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The given attribute reduction approach decides the decision performance of a reduced
decision table, which can give a guidance for selecting one rule-extraction method in
practical applications. The objective of this study is to compare the decision performance
of positive-region reduction, Shannon entropy reduction and Liang entropy reduction. In
this paper, the relationships between positive-region reduction, Shannon entropy
reduction and Liang entropy reduction are first investigated. Then, by means of three
evaluation indices (certainty measure, consistency measure and support measure), we
systemically analyse these change mechanisms for decision performance of a decision
table induced by each of these three types of reduction approaches. Finally, by numerical
experiments, these change mechanisms of a decision table’s decision performance are
verified for the above-mentioned three attribute reductions.

Keywords: rough set theory; attribute reduction; decision performance evaluation;
information entropy

1. Introduction

Rough set theory was proposed by Pawlak in 1982. Recently, it has become a popular

mathematical framework for pattern recognition, image processing, feature selection,

neuro computing, conflict analysis, decision support, data mining and knowledge

discovery processing from large data-sets (Pawlak 1991, 1998, 2005, Pal et al. 2001,

Bazan et al. 2003, Pawlak and Skowron 2007).

In recent years, more attention has been paid to attribute reduction in information

systems and decision tables. Many types of attribute-reduction techniques have been

proposed in the last 20 years (Pawlak 1991, 1998, Ziarko 1993, Hu and Cercone 1995,

Slezak 1996, Düntsch and Gediaga 1998, Slezak 1998, Nguyen and Slezak 1999, Yao et al.

1999, Quafatou 2000, Beynon 2001, Liang and Xu 2002, Mi et al. 2003, Wang 2003,

Yao 2003, 2008, Zhu and Wang 2003, Li et al. 2004, Wang et al. 2005, Wu et al. 2005).

For our development, we briefly recall some of these techniques. Skowron and Rauszer

(1992) proposed an attribute-reduction algorithm using a discernibility matrix, which can

find all reducts. However, it only works in small data-sets because the algorithm is very

time consuming.
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It is well known that a special heuristic function is usually used to acquire one of all

reducts, which may be a tolerable strategy when only one reduct is needed. To date,

several heuristic reduction approaches have been presented. Hu and Cercone (1995) used

an attribute dependence to establish a heuristic algorithm for attribute reduction, which

can retain certain rules derived from the original table. Wang (2003) and Wang et al.

(2005) applied Shannon’s information entropy for estimating the significance of an

attribute. The reduction algorithm determined by this measure can also obtain one reduct,

in which the certainty measure of every decision rule derived from the decision table is not

changed. Liang et al. (2002, 2004, 2005, 2006), Liang and Xu (2002) and Liang and Qian

(2008) proposed a new uncertainty measure for information systems, and it can be

employed to compute an attribute reduct of a decision table. The b-reduct proposed by

Ziarko (1993) provides a kind of attribute-reduction method in the variable precision

rough set model. The a-reduct and a-relative reduct that allow the occurrence of

additional inconsistency were proposed by Nguyen and Slezak (1999) for information

systems and decision tables, respectively. An attribute-reduction method that preserves the

class membership distribution of all objects in information systems was proposed by

Slezak (1996, 1998). Five kinds of attribute reducts and their relationships in inconsistent

information systems were investigated by Kryszkiewicz (2001), Li et al. (2004) and Mi

et al. (2003), respectively. By eliminating some rigorous conditions required by the

distribution reduct, a maximum distribution reduct was introduced by Mi et al. (2003).

Unlike the possible reduct by Mi et al. (2003), the maximum distribution reduct can derive

decision rules that are compatible with the original system. In these reduction approaches,

the reduction based on the positive region, the reduction method based on Shannon’s

entropy and that based on Liang’s entropy are three representative reduction approaches.

These are mainly focused on in this study.

A set of decision rules can be generated from a decision table by adopting any kind of

reduction method (Skowron and Rauszer 1992, Hu and Cercone 1995, Wang 2003, Huynh

and Nakamori 2005, Skowron 1995, Wang et al. 2005). Düntsch and Gediaga (1998),

based on information entropy, suggested some uncertainty measures of a decision rule and

proposed three criteria for model selection. Moreover, several other measures such as

certainty measure and support measure are often used to evaluate a decision rule (Greco

et al. 2004, Liang et al. 2006). However, all of these measures are only defined for a single

decision rule and are not suitable for measuring the decision performance of a rule set.

There are two more kinds of measures in the literature (Pawlak 1998), which are

approximation accuracy for decision classification and consistency degree for a decision

table. Although these two measures, in some sense, could be regarded as measures for

evaluating the decision performance of all decision rules generated from a decision table,

they have some limitations. For instance, the certainty measure and consistency of a

decision table can be well characterised by the approximation accuracy and consistency

degree for a degree for a decision table when their values reach zero. To overcome the

shortcomings of the existing measures, in the literature (Qian et al. 2008a, 2008b, 2008c),

three new measures are proposed for this objective, which are certainty measure (a),

consistency measure (b) and support measure (g). These three measures can be used to

evaluate the entire decision performance of a given complete and incomplete decision table.

The decision table induced by an attribute reduction still retains the indispensable

attributes of the original one through eliminating the redundant attributes. However, the

decision performance of the decision table may be changed after each of attribute

reductions. In this paper, we have compared the changes of decision performance after
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attribute reductions based on positive region, on Shannon’s entropy and on Liang’s

entropy.

The rest of this paper is organised as follows. Some preliminary concepts are briefly

recalled in Section 2. In Section 3, the relationships among positive-region reduction,

Shannon’s entropy reduction and Liang’s entropy reduction are investigated. In Section 4,

through reviewing three existingmeasures for decision evaluation, the changemechanism of

each of these three criteria is discovered in a decision table. In Section 5, the change of

decision performance of a decision table induced by each of three existing types of reduction

approaches is systemically analysed. In Section 6,we have also employed a real data-set from

the UCI database for experimental analysis. Experimental results show the correctness of the

change mechanism obtained in this paper. Section 7 concludes this paper.

2. Preliminaries

In this section, we review some basic concepts such as indiscernibility relation, partition,

decision tables, decision rules, certainty degree and support degree of a rule and the

definition of reduction.

An information system (sometimes called a data table, an attribute-value system, a

knowledge representation system, etc.), as a basic concept in rough set theory, provides a

convenient framework for the representation of objects in terms of their attribute values.

Let S ¼ ðU;AÞ be an information system, where U is a non-empty and finite set of

objects, called a universe, and A is a non-empty and finite set of attributes. For each a [ A,

a mapping a : U ! Va is determined by an information system, where Va is the set of all

possible values of a.

Each non-empty subset B # A determines an indiscernibility relation in the following

way, RB ¼ {ðx; yÞ [ U £ U j aðxÞ ¼ aðyÞ;;a [ B}; where a(x) and a(y) respect the value

of object x and y on attribute a, respectively. The relation RB partitions U into some

equivalence classes given by U=RB ¼ {½x�B j x [ U}, where ½x�B denotes the equivalence

class determined by x with respect to B, i.e. ½x�B ¼ {y [ U j ðx; yÞ [ RB}. The partition

U=RB is further denoted as U=B. Furthermore, for any Y # U, one defines that

ðBðYÞ;BðYÞÞ is the rough set of Y with respect to B, where the lower approximation BðYÞ

and the upper approximation BðYÞ of Y are described by

BðYÞ ¼ {xj½x�B # Y} and

BðYÞ ¼ {xj½x�B > Y – Y}:

We define a partial relation W on the family {U=B jB # A} as follows: U=P W U=Q
(or U=Q X U=P) if and only if, for every Pi [ U=P, there exists Qj [ U=Q such that

