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Traditional clustering algorithms consider all of the dimensions of an input data set equally. However,

in the high dimensional data, a common property is that data points are highly clustered in subspaces,

which means classes of objects are categorized in subspaces rather than the entire space. Subspace

clustering is an extension of traditional clustering that seeks to find clusters in different subspaces

categorical data and its corresponding time complexity is analyzed as well. In the proposed algorithm,

an additional step is added to the k-modes clustering process to automatically compute the weight of

all dimensions in each cluster by using complement entropy. Furthermore, the attribute weight can be

used to identify the subsets of important dimensions that categorize different clusters. The effective-

ness of the proposed algorithm is demonstrated with real data sets and synthetic data sets.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Clustering is a descriptive task that seeks to partition a set of
objects into several groups according to the predefined similarity
measure [1]. Clustering techniques have been studied extensively
in statistics, pattern recognition, machine learning, etc. Detailed
surveys on clustering methods can be found in [2,3].

Subspace clustering or projected clustering [4] is an extension
of feature selection [5–7] that attempts to group objects into
clusters on different subsets of dimensions or attributes of a data
set. It achieves two purpose, identification of the subsets of
dimensions where clusters can be found and discovery of the
clusters from different subsets of dimensions. According to the
ways with which the subsets of dimensions are identified, we can
divide subspace clustering methods into two categories: hard
subspace clustering and soft subspace clustering [8]. Hard sub-
space clustering determines the exact subsets of dimensions for
different clusters. Soft subspace clustering determines the subsets
of dimensions according to the contributions of the dimensions in
discovering the corresponding clusters. The contribution of a
dimension is measured by a weight that is assigned to the
dimension in the clustering process.

In terms of data type, a data set has numeric (or real-valued)
data and categorical (or symbolic) data, and of course the hybrid
of the two. In the numeric domain, many subspace clustering
ll rights reserved.
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algorithms have been presented, such as hard subspace clustering
[9–16] and soft subspace clustering [17–21,8]. However, the
above-mentioned algorithms working only on numeric data
restrict their uses in data mining where categorical data sets are
frequently encountered. In the categorical domain, Kim and
Ramakrishna [22] proposed a new hierarchical clustering algo-
rithm named PCC based on projected clustering, which avoids the
characteristic error propagation through reassigning and deleting
bad clusters. Gan [23] designed an iterative algorithm called
SUBCAD for clustering high dimensional categorical data set,
based on the minimization of an object function for clustering.
In addition, various properties of the proposed object function are
proved, which are essential to design a fast algorithm to find the
subspace associated with each cluster. Gan [24] put forward an
algorithm called PARTCAT (Projective Adaptive Resonance Theory
for Categorical data clustering) based on a neural network
architecture PART for clustering high dimensional categorical
data. But, PARTCAT does not outperform SUBCAD. Zaik [25]
presented an algorithm called CLICKS based on a search for k-
partite maximal cliques, and can guarantee the completeness of
the results at a reasonable additional cost without sacrificing
scalability by using a novel vertical encoding. However, the
above-mentioned algorithms have a common problem that com-
putational cost of these algorithms is very high, and they fall in
hard subspace clustering.

To our knowledge, soft subspace clustering algorithms are
scarce for categorical data. Chan [26] presented an attributes-
weighting algorithm, which is achieved by the development of a
new procedure to generate the weight of each attribute from each
cluster within the framework of the k-means-types algorithm.
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The effectiveness of the algorithm was demonstrated with both
synthetic and real mixed data sets. However, for categorical data,
Chan’s clustering algorithm encounters some problems in the
weighted computation. In other words, if there is the same
attribute values in some dimension in a cluster, then its weight
is 1. This means that the rest of attributes will be ignored. In
categorical data set, this situation occurs frequently. To overcome
these drawbacks, a new method to find the weight of each
attribute from each cluster is proposed based on complement
entropy for categorical data.

In this paper, we consider that different dimensions provide
different clustering characteristics in a cluster. Suppose that there
are attribute values of a dimension which occur in a cluster
uniformly that dimension which contains the maximum uncer-
tainty provides less clustering characteristics. The contribution of
a dimension is measured by a weight that is assigned to the
dimension in the clustering process. Based on the foregoing, a
method to find the weight for each attribute in each cluster is
provided by using complement entropy. Furthermore, a weight-
ing k-modes algorithm (abbreviated as wk-modes) is presented
and its corresponding time complexity is analyzed as well. The
effectiveness of the proposed algorithm is demonstrated with real
data sets and synthetic data sets.

