683 9 2
Zoo 101 17 7
Mushroom 8140 22 2
Nursery 12690 8 3

Table 5

The AC from the three different dissimilarity measure on five data sets.
Data set Huang's Ng's Proposed

dissimilarity dissimilarity dissimilarity

Lung-cancer 0.5656 0.5678 0.5841
Breast-cancer 0.8471 0.8581 0.9146
Zoo 0.8382 0.8426 0.8650
Mushroom 0.7863 0.7937 0.8243
Nursery 0.6817 0.6997 0.7010

taxonomy information is hidden in the attributes, such as Bland
Chromatin in case of Breast-cancer data, Cap-surface and Cap-color
in case of Mushroom data. This just justifies use the proposed
dissimilarity measure. It seems that the proposed dissimilarity
measure is more suitable for the data with biological and genetic
taxonomy information.

5. Conclusions

The k-Modes algorithm is widely used for clustering categorical
data. Dissimilarity or similarity measures play a crucial role for
clustering effectiveness. In this paper, the limitations of the simple
matching dissimilarity measure and Ng's dissimilarity measure
have been analyzed by some illustrative examples. Based on the
idea of biological and genetic taxonomy and rough membership
function, a new dissimilarity measure for the k-Modes algorithm
has been defined. A distinct characteristic of the new dissimilarity
measure takes into account the distribution of attribute values
over the whole universe. As opposed to Ng’s dissimilarity measure,
it unifies the dissimilarity measures between two objects and be-
tween an object and a mode as well. The convergence theorem
and time complexity analysis that indicate that the k-Modes
algorithm using the new dissimilarity measure can be safely and
effectively used in case of large data sets. The results of experi-
ments using synthetic data sets and five real data sets from UCI
show the effectiveness of the new dissimilarity measure, especially
in case of the data sets with biological and genetic taxonomy infor-
mation. It is our wish that this study provides a new view and
thinking on clustering biosystematics data in applications.
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