Pi # Qj, where U=P ¼ {P1;P2; . . . ;Pm} and U=Q ¼ {Q1;Q2; . . . ;Qn} are partitions

induced by P;Q # A, respectively. In this case, we say that Q is coarser than P, or P is

finer than Q. If U=P W U=Q and U=P – U=Q, we say Q is strictly coarser than P (or P is

strictly finer than Q), denoted by U=P a U=Q (or U=QU=P).
Let S ¼ ðU;C < DÞ with C > D ¼ Y be an information system, where an element of C

is called a condition attribute, C is called a condition attribute set, an element ofD is called

a decision attribute, and D is called a decision attribute set, then S is defined as a decision

table. For example, a decision table about diagnosing rheum is given in Table 1, in which

U ¼ {e1; e2; e3; e4; e5; e6; e7; e8; e9; e10} is the universe, C ¼ {c1; c2; c3; c4} ¼ {Headache,

Muscle pain, Animal heat, Cough} is the condition attribute set and D ¼ {d} ¼ {Rheum}

is the decision attribute set.
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If U=C W U=D, then S ¼ ðU;C < DÞ is said to be consistent, otherwise it is said to be

inconsistent. Certain decision rules can be extracted from a consistent decision table, and

both uncertain decision rules and certain decision rules can be extracted from an

inconsistent decision table. Furthermore, we call the set of these condition classes which

are the hypotheses of certain decision rules as the consistent part of a decision table, and

call the set of all other condition classes as the inconsistent part of the decision table. This

will be indicated by an example.

Example 2.1. From Table 1, we can find that it is an inconsistent table. Moreover,

it is obvious that the set {e10} is the consistent part of Table 1 and the set

{e1; e2; e3; e4; e5; e6; e7; e8; e9} is the inconsistent part of Table 1.

Let S ¼ ðU;C < DÞ be a decision table, Xi [ U=C and Yj [ U=D. By desðXiÞ and

desðYjÞ, we denote the descriptions of the equivalence classes Xi and Yj in the decision

table S. A decision rule is formally defined as (Pawlak 1991, Liang et al. 2006):

Zij : desðXiÞ! desðYjÞ: ð1Þ

The certainty degree m and support degree s of a decision rule Zij are defined as follows

(Pawlak 1991, Liang et al. 2006):

mðZijÞ ¼ jXi > Yjj=jXij and sðZijÞ ¼ jXi > Yjj=jUj; ð2Þ

where j�j is the cardinality of a set. It is clear that the value of each of mðZijÞ and sðZijÞ of a

decision rule Zij falls into the interval ½ð1=jUjÞ; 1�. In subsequent discussions, we denote

the cardinality of the set Xi > Yj by jZijj, which is called the support number of the rule Zij.

Let S ¼ ðU;C < DÞ be a decision table, the relative positive region Dwith respect to C

is defined as (Pawlak 1991):

POSCðDÞ ¼
[n
i¼1

CYi; ð3Þ

where Yi [ U=D, CYi indicates the lower approximation of Yi with respect to C. Using

this denotation, one can give the definition of a positive-region reduct as follows.

Definition 2.1 (Hu and Cercone 1995). Let S ¼ ðU;C < DÞ be a decision table and

B # C. We call B a positive-region reduct of D with respect to C if B satisfies the

following conditions:

Table 1. A decision table about diagnosing rheum.

Patients Headache Muscle pain Animal heat Cough Rheum

e1 Yes Yes Normal No No
e2 Yes Yes High No No
e3 Yes Yes Normal No Yes
e4 Yes Yes High No Yes
e5 Yes No High Yes Yes
e6 Yes No High Yes Yes
e7 Yes No High Yes No
e8 Yes Yes Very high Yes Yes
e9 Yes Yes Very high Yes No
e10 No Yes Normal Yes Yes
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(1) POSCðDÞ ¼ POSBðDÞ and

(2) for;a [ B; POSBðDÞ – POSB2{a}ðDÞ.

In Wang (2003) and Wang et al. (2005), Shannon’s condition entropy of condition

attribute set C with respect to decision attribute set D in a decision table S ¼ ðU;C < DÞ is

defined as

HðDjCÞ ¼ 2
Xm
i¼1

jXij

jUj

Xn
j¼1

jXi > Yjj

jXij
log2

jXi > Yjj

jXij
; ð4Þ

where Xi [ U=C and Yj [ U=D.

Definition 2.2 (Wang 2003, Wang et al. 2005). Let S ¼ ðU;C < DÞ be a decision table,

B # C. We call B a Shannon entropy reduct of D with respect to C if B satisfies the

following conditions:

(1) HðDjCÞ ¼ HðDjBÞ and

(2) for;a [ B; HðDjBÞ – HðDjB2 {a}Þ.

In Liang et al. (2002, 2004, 2006) and Liang and Qian (2008), Liang’s entropy of

condition attribute set C with respect to decision attribute set D in a decision table

S ¼ ðU;C < DÞ is depicted as

EðDjCÞ ¼
Xm
i¼1

Xn
j¼1

jXi > Yjj

jXij

jYc
j 2 Xc

i j

jXij
; ð5Þ

where Yc
j and Xc

i are the complements of Yj and Xi, respectively.

In terms of this description, one can give the definition of a Liang entropy reduct as

follows.

Definition 2.3. Let S ¼ ðU;C < DÞ be a decision table, B # C. We call B a Liang

entropy reduct of D with respect to C if B satisfies the following conditions:

(1) EðDjCÞ ¼ EðDjBÞ and

(2) for;a [ B; EðDjBÞ – EðDjB2 {a}Þ.

Positive region, Shannon’s entropy and Liang’s entropy are usually applied for the

attribute reduction of a decision table.

3. Relationships among three kinds of reductions

In this section, we will analyse the relationships among positive-region reduction,

Shannon’s entropy reduction and Liang’s entropy reduction.

The rough monotonicity of Shannon’s information entropy has been proved

(Wang 2003, Wang et al. 2005), which is shown as follows.

Theorem 3.1 (Wang 2003, Wang et al. 2005). Let S ¼ ðU;C < DÞ and S 0 ¼ ðU;B< DÞ

be two decision tables, U=C ¼ {X1;X2; . . . ;Xm}, U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . ,

International Journal of General Systems 817
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Xv21;Xvþ1; . . . ;Xm, Xu < Xv} and U=D ¼ {Y1; Y2; . . . ; Yn}, then

HðDjBÞ $ HðDjCÞ;

especially, if and only if
jXu>Yjj

jXuj
¼

jXv>Yjj

jXvj
for j # n, i.e. mðZujÞ ¼ mðZvjÞ for j # n,

HðDjBÞ ¼ HðDjCÞ:

From Theorem 3.1, we can see that Shannon’s entropy of a decision table will be not

more than the one in the table with the coarser partition.

For convenience, suppose that REDP
DðCÞ is the set of all positive-region reduct,

BðPÞ [ REDP
D ðCÞ a positive-region reduct, REDS

DðCÞ the set of all Shannon entropy

reduct, BðSÞ [ REDS
DðCÞ a Shannon entropy reduct, RED

L
DðCÞ the set of all Liang entropy

reduct and BðLÞ [ REDL
DðCÞ a Liang entropy reduct. In the following, we establish the

relationship among positive-region reduction, Shannon’s entropy reduction and Liang’s

entropy reduction with four theorems and four corollaries.

Theorem 3.2 (Wang 2003, Wang et al. 2005). Let S ¼ ðU;C < DÞ be a decision table. If

an attribute set B(S) is a Shannon entropy reduct, then there exists a positive-region reduct

B(P) such that BðPÞ # BðSÞ.