The rest of the paper is organized as follows. In Section 2, some
related works are reviewed. A weighting k-modes algorithm is
presented based on complement entropy in Section 3. In Section
4, we demonstrate the effectiveness of our method with experi-
mental results. Finally, a summary is given to conclude the paper
in Section 5.
Table 1
A categorical data set.

Object a b c

x1 B F G

x2 C M P

x3 B E D

x4 B M P

x5 B E Q

Table 2
The weight of each attribute in c1 and c2.

Cluster a b c

c1 1 0 0

c2 0 0.5 0.5
2. Related work

In general, we assume the set of objects to be clustered is
stored in a table, where each row (tuple) represents an object by a
series of attributes. Data in the real world are often described by
categorical attributes. More formally, a categorical data table can
be defined as a quadruple DT ¼ ðU,A,V ,f Þ, where

U – a nonempty set of objects, called the universe;
A – a nonempty set of attributes;
V – a union of all attribute domains, i.e., V ¼

S
aAAVa, where Va

is the domain of attribute a and it is finite and unordered;
f : U � A-V – a mapping called an information function such
that for any xAU and aAA, f ðx,aÞAVa.

Since first published in 1998, the k-modes algorithm [27] has
become an important technique for solving categorical data
clustering problems in different domains. The k-modes algorithm
extends the k-means algorithm by using a simple matching
dissimilarity measure for categorical objects, modes instead of
means for clusters, and a frequency-based method to update
modes in the clustering process to minimize the clustering cost
function. These extensions have removed the numeric-only lim-
itation of the k-means algorithm and enable the k-means cluster-
ing process to be used to efficiently cluster large categorical data
sets from real world. So far, the k-modes algorithm and its
variants, including fuzzy k-modes algorithm [28], fuzzy k-modes
algorithm with fuzzy centroid [29], and k-prototype algorithm
[27], have been used widely in many domains. However, the
distance or dissimilarity measure of these algorithms involve all
attributes of the data set equally. This is applicable if all or most
attributes are important to every cluster. The clustering results
become less accurate if a large number of attributes are not
important to some clusters. Therefore, variable weighting for
clustering has become an important research topic in statistic
and data mining [17,19,21,30,31]. Chan [26] proposed an
attribute-weighting algorithm for the mixed data set, which is
the direct extension to the k-means type variable.

However, Chan’s algorithm has some deficiency in clustering
categorical data. For example, if there are the same attribute
values for a dimension in a cluster, and the attribute values of the
rest of dimensions are different in the cluster, then the weight for
that dimension is 1 and others are 0. The rest of attributes, that is
to say, are ignored in the current iteration process. This situation
occurs frequently in real data sets, especially for categorical data
sets.

Example 1. A categorical data set is given in Table 1.

This is a categorical data table, where U ¼ fx1,x2,x3,x4,x5g and

A¼ fa,b,cg. Suppose that x1 and x2 are chosen as the initial cluster

centers. By executing Chan’s algorithm, we can obtain the

clustering results after the first iteration, i.e., c1 ¼ fx1,x3,x5g and

c2 ¼ fx2,x4g. The weight of each attribute in c1 and c2 are shown in

Table 2.

If so, in the next iteration, the distances between x4 and the

‘‘mode’’ of two clusters are all zeros, which means that we cannot

determine x4 should be assigned to which cluster.

3. A weighting k-modes algorithm

In this section, some basic concepts are reviewed, which are
indiscernibility relation [32,33], complement entropy [34]. The
weight of attributes in a cluster is defined based on complement
entropy. Furthermore, a weighting k-modes algorithm is proposed
and the corresponding time complexity is analyzed as well.