Proof. Let B(S) be a Shannon entropy reduct, thus HðDjCÞ ¼ HðDjBðSÞÞ. From Theorem

3.1, it follows that

jXu > Yjj

jXuj
¼

jXv > Yjj

jXvj
; j # n;

then POSCðDÞ ¼ POSBðSÞðDÞ. Furthermore, it is certain a set BðPÞ # BðSÞ exists, which

satisfies ;a [ BðPÞ; POSBðPÞðDÞ – POSBðPÞ2{a}ðDÞ. Therefore, there exists B(P) a

positive-region reduct. A

By Theorem 3.2, it follows that for a decision table, there exists a subset of its Shannon

entropy reducts which is a positive-region reduct.

Corollary 3.3 (Wang 2003, Wang et al. 2005). Let S ¼ ðU;C < DÞ be a decision

table, REDS
DðCÞ a set of all Shannon entropy reducts and REDP

DðCÞ a set of all positive-

region reducts, then min{jBðPÞj : BðPÞ [ REDP
DðCÞ} # min{jBðSÞj : BðSÞ [ REDS

DðCÞ}.

Corollary 3.3 shows that for a decision table, the cardinality of the minimum Shannon

entropy reduct is not less than the cardinality of the minimum positive-region entropy

reduct.

Theorem 3.4. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables,

U=C ¼ {X1;X2; . . . ;Xm}, U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . , Xv21;Xvþ1; . . . ;Xm,

Xu < Xv} and U=D ¼ {Y1; Y2; . . . ; Yn}, then

EðDjBÞ $ EðDjCÞ;

especially, if and only if mðZuwÞ ¼ mðZvwÞ ¼ 1 for w # n and mðZujÞ ¼ mðZvjÞ ¼ 0 for

j # n and j – w, then

EðDjBÞ ¼ EðDjCÞ:
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Proof. For the existing condition, one has that

ED ¼ EðDjBÞ2 EðDjCÞ ¼
Xn
j¼1

jXu > Yjj þ jXv > Yjj

jUj

jXu 2 Yjj þ jXv 2 Yjj

jUj

2
Xn
j¼1

jXu > Yjj

jUj

jXu 2 Yjj

jUj
2
Xn
j¼1

jXv > Yjj

jUj

jXv 2 Yjj

jUj

¼
Xn
j¼1

jXu > Yjj

jUj

jXvj2 jXv > Yjj

jUj
þ
Xn
j¼1

jXv > Yjj

jUj

jXuj2 jXu > Yjj

jUj

¼
Xn
j¼1

jXukXvjðmðZujÞ þ mðZvjÞ2 2mðZujÞmðZvjÞÞ

jUj
2

:

Let f j ¼ mðZujÞ þ mðZvjÞ2 2mðZujÞmðZvjÞ. It is clear that 0 # mðZujÞ # 1 and

0 # mðZvjÞ # 1. The sign of fj will be investigated as follows.

If mðZujÞ ¼ 0 and 0 , mðZvjÞ # 1 (or 0 , mðZujÞ # 1 and mðZvjÞ ¼ 0), then f j . 0.

If mðZujÞ ¼ 0 and mðZvjÞ ¼ 0, then f j ¼ 0.

If mðZujÞ ¼ 1 and 0 # mðZvjÞ , 1 (or 0 # mðZujÞ , 1 and mðZvjÞ ¼ 1), then f j . 0.

If mðZujÞ ¼ 1 and mðZvjÞ ¼ 1, then f j ¼ 0.

If 0 , mðZujÞ , 1 and 0 , mðZvjÞ , 1, then f j . 0.

From the above-mentioned several cases, we have that f j $ 0. Then

ED ¼
Pn

j¼1ðjXukXvj f jÞ=ðjUj
2
Þ $ 0. Furthermore, one has that ED ¼ 0 iff f j ¼ 0. In

other words, EðDjBÞ ¼ EðDjCÞ holds, if and only if mðZuwÞ ¼ mðZvwÞ ¼ 1 for w # n and

mðZujÞ ¼ mðZvjÞ ¼ 0 for j # n and j – w. A

Theorem 3.4 indicates that Liang’s entropy of a decision table will not be more than

the one of the table with the coarser condition attribute set.

Theorem 3.5. Let S ¼ ðU;C < DÞ be a decision table. If an attribute set B(L) is a

Liang entropy reduct, then there exists a Shannon entropy reduct B(S) such that

BðSÞ # BðLÞ.

Proof. Since B(S) is a Shannon entropy reduct, we have that EðDjCÞ ¼ EðDjBðLÞÞ. And

from Theorem 3.4, it follows that there exists w # n such that mðZuwÞ ¼ mðZvwÞ ¼ 1 and

mðZujÞ ¼ mðZvjÞ ¼ 0, j # n, j – w, i.e. mðZujÞ ¼ mðZvjÞ, j # n. Therefore,

HðDjCÞ ¼ HðDjBðLÞÞ. Furthermore, there exists a set BðSÞ # BðLÞ, which satisfies

;a [ BðSÞ, POSBðSÞðDÞ – POSBðSÞ2{a}ðDÞ. From Definition 2.1, B(S) is a Shannon entropy

reduct. A

Theorem 3.5 shows that there exists a subset of its Liang entropy reducts which is its

Shannon entropy reduct.

Corollary 3.6. Let S ¼ ðU;C < DÞ be a decision table, REDL
DðCÞ a set of all Liang

entropy reducts and REDS
DðCÞ a set of all Shannon entropy reducts, then

min{jBðSÞj : BðSÞ [ REDS
DðCÞ} # min{jBðLÞj : BðLÞ [ REDL

DðCÞ}.

From Corollary 3.6, we can see that, for a decision table, there exists a subset of its

Shannon reducts which is its positive-region reduct.
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Corollary 3.7. Let S ¼ ðU;C < DÞ be a decision table. If B(L) is a Liang entropy reduct,

then there exists a positive-region reduct B(P) and a Shannon entropy reduct B(S) such that

BðPÞ # BðSÞ # BðLÞ.

The relationship among positive-region reducts, Shannon entropy reducts and Liang

entropy reducts is indicated by Corollary 3.7.

Corollary 3.8. Let S ¼ ðU;C < DÞ be a decision table, REDL
DðCÞ a set of all Liang

entropy reducts, REDS
DðCÞ a set of all Shannon entropy reducts and REDP

DðCÞ a set of

all Shannon entropy reducts, then min{jBðPÞj : BðPÞ [ REDP
D ðCÞ} # min{jBðSÞj : BðSÞ [

REDS
DðCÞ} # min{j BðLÞj : BðLÞ [ REDL

DðCÞ}.

These relationships among the above three kinds of attribute reductions in Corollary

3.8 are illustrated by the following Example 3.1.

Example 3.1. We employ Table 1 to illustrate the relationship among the three kinds of

attribute reductions. By computing, we have that

REDP
DðCÞ ¼ {{Headache}; {Animal heat;Cough}},

REDS
DðCÞ ¼ {{Headache;Muscle pain}; {Animal heat;Cough}} and

REDL
DðCÞ ¼ {{Headache;Animal heat;Muscle pain}; {Animal heat;Cough}}.

Obviously, one can obtain the following inclusion relationships:

{Headache}|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
a positive–region reduct

# {Headache; Muscle pain}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a Shannon entropy reduct

# {Headache; Animal heat; Muscle pain}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a Liang entropy reduct

;

{Animal heat;Cough}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a positive–region reduct

# {Animal heat;Cough}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a Shannon entropy reduct

# {Animal heat;Cough}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
a Liang entropy reduct

:

Therefore, min{jBðPÞj : BðPÞ [ REDP
DðCÞ} ¼ j{Headache}j, min{jBðSÞj : BðSÞ [

REDS
DðCÞ} ¼ j{Animal heat;Cough}j and min{jBðLÞj : BðLÞ [ REDL

DðCÞ} ¼ j{Animal

heat;Cough}j, then j{Headache}j # j{Animal heat;Cough}j # j{Animal heat; Cough}j.
From the example, we can see that the relationship among minimal positive-region

reduct, the minimal Shannon entropy reduct and the minimal Liang entropy reduct

corresponds to Corollary 3.8.