3.1. Some basic concepts
Definition 1. Let DT ¼ ðU,A,V ,f Þ is a categorical data table, for any
attribute subset PDA and object subset U0DU, a binary relation
IND(P), called indiscernibility relation, is defined as

INDðPÞ ¼ fðx,yÞAU0 � U098aAP,f ðx,aÞ ¼ f ðy,aÞg:

It is obvious that IND(P) is an equivalence relation on U0 and
INDðPÞ ¼

T
aAPINDðfagÞ: Given PDA, the relation IND(P) induces a

partition of U0, denoted by U0=INDðPÞ ¼ f½x�P9xAU0g, where ½x�P
denotes the equivalence class determined by x with respect to P,
i.e., ½x�P ¼ fyAU09ðx,yÞA INDðPÞg. If ðx,yÞA INDðPÞ, then x and y are
indiscernible by attributes from P.
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Entropy is the measurement of information and uncertainty on
a random variable. Shannon introduced the concept of entropy in
physics to information theory for measure uncertainty of the
structure of a system. The bigger the entropy value is, the higher
out-of-order of a system is. Liang [34] presented a complement
entropy for measure uncertainty in a categorical data table.

Definition 2. Let DT ¼ ðU,A,V ,f Þ be a categorical data table, PDA,
U0DU. The complement entropy of P is defined as

EðPÞ ¼
X

XAU0=INDðPÞ

9X9
9U09

9Xc9
9U09
¼

X
X AU0=INDðPÞ

9X9
9U09

1�
9X9
9U09

 !
,

where Xc denotes the complement set of X, i.e., Xc
¼U0�X,

9X9=9U09 represents the probability of X within the U0 and
9Xc9=9U09 is the probability of the complement set of X within
the U0.

If U0=INDðPÞ ¼ fX9X ¼ fug,uAU0g, then EðPÞ ¼ 1�ð1=9U09Þ.
If U0=INDðPÞ ¼ fX9X ¼U0g, then EðPÞ ¼ 0.

The complement entropy E(P) reflects the uncertainty of object
set U0 with respect to attributes set P. The bigger the complement
entropy value is, the higher the uncertainty is. EðPÞ ¼ 0 means that
all objects of U0 belong to the same equivalence class with respect
to P, that is to say, each object of U0 has the same attribute values
which provide the maximum certainty. On the contrary,
EðPÞ ¼ 1�ð1=9U09Þ shows that each object of U0 forms a equivalence
class with respect to P, in other words, the disorder of distribu-
tions of attribute values is the most highest.

Based on the complement entropy, the within-cluster entropy
is defined as follows [35].

Definition 3. Let DT ¼ ðU,A,V ,f Þ be a categorical data table, which
can be separated into k clusters, i.e., Ck

¼ fc1,c2, . . . ,ckg. For any
ck0ACk, the within-cluster entropy WEðck0 Þ is defined as

WEðck0 Þ ¼
X
aAA

X
X A ck0 =INDðfagÞ

9X9
9ck0 9

1�
9X9
9ck0 9

 !
:

In fact, the within-cluster entropy reflects the average distance
between objects for given attribute set in the same object set. To
prove the property, the dissimilarity measure between two
objects is given.

Definition 4. Let DT ¼ ðU,A,V ,f Þ be a categorical data table. For
any x,yAU, the dissimilarity measure DAðx,yÞ is defined as

DAðx,yÞ ¼
X
aAA

daðx,yÞ, ð1Þ

where

daðx,yÞ ¼
0, f ðx,aÞ ¼ f ðy,aÞ,

1, f ðx,aÞa f ðy,aÞ:

(

Intuitively, the dissimilarity between two categorical objects is
directly proportional to the number of attributes in which they
mismatch.

Property 1. WEðck0 Þ ¼ ð1=9ck0 9
2
Þ
P

xA ck0

P
yA ck0

DAðx,yÞ.

Proof. For convenience, suppose that Y fag ¼ ck0=INDðfagÞ, where
aAA. Then,

WEðck0 Þ ¼
X
aAA

X
X AY fag

9X9
9ck0 9

1�
9X9
9ck0 9

 !
¼
X
aAA

1�
X

X AY fag

9X92

9ck0 9
2

0
@

1
A

¼
1

9ck0 9
2

X
aAA

9ck0 9
2
�
X

X AY fag

9X92

0
@

1
A

¼
1

9ck0 9
2

X
aAA

X
xA ck0

X
yA ck0

daðx,yÞ

¼
1

9ck0 9
2

X
xA ck0

X
yA ck0

X
aAA

daðx,yÞ

¼
1

9ck0 9
2

X
xA ck0

X
yA ck0

DAðx,yÞ: &

The above derivation means that the within-cluster entropy
can be expressed with the average dissimilarity between objects
within a cluster for categorical data.