4. Change mechanism of decision performance of a decision table

In this section, we investigate the change mechanism of decision performance of a

decision table from the viewpoint of decision evaluation.

Approximation accuracy of a classification aCðFÞ was introduced in Pawlak (1991).

Let F ¼ {Y1; Y2; . . . ; Yn} be a classification of the universe U and C a condition attribute

set. Then, C-lower and C-upper approximations of F are given by CF ¼

{CY1;CY2; . . . ;CYn} and CF ¼ {CY1;CY2; . . . ;CYn}, respectively, where CYi ¼

<{x [ U j ½x�C # Yi [ F}; 1 # i # n and CYi ¼ <{x [ U j ½x�C > Yi – Y; Yi [
F}; 1 # i # n. The approximation accuracy of F by C is defined as

aCðFÞ ¼

P
Yi[FjCYijP
Yi[FjCYij

:
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The approximation accuracy expresses the percentage of possible correct decisions when

classifying objects by employing the attribute set C. In a broad sense, aCðFÞ can be used to

measure the certainty of a decision table. However, it has some limitations. In Qian et al.

(2008b), a new certainty measure a was proposed for overcoming these limitations, which

is shown as follows.

Definition 4.1 (QIAN et al. 2008b). Let S ¼ ðU;C < DÞ be a decision table and

RULE ¼ {ZijjZij : desðXiÞ! desðYjÞ;Xi [ U=C; Yj [ U=D}. The certainty measure a of

S is defined as

aðSÞ ¼
Xm
i¼1

Xn
j¼1

sðZijÞmðZijÞ ¼
Xm
i¼1

Xn
j¼1

jXi > Yjj
2

jUkXij
: ð6Þ

Through using the definition, one can get the following Theorem 4.2.

Theorem 4.2. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision

tables. If U=C ¼ {X1;X2; . . . ;Xm}, U=B ¼ {X1;X2; . . . , Xu21;Xuþ1; . . . ;Xv21,

Xvþ1; . . . ;Xm;Xu < Xv} and U=D ¼ {Y1; Y2; . . . ; Yn}, then aðS0Þ # aðSÞ, especially

aðS0Þ ¼ aðSÞ iff mðZujÞ ¼ mðZvjÞ for j # n.

Proof. From the definition of certainty measure a, it follows that

aD ¼ aðS0Þ2 aðSÞ ¼
Xm

i¼1;i–u;i–v

Xn
j¼1

jXi > Yjj
2

jUkXij
þ
Xn
j¼1

ððjXu < XvÞ> YjjÞ
2

jUjðjXu < XvjÞ

2
Xm

i¼1;i–u;i–v

Xn
j¼1

jXi > Yjj
2

jUkXij
2
Xn
j¼1

jXu > Yjj
2

jUkXuj
2
Xn
j¼1

jXv > Yjj
2

jUkXvj

¼
Xn
j¼1

ðjXu > Yjj þ jXv > YjjÞ
2

jUjðjXuj þ jXvjÞ
2
Xn
j¼1

jXu > Yjj
2

jUkXuj
2
Xn
j¼1

jXv > Yjj
2

jUkXvj

¼ 2
Xn
j¼1

ðjXukXv > Yjj2 jXvkXu > YjjÞ
2

jUkXukXvjðjXuj þ jXvjÞ

¼ 2
Xn
j¼1

jXukXvjðmðZujÞ2 mðZvjÞÞ
2

jUjðjXuj þ jXvjÞ
# 0:

Clearly, one has that aD ¼ 0 when mðZujÞ ¼ mðZvjÞ. That is aðSÞ ¼ aðS0Þ. A

The following Corollary 4.3 is directly derived from Theorem 4.2.

Corollary 4.3. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables.

If U=B

N

U=C, then aðS0Þ # aðSÞ.

Corollary 4.3 shows that certainty measure a of the decision table after the condition

attribute set becomes coarser will not be more than the one in the original table.

As follows, we analyse the change mechanism of the consistency measure of a decision

table. The consistency measure from Qian et al. (2008b) is another important measure for

assessing the decision performance of a decision table, which is shown in Definition 4.4.

Definition 4.4 (Qian et al. 2008b). Let S ¼ ðU;C < DÞ be a decision table and

RULE ¼ {ZijjZij : desðXiÞ! desðYjÞ;Xi [ U=C; Yj [ U=D}. The consistency measure
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b of S is defined as

bðSÞ ¼
Xm
i¼1

jXij

jUj
12

4

jXij

XNi

j¼1

jXi > YjjmðZijÞð12 mðZijÞÞ

" #
; ð7Þ

where Ni is the number of decision rules determined by the condition class Xi and mðZijÞ is

the certainty degree of the rule Zij.

Using the consistency measure, the following Theorem 4.5 can be derived.

Theorem 4.5. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables, if U=C ¼

{X1;X2; . . . ;Xm}, U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . ;Xv21, Xvþ1; . . . ;Xm;Xu < Xv},

U=D ¼ {Y1; Y2; . . . ; Yn} then the relationship between bðS0Þ and b(S) is uncertain,

especially, bðSÞ ¼ bðS0Þ iff mðZujÞ ¼ mðZvjÞ for j # n.

Proof. From the definition of consistency measure, it is easy to know that

bðSÞ ¼
Xm
i¼1

jXij

jUj
12

4

jXij

XNi

j¼1

jXi > YjjmðZijÞð12 mðZijÞÞ

" #

¼ 12
4

jUj

Xm
i¼1

Xn
j¼1

jXi > YjjmðZijÞð12 mðZijÞÞ

bD ¼ bðS0Þ2 bðSÞ ¼
4

jUj

Xn
j¼1

jXu > Yjj
2

jXuj
2

jXu > Yjj
3

jXuj
2

 !

þ
4

jUj

Xn
j¼1

jXv > Yjj
2

jXvj
2

jXv > Yjj
3

jXvj
2

 !

2
4

jUj

Xn
j¼1

ðjXu > Yjj þ jXv > YjjÞ
2

jXuj þ jXvj
2

ðjXu > Yjj þ jXv > YjjÞ
3

ðjXuj þ jXvjÞ
2

� �
:

Let x ¼ jXuj, y ¼ jXvj, dj ¼ ðjXu > Yjj=jXujÞ and sj ¼ ðjXv > Yjj=jXvjÞ. It follows that

bD ¼
Xn
j¼1

ðdjxÞ
2

x
2

ðdjxÞ
3

x2
þ
Xn
j¼1

ðsjyÞ
2

y
2

ðsjyÞ
3

y2
2
Xn
j¼1

ðdjxþ sjyÞ
2

xþ y
2

ðdjxþ sjyÞ
3

ðxþ yÞ2

¼
Xn
j¼1

xy

ðxþ yÞ2
ðððdj 2 sjÞ

2 2 2d3j 2 s3
j þ 3d2j sjÞxÞ

þ
Xn
j¼1

xy

ðxþ yÞ2
ðððdj 2 sjÞ

2 2 d3j 2 2s3
j þ 3djs

2
j ÞyÞ

¼
Xn
j¼1

xyðdj 2 sjÞ
2

ðxþ yÞ2
ð12 2dj 2 sjÞxþ ð12 2sj 2 djÞy
� �

:

Obviously, when dj ¼ sj, ;j # n, i.e. mðZujÞ ¼ mðZvjÞ, we have that bD ¼ 0. Thus,

bðS0Þ ¼ bðSÞ. Otherwise, the value of bD is uncertain. A

Theorem 4.5 easily deduces the following corollary.
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Corollary 4.6. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables.

If U=C a U=B, then the relationship between bðS0Þ and b(S) is uncertain.

Corollary 4.6 indicates that, for a decision table, the change of the consistency measure

b is uncertain after the condition attribute set becomes coarser.