Example 2 (Continued from Example 1). Suppose that
c1 ¼ fx1,x3,x5g and A¼ fa,b,cg. By Definition 2, one have that

EðfagÞ ¼
9fx1,x3,x5g9

9c19
1�

9fx1,x3,x5g9
9c19

 !
¼ 0,

EðfbgÞ ¼
9fx1,x3g9

9c19
1�

9fx1,x3g9
9c19

 !
þ

9fx5g9
9c19

1�
9fx5g9
9c19

 !
¼

4

9
,

and

EðfcgÞ ¼
9fx1g9
9c19

1�
9fx1g9
9c19

 !
þ

9fx3g9
9c19

1�
9fx3g9
9c19

 !
þ

9fx5g9
9c19

1�
9fx5g9
9c19

 !
¼

6

9
:

Obviously, EðfagÞoEðfbgÞoEðfcgÞ. In other words, EðfcgÞ achieves

its maximal value, which means that the attribute c provides

maximal uncertainty or minimum information in forming cluster

c1 process.

The distances between objects in the cluster c1 with respect to

a, b, c are computed as follows, respectively:

d̂a ¼ daðx1,x3Þþdaðx1,x5Þþdaðx3,x5Þ ¼ 0,

d̂b ¼ dbðx1,x3Þþdbðx1,x5Þþdbðx3,x5Þ ¼ 2,

and

d̂c ¼ dcðx1,x3Þþdcðx1,x5Þþdcðx3,x5Þ ¼ 3:

According to Definition 3, we have that

WEðc1Þ ¼ EðfagÞþEðfbgÞþEðfcgÞ ¼ 0þ4
9 þ

6
9 ¼

10
9 :

Obviously, we have that

WEðc1Þ ¼
1

9c19
2
� ðDAðx1,x3ÞþDAðx1,x5ÞþDAðx3,x5Þ

þDAðx3,x1ÞþDAðx5,x1ÞþDAðx5,x3ÞÞ

¼
1

9
ðd̂aþ d̂bþ d̂cþ d̂aþ d̂bþ d̂c Þ ¼

10

9
:

3.2. Weight of attribute

Instead of identifying exact subspace for clusters, soft sub-
space clustering assigns a weight to each dimension in clustering
process to measure the contribution of the attribute in forming a
particular cluster. In the following, based on the complement
entropy, the importance of an attribute in forming a cluster is
defined as follows.



Table 5
The pseudo-code of the wk-modes algorithm.

1 Input: The number of cluster k and a categorial data table DT

2 Initialize the variable oldmodes as a k� 9A9-ary empty array;

3 Randomly choose k distinct objects x1 ,x2 , . . . ,xk from U

4 and assign ½x1 ,x2 , . . . ,xk� to the k� 9A9-ary array variable newmodes

5 and set all initial weights to 1=9A9;
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Definition 5. Let DT ¼ ðU,A,V ,f Þ be a categorical data table.
Suppose that a clustering result Ck

¼ fc1,c2, . . . ,ckg is given after
iteration, where ci, 1r irk, is the ith cluster, and k is the number
of the clusters. For any aAA, the importance of attribute a in the
cluster ci is defined as

Iðci,aÞ ¼
X

X A ci=INDðfagÞ

9X9
9ci9

9Xc9
9ci9
¼

X
X A ci=INDðfagÞ

9X9
9ci9

1�
9X9
9ci9

 !
:

The Iðci,aÞ has maximum value when the domain values of the
attribute a in the cluster ci have the uniform distribution, which
means that the attribute a provides least clustering characteristics
for the cluster ci. The Iðci,aÞ reflects the intracluster similarity with
respect to a in the cluster ci. The smaller Iðci,aÞ is, the higher
intracluster similarity of cluster ci with respect to a is.

Example 3 (Continued from Example 1). Suppose that a clustering
result c¼ fc1,c2g is given after iteration, where c1 ¼ fx1,x3,x5g and
c2 ¼ fx2,x4g.

By Definition 5, the importance of each attribute in c1 and c2 is

shown in Table 3.

From Table 3, it is clear that the attribute a is the most

important for the cluster c1. For the cluster c2, the attribute b

and c have the same importance. On the basis of the importance

of an attribute in forming a cluster, the weight of an attribute is

defined as follows.

Definition 6. Let DT ¼ ðU,A,V ,f Þ be a categorical data table.
Suppose that a clustering result Ck

¼ fc1,c2, . . . ,ckg is given after
iteration, where ci, 1r irk, is the ith cluster, and k is the number
of the clusters. For any aAA, the weight of the attribute a in the
cluster ci is defined as

lðci,aÞ ¼
expð�Iðci,aÞÞP

a0AAexpð�Iðci,a0ÞÞ
:

lðci,aÞ is inversely proportional to EðfagÞ. The smaller EðfagÞ, the
larger lðci,aÞ, the more important the corresponding dimension.

Example 4 (Continued from Example 3). By Definition 6, the
weights of each attribute in c1 and c2 are shown in Table 4.

From Table 4, obviously, the distance between x4 and the mode

of c1 is greater than that between x4 and the mode of c2.

Therefore, x4 should be assigned to the cluster c2.

From the above analysis, we can find that the new weight is
superior to Chan’s.
Table 3
The importance of each attribute in c1 and c2.

Cluster a b c

c1 0 4/9 6/9

c2 1/2 0 0

Table 4
The weights of each attribute in c1 and c2.

Cluster a b c

c1 0.5315 0.2729 0.1955

c2 0.2327 0.3837 0.3837
3.3. The wk-modes algorithm

Let DT ¼ ðU,A,V ,f Þ be a categorical data table. The objective of
clustering a set of n¼ 9U9 objects into k clusters is to minimize the
objective function:

FðW ,Z,LÞ ¼
Xk

l ¼ 1

Xn

i ¼ 1

X
aAA

oliDaðzl,xiÞlðcl,aÞ, ð2Þ

subject to

oliAf0,1g, 1r lrk, 1r irn, ð3Þ

Xk

l ¼ 1

oli ¼ 1, 1r irn, ð4Þ

0o
Xn

i ¼ 1

olion, 1r lrk, ð5Þ

lðcl,aÞZ0, 1r lrk, aAA, ð6Þ

andX
aAA

lðcl,aÞ ¼ 1, 1r lrk, ð7Þ

where kðonÞ is a known number of clusters, W ¼ ½oli� is a k-by-n

{0,1} matrix, Z ¼ fz1,z2, . . . ,zkg is the k cluster modes with the
attribute set A, L¼ ½lðcl,aÞ� is a k-by-9A9 real matrix.

The minimization of FðW ,Z,LÞ in (2) with the constraints in
(3)–(7) forms a class of constrained nonlinear optimization
problems whose solutions are unknown. The usual method
towards optimization of FðW ,Z,LÞ in (2) is to use partial optimi-
zation for Z, W and L. In this method, we first fix Z and L and find
necessary conditions on W to minimize FðW ,Z,LÞ. Then, we fix W

and L and minimize FðW ,Z,LÞ with respect to Z. We then fix W

and Z and minimize FðW ,Z,LÞ with respect to L. The process is
repeated until no more improvement in the objective function
value can be made. The above procedure is formalized in Table 5.

In the wk-modes algorithm, the computations of W and Z are
similar to that of the k-modes algorithm in the first iteration, then
we use lðci,aÞ to obtain L, which is also to minimize the objective
function. Therefore, the objective function does not increase in
the first iteration procedure. In the rest iterations, as the weight l
and the distance D are in essence the same, they all reflect the
6 while oldmodeso4newmodes do

7 oldmodes¼newmodes;

8 for i¼1 to 9U9
9 for l¼1 to k

10 calculate the dissimilarity between the ith object and

11 the lth mode and classify the ith object into the cluster

12 whose mode is closest to it;

13 end;

14 end;

15 for l¼1 to k

16 find the mode zl of each cluster and assign to newmodes;

17 calculate the weight of each dimension of lth cluster;

18 end;

19 if oldmodes¼ ¼ newmodes

20 break;

21 end;

22 end;

23 Output: U ¼ fc1 ,c2 , . . . ,ckg;
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similarity of within cluster. Therefore, fixing L and Z can mini-
mize the objective function. When fixing L and W, we use the
method of finding modes in the k-modes algorithm to obtain Z,
then we compute L. This two steps can also minimize the
objective function. Therefore, we consider that the wk-modes
algorithm can converge in a finite number of iterations.