Theorem 4.7. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables, if

U=C ¼ {X1;X2; . . . ;Xm}, U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . ;Xv21, Xvþ1; . . . ;Xm;
Xu < Xv};U=D ¼ {Y1; Y2}, then bðS0Þ # bðSÞ, especially, bðSÞ ¼ bðS0Þ iff mðZujÞ ¼

mðZvjÞ for j # 2.

Proof. Let x ¼ jXuj, y ¼ jXvj, dj ¼ ðjXu > Yjj=jXujÞ and sj ¼ ðjXv > Yjj=jXvjÞ. From the

proof of Theorem 4.5, we have that

bD ¼ bðS0Þ2 bðSÞ ¼
Xn
j¼1

xyðdj 2 sjÞ
2

ðxþ yÞ2
ð12 2dj 2 sjÞxþ ð12 2sj 2 djÞy
� �

:

Furthermore, by the existing condition U=D ¼ {Y1; Y2}, we have that d1 þ d2 ¼ 1 and

s1 þ s2 ¼ 1. Thus, it follows that

bD ¼
xyðd1 2 s1Þ

2

ðxþ yÞ2
ð12 2d1 2 s1Þxþ ð12 2s1 2 d1Þy
� �

þ
xyðd2 2 s2Þ

2

ðxþ yÞ2
ð12 2d2 2 s2Þxþ ð12 2s2 2 d2Þy
� �

¼ 22
xyðd1 2 s1Þ

2

ðxþ yÞ
# 0:

Obviously, when dj ¼ sj, i.e. mðZujÞ ¼ mðZvjÞ for j # 2, we have that bðS0Þ ¼ bðSÞ. A

The following Corollary 4.8 generalises the results of Theorem 4.7.

Corollary 4.8. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables, if

U=C a U=B and U=D ¼ {Y1; Y2}, then bðS0Þ # bðSÞ.

Corollary 4.8 shows that, for a decision table with two decision values, consistency

measure b of the decision table is not more than the one after the condition attribute set

becomes coarser.

In Qian et al. (2008b), the support measure of a decision table is proposed for

computing the entire support measure of all decision rules. In the following, we will

consider the mechanism of the measure.

Definition 4.9 (Qian et al. 2008b). Let S ¼ ðU;C < DÞ be a decision table and

RULE ¼ {ZijjZij : desðXiÞ! desðYjÞ;Xi [ U=C; Yj [ U=D}. The support measure g of

S is defined as

gðSÞ ¼
Xm
i¼1

Xn
j¼1

s2ðZijÞ ¼
Xm
i¼1

Xn
j¼1

jXi > Yjj
2

jUj
2

: ð8Þ

The following Theorem 4.10 gives the monotonicity of the support measure in the

context of decision tables.
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Theorem 4.10. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables.

If U=C ¼ {X1;X2; . . . ;Xm}, U=B ¼ {X1;X2; . . . ;Xu21, U=D ¼ {Y1; Y2; . . . ; Yn};
Xuþ1; . . . ;Xv21;Xvþ1; . . . ;Xm;Xu < Xv}, then gðS0Þ $ gðSÞ.

Proof. By the existing condition, it follows that

gD ¼ gðS0Þ2 gðSÞ ¼
Xl
k¼1

Xn
j¼1

jX0
k > Yjj

2

jUj
2

2
Xm
i¼1

Xn
j¼1

jXi > Yjj
2

jUj
2

¼
Xn
j¼1

ðjXu > Yjj þ jXv > YjjÞ
2

jUj
2

2
Xn
j¼1

jXu > Yjj
2

jUj
2

2
Xn
j¼1

jXv > Yjj
2

jUj
2

¼
Xn
j¼1

2jXu > YjkXv > Yjj

jUj
2

$ 0:

A

Corollary 4.11. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables.

If U=C a U=B, then gðS0Þ $ gðSÞ.

From Corollary 4.11, we know that, for a given decision, the finer condition attribute

set usually decreases the support measure g.

5. Change in decision performance induced by reduction approaches

In this section, we investigate the three kinds of attribute-reduction methods, namely

positive region reduction, Shannon’s entropy reduction and Liang’s entropy reduction.

We analyse the difference between the decision performance of a reduced decision table

and that of the original one.

5.1 Change in decision performance induced by positive-region reduction

The analysis on change of decision performance of a decision table after performing a

positive-region reduction is shown in this subsection.

Theorem 5.1. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables, and B be a

positive-region reduct of C. If Xu [ U=C and Xv [ U=C are in the consistent part of the

decision table S, and Xu < Xv ¼ Xw, Xw [ U=B, then mðZujÞ ¼ mðZvjÞ for Yj [ U=D,
where mðZijÞ ¼ jXi > Yjj=jXij.

Proof. From the condition, we have that the two classes Xu and Xv in the consistent part of

S combines a new condition class Xw in S0. Therefore, the condition classes Xw will fall in

the inconsistent part of S0 if ’j # n such that mðZujÞ – mðZvjÞ. Clearly, the positive region

of S is unequal to the one of S0, which is in contradiction with the assumption that B is a

positive-region reduct of C. Thus, mðZujÞ ¼ mðZvjÞ for Yj [ U=D. A

Theorem 5.1 indicates that if some condition classes in the consistent part of a decision

table combine to a new condition class after performing the positive-region reduction, then

the rules induced by these condition classes have the same certainty measures.

Moreover, we first investigate the change mechanism of the entire certainty measure a

with respect to the positive-region reduction.
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Theorem 5.2. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables. If S is

consistent and B is a positive-region reduct of C, then

aðS0Þ ¼ aðSÞ;bðS0Þ ¼ bðSÞ; gðS0Þ $ gðSÞ:

Proof. By the existing condition that B is a positive-region reduct of C, we have

U=B X U=C. It is obvious that aðS0Þ ¼ aðSÞ;bðS0Þ ¼ bðSÞ; gðS0Þ ¼ gðSÞ if U=B ¼ U=C,
and the case U=BU=C will be analysed in detail.

For simplicity, without any loss of generality, let U=C ¼ {X1;X2; . . . ;Xm},

U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . ;Xv21, Xvþ1; . . . ;Xm, Xu < Xv} and U=D ¼ {Y1;
Y2; . . . ; Yn}.

Since the decision table S is consistent, then the decision table S0 after performing the

positive-region reduction is also consistent. Furthermore, according to Theorem 5.1, we

have that mðZujÞ ¼ mðZvjÞ for j # n. Thus, by Theorems 4.2, 4.5 and 4.10, we have that

aðS0Þ ¼ aðSÞ;bðS0Þ ¼ bðSÞ; gðS0Þ $ gðSÞ, respectively. A

Theorem 5.2 shows that, for a consistent table, if it is reduced by performing the

positive-region reduction, then the certainty measure of the table will be unchanged.

Theorem 5.3. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables. If B is a

positive-region reduct of C, then aðS0Þ # aðSÞ, the relationship between bðS0Þ and b(S) is

uncertain, and gðS0Þ $ gðSÞ.

Proof. From the condition that B is a positive-region reduct of C, we have U=B X U=C.
It is obvious that aðS0Þ ¼ aðSÞ;bðS0Þ ¼ bðSÞ; gðS0Þ ¼ gðSÞ if U=B ¼ U=C, and the case

U=B

N

U=C will be analysed in detail.

For simplicity, without any loss of generality, we suppose that U=C ¼ {X1;X2; . . . ;
Xm}, U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . ;Xv21, Xvþ1; . . . ;Xm, Xu < Xv} and U=D ¼

{Y1; Y2; . . . ; Yn}.