The wk-modes algorithm is scalable to the number of dimen-
sions, the number of objects, and the number of the clusters. This
is because the wk-modes only adds a new step to the k-modes
clustering process to calculate the attribute weight from each
cluster. The time complexity of the proposed algorithm can be
analyzed as follows. We only consider the three major computa-
tional steps:
(1)
 With respect to a given attribute, the time complexity for
computing weight value is Oð9C92

Þ, where 9C9¼maxf9c19,
9c29, � � � ,9ck9g.
(2)
 The computational complexity for assigning the ith object
into the lth cluster is Oð9U9mkÞ.
(3)
 The computational complexity for updating all cluster centers
is Oð9U9mkÞ.
If the clustering process needs t iterations to terminate, the
total computational complexity of this algorithm is Oðtm9U9kÞ.
This shows that the computational complexity increases linearly
as the number of dimensions, objects, or clusters increases.
Table 6
The contingency table.

Clusters C01 C02 � � � C0
k0

P
C1 N11 N12 � � � N1k0 c1

C2 N21 N22 � � � N2k0 c2

^ ^ ^ ^ ^ ^
Ck Nk1 Nk2 � � � Nkk0 ckP

c01 c02 � � � c0
k0

N

4. Experimental results

In this section, we demonstrate the effectiveness of the
proposed algorithm on real world data sets and synthetic data
sets. In Section 4.1, the simulation environment and the data sets
used are described. The comparison results of the wk-modes
algorithm and the other algorithms, such as the k-modes algo-
rithm and Chan’s algorithm, on real world data set are presented
in Section 4.2. Section 4.3 presents the scalability of the proposed
algorithm on synthetic data sets.

4.1. Simulation environment and data sets

All of our experiments are conducted on a PC with Intel
i3(2.27G) processor, 2 GB memory, and Windows XP SP3 profes-
sional operating system installed.

To compare the effectiveness of the wk-modes algorithm with
the other clustering algorithms, 6 standard data sets are down-
loaded from the UCI Machine Learning Repository [36]. All these
data sets have class labels assigned to the objects. The details of
data sets are described as follows:

Soybean data set: The soybean data set has 47 records, each of
which is described by 35 attributes. Each record is labeled as one
of the four diseases: D1, D2, D3, and D4. Except for D4, which has
17 instances, each of the other diseases only have 10 instances.
We only selected 21 attributes in this experiment because the
other attributes only have one category.

Promoters data set: This data set contains 106 objects, each of
which is described by 58 categorical attributes. One of attributes
indicates that each object belongs to one of two classes, positive
and negative. The remaining 57 attributes are the sequence,
starting at position �50 (p�50) and ending at position þ7
(p7). Each of these attributes is filled with one of a, g, t, c.

Vote data set: This is a pure categorical data set with 435
objects described by 16 attributes. Each object belong to one of
two classes Republican (168 objects) and Democrats (267
objects). Vote data set contains a mass of objects with missing
attribute values. According to the instruction of the data, a missing
attribute value does not mean that it is unknown. It means simply

that the value is not ‘‘yea’’ or ‘‘nay’’. Perhaps, the missing values
mean ‘‘nonuser’’ or ‘‘unconcern’’. So missing attribute values are
replaced with a special value in the experiments.

Breast-cancer data set: Breast-cancer data set consists of 699
data objects described by nine categorical attributes. The objects
with missing attribute values are replaced with a special value in
the experiments. It is divided into two known classes, Benign (458
objects) and Malignant (241 objects).

Mushroom data set: There are 8140 objects described by 22
categorical attributes in Mushroom data set. Each object belongs
to one of two classes, edible (e) and poisonous (p). The 2480
objects with missing attribute values are replaced with a special
value in the experiments.

Connect-4 opening data set: This data set contains all legal 8-ply
positions in the game of connect-4 in which neither player has
won yet, and in which the next move is not forced. This data set
has 67 557 objects, each of which is described by 42 attributes.
Each object is labeled as one of the three classes: win (44 473),
loss (16 635), draw (6449).