Through using the positive-region reduction, the change of condition classes has two

cases. One is the combination of the condition classes in the consistent part of a decision

table and the other is combination of the condition classes in the inconsistent part of a

decision table. These two cases are listed as follows:

(1) The condition classes combined in the consistent part. Let the two classes Xu and

Xv in the consistent part of decision table S become a new condition class Xu < Xv

after performing the positive-region reduction and the other condition classes are

unchanged. From Theorem 5.1, it follows that mðZujÞ ¼ mðZvjÞ, j # n.

Furthermore, by Theorems 4.2, 4.5 and 4.10, one has that aðS0Þ ¼ aðSÞ, bðS0Þ ¼

bðSÞ and gðS0Þ $ gðSÞ, respectively.

(2) The condition classes combined in the inconsistent part. Let the two classes Xu and

Xv in the inconsistent part of table S be combined to a class Xu < Xv after the

positive-region reduction and other condition classes remain unchanged. From

Theorems 4.2, 4.5 and 4.10, it follows that aðS0Þ # aðSÞ, the relationship between

bðS0Þ and b(S) is uncertain, and gðS0Þ $ gðSÞ.

In conclusion, aðS0Þ # aðSÞ, the relationship between bðS0Þ and b(S) is uncertain, and

gðS0Þ $ gðSÞ, if B is a positive-region reduct of C. A

Theorem 5.3 states that, for a decision table, the certainty measure a of the decision

table after using the positive-region reduction will be no more than that of the original one,
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the consistency measure b of the reduced table will be uncertain after performing a

positive-region reduction and the support measure g after using the positive-region

reduction will be no less than that of the original one. Example 5.1 shows their change

mechanism.

Example 5.1. We employ Tables 2 and 3 to illustrate the change in the decision

performance of a decision table after performing the positive-region reduction.

It is easy to calculate using Definition 2.1 that the set of all positive-region reducts of

Table 2 is REDP
DðCÞ ¼ {{Muscle pain;Cough}}. Let BðPÞ ¼ {Muscle pain;Cough},

S0 ¼ ðU;BðPÞ< DÞ, we have that

aðSÞ ¼ 0:4861; aðS0Þ ¼ 0:4833;

bðSÞ ¼ 0:2639; bðS0Þ ¼ 0:2667;

gðSÞ ¼ 0:1528; gðS0Þ ¼ 0:2778:

It is clear that

aðS0Þ , aðSÞ;bðS0Þ . bðSÞ; gðS0Þ . gðSÞ:

Furthermore, we can obtain that the set of all positive-region reducts of

Table 3 is REDP
DðCÞ ¼ {{Muscle pain;Cough}}. Let BðPÞ ¼ {Muscle pain;Cough},

S0 ¼ ðU;BðPÞ< DÞ, one has

aðSÞ ¼ 0:4861; aðS0Þ ¼ 0:4860;

bðSÞ ¼ 0:2639; bðS0Þ ¼ 0:2600;

gðSÞ ¼ 0:1528; gðS0Þ ¼ 0:2500:

Obviously,

aðS0Þ , aðSÞ; bðS0Þ , bðSÞ; gðS0Þ . gðSÞ:

Theorem 5.4. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables,

U=D ¼ {Y1; Y2}. If B is a positive-region reduct of C, then aðS0Þ # aðSÞ, bðS0Þ # bðSÞ

and gðS0Þ $ gðSÞ.

Table 2. A decision table about diagnosing rheum.

Patients Headache Muscle pain Animal heat Cough Rheum

e1 Yes No High Yes No
e2 Yes Yes High No Yes
e3 Yes Yes Normal Yes No
e4 Yes Yes Normal Yes No
e5 Yes Yes Normal Yes Yes
e6 Yes Yes Normal Yes Possible
e7 No Yes High Yes No
e8 No Yes High Yes No
e9 No Yes High Yes No
e10 No Yes High Yes Yes
e11 No Yes High Yes Yes
e12 No Yes High Yes Possible
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Proof. According to the condition that B is a positive-region reduct of C, we have

U=B X U=C. It is obvious that aðS0Þ ¼ aðSÞ;bðS0Þ ¼ bðSÞ; gðS0Þ ¼ gðSÞ if U=B ¼ U=C,
and the case U=B

N

U=C will be investigated in detail.

For simplicity, without any loss of generality, we suppose that U=C ¼ {X1;X2; . . . ;
Xm}, U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . ;Xv21, Xvþ1; . . . ;Xm, Xu < Xv} and U=D ¼

{Y1; Y2}.

Through using the positive-region reduction, the change of condition classes has two

cases. One is the combination of the condition classes in the consistent part of a decision

table and the other is the combination of the condition classes in the inconsistent part of a

decision table. These two cases are listed as follows:

(1) The condition classes combined in the consistent part. Let the two classes Xu and

Xv in the consistent part of decision table S become a new condition class Xu < Xv

after performing the positive-region reduction and the other condition classes

remain unchanged. From Theorem 5.1, it follows that mðZujÞ ¼ mðZvjÞ, j # n.

Furthermore, by Theorems 4.2, 4.7 and 4.10, one has that aðS0Þ ¼ aðSÞ, bðS0Þ ¼

bðSÞ and gðS0Þ $ gðSÞ, respectively.

(2) The condition classes combined in the inconsistent part. Let the two classes Xu and

Xv in the inconsistent part of table S be combined to a class Xu < Xv after the

positive-region reduction and the other condition classes remain unchanged. From

Theorems 4.2, 4.7 and 4.10, it follows that aðS0Þ # aðSÞ, bðS0Þ # bðSÞ and

gðS0Þ $ gðSÞ.

In conclusion, aðS0Þ # aðSÞ, bðS0Þ # bðSÞ and gðS0Þ $ gðSÞ, if B is a positive-region

reduct of C and there are only two decision values in a decision table. A

Theorem 5.3 states that, for a decision table with two decision values, the certainty

measure a and the consistence measure b after using the positive-region reduction will be

no more than that in original table, and the support measure g will be no less than that of

original one. It is illustrated by the following example.

Example 5.2. We employ Table 1 to illustrate the change in the decision performance of a

decision table after performing the positive-region reduction.

It is easy to obtain by Definition 2.1 that the set of all positive-region

reducts REDP
DðCÞ ¼ {{Headache}; {Animal heat;Cough}}. Let B1ðPÞ ¼ {Headache},

B2ðPÞ ¼ {Animal heat;Cough}, S1 ¼ ðU;B1ðPÞ< DÞ and S2 ¼ ðU;B2ðPÞ< DÞ, we have

Table 3. A decision table about diagnosing rheum.

Patients Headache Muscle pain Animal heat Cough Rheum

e1 Yes No High Yes No
e2 Yes Yes High No Yes
e3 Yes Yes Normal Yes No
e4 Yes Yes Normal Yes No
e5 Yes Yes Normal Yes Yes
e6 Yes Yes Normal Yes Possible
e7 No Yes High Yes No
e8 No Yes High Yes Yes
e9 No Yes High Yes Yes
e10 No Yes High Yes Yes
e11 No Yes High Yes Possible
e12 No Yes High Yes Possible
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that

aðSÞ ¼ 0:5667; aðS1Þ ¼ 0:5556; aðS2Þ ¼ 0:5667;

bðSÞ ¼ 0:1333; bðS1Þ ¼ 0:1111; bðS2Þ ¼ 0:1333;

gðSÞ ¼ 0:1200; gðS1Þ ¼ 0:4200; gðS2Þ ¼ 0:1200:

It is clear that

aðS1Þ , aðSÞ; aðS2Þ ¼ aðSÞ;

bðS1Þ , bðSÞ; bðS2Þ ¼ bðSÞ;

gðS1Þ . gðSÞ; gðS2Þ ¼ gðSÞ:

5.2 Change in decision performance induced by Shannon’s entropy reduction

In this subsection, we will analyse the change mechanism of decision performance of a

decision table through performing Shannon entropy reduction.