4.2. Clustering evaluation: accuracy and adjusted rand index (ARI)

To evaluate the performance of clustering algorithms, we use
two popular measures to compare different clustering results in
the same data set.

Clustering accuracy: Let C ¼ fC1,C2, . . . ,Ckg be a partitions on a
data set U with n objects, the clustering accuracy is defined as

AC ¼

Pk
i ¼ 1 cl

9U9
,

where k is the number of clusters desired, and cl is the number of
objects occurring in both cluster Ci and its corresponding gener-
ated cluster label, and 9U9¼ n is the number of objects in the
data set.

Adjusted rand index(ARI): The adjusted rand index is an
external criterion which attempts to measure the similarity
between two partitions of objects in the same data set. Let
C ¼ fC1,C2, . . . ,Ckg and C0 ¼ fC01,C02, . . . ,C0

k0
g be two partitions on a

data set U with n objects, Nij be the number of objects in cluster Ci

in partition C and in cluster C0j in partition C0, i.e, Nij ¼ 9Ci

T
C 0j9, ci

be the number of objects in cluster Ci in partition C, c0j be the
number of objects in cluster C0j in partition C0, the similarity
measure between two partitions can be characterized using a
contingency matrix as shown in Table 6.

The Adjusted Rand Index(ARI) [37] is defined as follows:

ARIðC,C0Þ ¼
r0�r3

0:5ðr1þr2Þ�r3
,

where r0 ¼
Pk

i ¼ 1

Pk0
j ¼ 1ð

Nij

2 Þ, r1 ¼
Pk

i ¼ 1ð
ci
2Þ, r2 ¼

Pk0
j ¼ 1ð

c0
j

2Þ,
r3 ¼ 2r1r2=NðN�1Þ,ðnmÞ is the binomial coefficient. If the clustering
result is close to the true class distribution, then the value of ARI
is high.

In the following, the proposed algorithm is compared with the
k-modes algorithm and Chan’s algorithm on accuracy and ARI,
respectively. As the k-modes algorithm is to choose initial cluster



Table 9
The subspace dimensions associated with each cluster of the promoters data set

(AC¼0.8019).

Clusters Subspace dimensions

c1 {3 4 5 14 15 16 22 24 26 27 28 31 32 34 36 40 42 45 50 57}

c2 {6 7 11 13 14 15 16 17 18 19 31 33 37 39 40 41 43 49}

Table 10
The subspace dimensions associated with each

cluster of the vote data set (AC¼0.8851).

Clusters Subspace dimensions

c1 {3 4 5 7 8 9 12}

c2 {4 5 6 8 9 13 14 15}

Table 11
The subspace dimensions associated with each

cluster of the Breast-cancer data set (AC ¼ 0:9413Þ.

Clusters Subspace dimensions

c1 {6 9}

c2 {2 4 5 6 8 9}

Table 12
The subspace dimensions associated with each
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centers randomly, different initial cluster centers will obtain
different clustering results on the same data set. Therefore, we
carried out 100 runs of the k-modes algorithm, Chan’s algorithm
and the wk-modes on the six standard data sets, respectively. In
each run, the same initial cluster centers were used for three
algorithms. This study sets the weight exponent to 1.1 in Chan’s
algorithm. The experimental results are shown in Table 7. Each
value in the table is the average of 100 times experiments.

From Table 7, it can be seen that the wk-modes obviously
outperforms the k-modes algorithm and Chan’s algorithm on these
real data sets. This result can be explained by the reason that the
attribute values in some dimensions are often the same in a cluster
for categorical data. For example, on Mushroom data set, the values
of attribute ‘‘veil-type’’ are all the same in whole data set.

In the meantime, the subspace of the clusters can also be
identified by the weight values after clustering. We extract a few
dimensions from each cluster whose weight are greater than 1=m

after clustering, where m is the number of the attributes. The
subspace dimensions associated with each cluster on different
data sets are described in Tables 8–13, respectively. The subspace
information of each cluster in Tables 8–13 is derived from the
clustering results whose clustering accuracy are the highest
among 100 runs of the wk-modes on the six standard data sets,
respectively.

Tables 8–13 show that the subspace dimensions associated
with different clusters are different. Although the clustering
accuracy of the wk-modes and the k-modes algorithm is the same
in the Connect-4 Opening data set, the wk-modes can obtain less
dimensions which facilitate to interpret and understand the
clustering result for users.
cluster of the Mushroom data set (AC¼0.8887).

Clusters Subspace dimensions

c1 {4 6 7 16 17 18 21}

c2 {6 7 8 12 13 16 17 18 19}
4.3. Evaluating scalability

To test the scalability of the wk-modes algorithm, we use a
synthetic data generator [38] to generate data sets with different
number of objects and attributes. The number of objects varies
from 10,000 to 100,000, and the dimensionality is in the range of
10–50. In all synthetic data sets, each dimension possesses five
different attribute values. As the different clustering results will
be obtained on the same data set when we select different initial
Table 7
The clustering accuracy and ARI of different algorithms on real data sets.

Data sets Accuracy ARI

k-

Modes

Chan’s wk-

Modes

k-

Modes

Chan’s wk-

Modes

Soybean 0.8660 0.7117 0.8972 0.7293 0.5328 0.8054

Promoters 0.5991 0.7810 0.6099 0.0541 0.3232 0.0675

Vote 0.8620 0.7894 0.8651 0.5231 0.3638 0.5345

Breast-cancer 0.8377 0.7815 0.8471 0.4828 0.2881 0.5130

Mushroom 0.7872 0.6195 0.7905 0.3500 0.0020 0.3586

Connect-4

opening

0.6583 0.6583 0.6583 0.0016 �0.0026 0.0019

Table 8
The subspace dimensions associated with each

cluster on the soybean data set (AC¼1).

Clusters Subspace dimensions

c1 {2 3 8 11 13 14 15 16 17 18 19 20 21}

c2 {3 4 7 11 13 14 15 16 18 19 20 21}

c3 {2 3 4 5 11 13 15 16 17 18 19 20 21}

c4 {2 7 11 12 14 15 17 18 19 20 21}
cluster centers. Therefore, each value in Figs. 1 and 2 is the
average of 10 times experiments.

Fig. 1 shows the scalability with data size of three algorithms.
This study fixes the dimensionality to 10, and the cluster number
to 3, and the data size varies from 10,000 to 100,000. It can be
seen that the wk-modes algorithm is linear with respect to the
data size. The execution time of the proposed method is nearly
the k-modes algorithm. Therefore, the wk-modes algorithm can
ensure efficient execution when the data size is large.

Fig. 2 shows the scalability with data dimensionality of three
algorithms. We fix the data size to 30,000, and the cluster number
to 3, and the number of dimensions varies from 10 to 50. It is clear
that the run-time of the wk-modes algorithm increases linearly as
the number of dimensions increases, which is inferior to k-mode
algorithm, but it is tolerant in practical use. Furthermore, the run-
time of the wk-modes algorithm is closer to that of Chan’s
algorithm. The result can be explained by the reason that the
weight of each dimension need to be computed on each iteration.
5. Conclusion

Most clustering algorithms do not work efficiently for high
dimensional data. Due to the inherent sparsity of objects, it is not
feasible to identify interesting clusters in the whole data space. In
this paper, we presented the attributes-weighting k-modes algo-
rithm based on complement entropy for subspace clustering of
categorical data. In the proposed algorithm, different dimensions
have different weights to a given cluster. According to the analysis of



Table 13
The subspace dimensions associated with each cluster of the Connect-4 Opening data set (AC¼0.6583).

Clusters Subspace dimensions

c1 {3 4 5 6 10 11 12 15 16 17 18 23 24 26 27 28 29 30 32 33 34 35 36 41 42}

c2 {5 6 11 12 15 16 17 18 21 22 23 24 28 29 30 33 34 35 36 39 40 41 42}

c3 {3 4 5 6 9 10 11 12 17 18 22 23 24 27 28 29 30 34 35 36 39 40 41 42}
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Fig. 1. Execution time comparison of three algorithms: scalability with data size.
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dimensionality.
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time complexity and scalability test, the wk-modes algorithm can be
used in large scale data sets. Furthermore, we extract a few
dimensions from each cluster whose weights are greater than a
given threshold after clustering. It follows that the subspace
dimensions associated with each cluster can be derived from the
clustering results obtained. Experimental results show the effective-
ness of the proposed algorithm on real and synthetic data sets.
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