Theorem 5.5. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables. If B is a

Shannon entropy reduct of C, then

aðSÞ ¼ aðS0Þ; bðSÞ ¼ bðS0Þ and gðSÞ # gðS0Þ:

Proof. For simplicity, without any loss of generality, let U=C ¼ {X1;X2; . . . ;Xm},

U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . ;Xv21, Xvþ1; . . . ;Xm, Xu < Xv} and U=D ¼ {Y1;
Y2; . . . ; Yn}. From the existing condition that B is a Shannon entropy reduct of C and

Theorem 3.1, it follows that mðZujÞ ¼ mðZvjÞ.

Therefore, by Theorem 4.2, aðSÞ ¼ aðS0Þ, from Theorem 4.5, bðSÞ ¼ bðS0Þ and

according to Theorem 4.7, gðSÞ # gðS0Þ. A

Theorem 5.5 states that the certainty measure a of a decision table will be

unchangeable after Shannon’s entropy reduction, the consistent measure b of a

decision table will also be unchangeable after using Shannon’s entropy reduction, and

the support measure g through using Shannon’s entropy reduction will be no less than

that of the original one. Example 5.4 illustrates the change mechanism of the support

measure.

Example 5.3. We employ Table 1 to illustrate the change in the decision performance of a

decision table after performing the Shannon’s entropy reduction.

It is easy to calculate from Definition 2.2 that the set of all Shannon entropy

reducts REDS
DðCÞ ¼ {{Headache;Muscle pain}; {Animal heat;Cough}}. Let B1ðSÞ ¼

{Headache;Muscle pain}; B2ðSÞ ¼ {Animal heat;Cough} and S1 ¼ ðU;B1ðSÞ< DÞ, S2 ¼

ðU; B2ðSÞ< DÞ, we have that

aðSÞ ¼ 0:5667; aðS1Þ ¼ 0:5667; aðS2Þ ¼ 0:5667;

bðSÞ ¼ 0:1333; bðS1Þ ¼ 0:1333; bðS2Þ ¼ 0:1333;

gðSÞ ¼ 0:1200; gðS1Þ ¼ 0:2400; gðS2Þ ¼ 0:1200:
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Obviously,

aðS1Þ ¼ aðS2Þ ¼ aðSÞ; bðS1Þ ¼ bðS2Þ ¼ bðSÞ; gðS1Þ . gðSÞ; gðS2Þ ¼ gðSÞ:

5.3 Change in decision performance induced by Liang’s entropy reduction

In this subsection, one will express a variety of decision performance through Liang’s

entropy reduction.

Theorem 5.6. Let S ¼ ðU;C < DÞ and S0 ¼ ðU;B< DÞ be two decision tables. If B is a

Liang entropy reduct of C, then

aðSÞ ¼ aðS0Þ; bðSÞ ¼ bðS0Þ and gðSÞ # gðS0Þ:

Proof. For simplicity, without any loss of generality, let U=C ¼ {X1;X2; . . . ;Xm},

U=B ¼ {X1;X2; . . . ;Xu21;Xuþ1; . . . ;Xv21, Xvþ1; . . . ;Xm, Xu < Xv} and U=D ¼ {Y1; Y2;
. . . ; Yn}. Through using Liang’s entropy reduction, we suppose that the two classes Xu and

Xvðu; v , mÞ combine to a new class Xu < Xv. From Theorem 3.4, it follows that

mðZujÞ ¼ mðZvjÞ.

Therefore, from Theorem 4.2, aðSÞ ¼ aðS0Þ, by Theorem 4.5, bðSÞ ¼ bðS0Þ and from

Theorem 4.7, gðSÞ # gðS0Þ. A

Theorem 5.6 shows that the certainty measure a will be unchanged after performing

Liang’s entropy reduction, the consistency measure will also be unchanged after

performing a Liang’s entropy reduction and the support measure after using Liang’s

entropy reduction will be no less than that of the original one. This idea can be explained

by the following example.

Example 5.4. We employ Table 1 to illustrate the change in the decision performance of a

decision table after performing Liang’s entropy reduction.

Using Definition 2.3, it is easy to get the set of all Liang entropy

reducts REDL
DðCÞ ¼ {{Headache;Animal heat;Muscle pain}; {Animal heat;Cough}}.

Let B1ðLÞ ¼ {Headache;Animal heat;Muscle pain}; B2ðLÞ ¼ {Animal heat;Cough} and

S1 ¼ ðU;B1ðLÞ< DÞ, S2 ¼ ðU;B2ðLÞ< DÞ. We have that

aðSÞ ¼ 0:5667; aðS1Þ ¼ 0:5667; aðS2Þ ¼ 0:5667;

bðSÞ ¼ 0:1333; bðS1Þ ¼ 0:1333; bðS2Þ ¼ 0:1333;

gðSÞ ¼ 0:1200; gðS1Þ ¼ 0:1200; gðS2Þ ¼ 0:1200:

Obviously,

aðS1Þ ¼ aðS2Þ ¼ aðSÞ; bðS1Þ ¼ bðS2Þ ¼ bðSÞ; gðS1Þ ¼ gðS2Þ ¼ gðSÞ:

6. Experimental analysis

In this section, through experimental analysis, we have illustrated the change in the decision

performance after using the positive-region reduction, Shannon’s entropy reduction and
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Liang’s entropy reduction, for general decision tables. We have downloaded the data-set

Spect fromUCIdatabase (Spect is a decision tablewith twodecisionvalues). In order to verify

their performance, we randomly extracted 150 objects from the data-set 100 times. As the

limitation of the paper’s length, one of the 100 tables extracted fromSpect is selected to verify

our results.

6.1 Performance change deriving from positive-region reduction

All the positive-region reducts and their corresponding three performance measures of the

original table are shown in Table 4 and Figures 1–3. The values of a, b and g of the

original table and the corresponding reduced tables are shown in Table 4. Figures 1–3

show that the value of each of a, b and g with respect to every positive-region reduct,

respectively.

From Table 4 and Figures 1–3, it is easy to draw the following conclusion. Through

using a positive-region reduction, the certainty measure a and the consistency measure

Table 4. All positive-region reducts and decision performance measures of the corresponding
reduced tables.

No. Reducts a b g

1 1,2,3,4,8,9,10,11,12,14,15,16,19,20,21 0.90379 0.80758 0.01396
2 1,2,3,4,7,8,9,10,11,13,14,15,16,19,20,21 0.90444 0.80889 0.01244
3 1,2,3,4,8,9,10,11,12,14,17,20,21,22 0.90339 0.80679 0.01102
4 1,2,3,4,8,9,10,11,12,14,19,21,22 0.90381 0.80762 0.01262
5 1,2,3,4,5,8,9,10,11,13,14,17,20,21,22 0.90381 0.80762 0.01058
6 1,2,3,4,7,8,9,10,11,13,14,17,20,21,22 0.90400 0.80800 0.01004
7 1,2,3,4,8,9,10,11,13,14,16,17,20,21,22 0.90381 0.80762 0.01031
8 1,2,3,4,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
9 1,2,3,4,6,8,9,10,12,14,15,16,19,20,21 0.90379 0.80758 0.01387
10 1,2,3,4,5,6,8,9,11,12,14,15,19,20,21 0.90379 0.80758 0.01396
11 1,2,3,4,6,8,9,10,11,12,14,15,19,20,21 0.90379 0.80758 0.01396
12 1,2,3,4,6,8,9,11,12,14,15,17,19,20,21 0.90379 0.80758 0.01378
13 1,2,3,4,6,7,8,9,10,13,14,15,16,19,20,21 0.90444 0.80889 0.01236
14 1,2,3,4,5,6,7,8,9,11,13,14,15,19,20,21 0.90444 0.80889 0.01262
15 1,2,3,4,6,7,8,9,10,11,13,14,15,19,20,21 0.90444 0.80889 0.01244
16 1,2,3,4,6,7,8,9,11,13,14,15,17,19,20,21 0.90444 0.80889 0.01236
17 1,3,4,6,8,9,10,12,14,16,17,20,21,22 0.90339 0.80679 0.01111
18 1,3,4,6,8,9,10,12,14,16,19,21,22 0.90381 0.80762 0.01253
19 1,3,4,5,6,8,9,11,12,14,17,21,22 0.90337 0.80673 0.01307
20 1,3,4,6,8,9,10,11,12,14,17,21,22 0.90337 0.80673 0.01289
21 1,3,4,6,8,9,11,12,14,17,19,21,22 0.90381 0.80762 0.01262
22 1,3,4,5,6,8,9,11,12,14,19,21,22 0.90381 0.80762 0.01271
23 1,3,4,6,8,9,10,11,12,14,19,21,22 0.90381 0.80762 0.01262
24 1,2,3,4,6,8,9,10,13,14,16,17,20,21,22 0.90381 0.80762 0.01022
25 1,3,4,6,7,8,9,10,13,14,16,17,20,21,22 0.90400 0.80800 0.00987
26 1,2,3,4,6,8,9,10,13,14,16,18,19,20,21,22 0.90444 0.80889 0.00967
27 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960
28 1,2,3,4,5,6,8,9,11,13,14,17,20,21,22 0.90381 0.80762 0.01076
29 1,2,3,4,6,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.01004
30 1,3,4,5,6,7,8,9,11,13,14,17,20,21,22 0.90400 0.80800 0.01013
31 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
32 1,2,3,4,5,6,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.01033
33 1,3,4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969

* Original table 0.90444 0.80889 0.00933
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b are not larger than the original certainty measure and the original consistency measure

respectively, and the support measure g is not smaller than the original support measure.

6.2 Performance change deriving from Shannon’s entropy reduction

All the Shannon entropy reducts and their corresponding three performance measures

of the original table are shown in Table 5 and Figures 4–6. The values of a, b and g

of the original table and the corresponding reduced tables are shown in Table 5.

Figures 4–6 show the values of a, b and g with respect to every Shannon entropy reduct

respectively.

From Table 5 and Figures 4–6, it is easy to draw the following conclusion: after

performing a Shannon entropy reduction, each of the certainty measure a and the

consistency measure b is the same as each of those induced by an original decision table,

and the support measure g is not smaller than the original support measure.
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Figure 1. Variation of the certainty measure a after positive-region reducts.

0.8100
b of the original table
b of reducted tables0.8095

0.8090

0.8085

V
al

ue
s 

of
 c

on
si

st
en

cy
 m

ea
su

re
 b

0.8080

0.8075

0.8070

0.8065

0.8060
1 3 5 7 9 11 13 15 17

No. of reducted tables

19 21 23 25 27 29 31 33

Figure 2. Variation of the consistency measure b after positive-region reducts.
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6.3 Performance change deriving from Liang’s entropy reduction

All the Liang entropy reducts and their corresponding three performance measures of the

original table are shown in Table 6 and Figures 7–9. The values of a, b and g of the

original table and the corresponding reduced tables are presented in Table 6. Figures 7–9

show the value of each of a, b and g with respect to every positive-region reduct,

respectively.
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Figure 3. Variation of the support measure g after positive-region reducts.

Table 5. All Shannon entropy reducts and decision performance measures of the corresponding
reduced tables.

No. Reducts a b g

1 1,2,3,4,8,9,10,11,12,13,14,19,21,22 0.90444 0.80889 0.01120
2 1,2,3,4,7,8,9,10,11,13,14,15,16,19,20,21 0.90444 0.80889 0.01240
3 1,2,3,4,8,9,10,11,12,13,14,15,16,19,20,21 0.90444 0.80889 0.01227
4 1,2,3,4,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
5 1,2,3,4,5,6,7,8,9,11,13,14,15,19,20,21 0.90444 0.80889 0.01262
6 1,2,3,4,6,7,8,9,10,11,13,14,15,19,20,21 0.90444 0.80889 0.01244
7 1,2,3,4,6,7,8,9,11,13,14,15,17,19,20,21 0.90444 0.80889 0.01236
8 1,2,3,4,5,6,8,9,11,12,13,14,15,19,20,21 0.90444 0.80889 0.01236
9 1,2,3,4,6,8,9,10,11,12,13,14,15,19,20,21 0.90444 0.80889 0.01227
10 1,2,3,4,6,8,9,11,12,13,14,15,17,19,20,21 0.90444 0.80889 0.01209
11 1,2,3,4,6,7,8,9,10,13,14,15,16,19,20,21 0.90444 0.80889 0.01236
12 1,2,3,4,6,8,9,10,12,13,14,15,16,19,20,21 0.90444 0.80889 0.01218
13 1,3,4,5,6,8,9,11,12,13,14,19,21,22 0.90444 0.80889 0.01120
14 1,3,4,6,8,9,10,11,12,13,14,19,21,22 0.90444 0.80889 0.01111
15 1,3,4,6,8,9,11,12,13,14,17,19,21,22 0.90444 0.80889 0.01102
16 1,2,3,4,5,6,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.01013
17 1,2,3,4,6,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.01004
18 1,3,4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
19 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
20 1,3,4,6,8,9,10,12,13,14,16,19,21,22 0.90444 0.80889 0.01111
21 1,2,3,4,6,8,9,10,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
22 1,2,3,4,6,8,9,10,13,14,16,18,19,20,21,22 0.90444 0.80889 0.00969
23 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960

* Original table 0.90444 0.80889 0.00933
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Table 6. All Liang entropy reducts and decision performance measures of the corresponding
reduced tables.

No. Reducts a b g

1 1,2,3,4,7,8,9,10,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
2 1,2,3,4,8,9,10,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00978
3 1,3,4,6,7,8,9,10,13,14,16,19,20,21,22 0.90444 0.80889 0.00960
4 1,3,4,5,6,7,8,9,11,13,14,19,20,21,22 0.90444 0.80889 0.00969
5 1,2,3,4,6,7,8,9,11,13,14,17,19,20,21,22 0.90444 0.80889 0.00969
6 1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22 0.90444 0.80889 0.00960
7 1,3,4,6,8,9,10,12,13,14,16,19,20,21,22 0.90444 0.80889 0.00978
8 1,3,4,5,6,8,9,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00987
9 1,3,4,6,8,9,10,11,12,13,14,19,20,21,22 0.90444 0.80889 0.00978
10 1,3,4,6,8,9,11,12,13,14,17,19,20,21,22 0.90444 0.80889 0.00969

* Original table 0.90444 0.80889 0.00933
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Figure 7. Variation of the certainty measure a after Liang entropy reducts.
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Figure 8. Variation of the consistency measure b after Liang entropy reducts.
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From Table 6 and Figures 7–9, it is easy to draw the following conclusions: after

performing a Liang entropy reduction, the change is similar to Shannon’s entropy

reduction, each of the certainty measure a and the consistency measure b is the same as

each of those induced by a original decision table, and the support measure g is not smaller

than the original support measure.

7. Conclusions

Certainty measure, consistency measure and support measure are three important

measures for evaluating the decision performance of a decision table. In this paper, we

have analysed the change mechanism of the decision performance after performing the

positive-region reduction, Shannon’s entropy reduction and Liang’s entropy reduction,

and have obtained some of their important properties. These three measures may be

changed through using a positive-region reduction. However, the certainty measure and

the consistency measure are unchanged after using a Shannon entropy reduction and Liang

entropy reduction, and the support measure is usually increased. These results may be

helpful for determining which of the positive-region reduction, Shannon entropy reduction

and Liang’s entropy reduction is preferred for a practical decision problem in the context

of complete decision tables. Further development will be focused on the change

mechanism of three evaluation measures in the context of incomplete decision tables.
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Figure 9. Variation of the support measure g after Liang entropy reducts.
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