This article was downloaded by: [Wei, Wei]
On: 9 October 2010
Access details: Access Details: [subscription number 927862323]
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK


## International Journal of General Systems

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713642931

## Comparative study of decision performance of decision tables induced by attribute reductions

Wei Weiab; Jiye Liang ${ }^{\text {abb }}$; Yuhua Qian ${ }^{\text {ab }}$; Feng Wangab ${ }^{\text {ab }}$; Chuangyin Dang ${ }^{\text {c }}$
${ }^{a}$ Key Laboratory of Computational Intelligence and Chinese Information Processing of the Ministry of Education, Shanxi University, Taiyuan, P.R. China ${ }^{\text {b }}$ School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, P.R. China ${ }^{c}$ Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong

First published on: 06 July 2010

To cite this Article Wei, Wei , Liang, Jiye, Qian, Yuhua, Wang, Feng and Dang, Chuangyin(2010) 'Comparative study of decision performance of decision tables induced by attribute reductions', International Journal of General Systems, 39: 8, 813 - 838, First published on: 06 July 2010 (iFirst)
To link to this Article: DOI: 10.1080/03081079.2010.499102
URL: http://dx.doi.org/10.1080/03081079.2010.499102

## PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


# Comparative study of decision performance of decision tables induced by attribute reductions 

Wei Wei ${ }^{\text {a,b }}$, Jiye Liang ${ }^{\text {a,b }}$, Yuhua Qian ${ }^{\text {a,b }}$, Feng Wang ${ }^{\text {a,b }}$ and Chuangyin Dang ${ }^{\text {c }}$<br>${ }^{a}$ Key Laboratory of Computational Intelligence and Chinese Information Processing of the Ministry of Education, Shanxi University, Taiyuan 030006, P.R. China, ${ }^{b}$ School of Computer and Information Technology, Shanxi University, Taiyuan, 030006 Shanxi, P.R. China; ${ }^{c}$ Department of Manufacturing Engineering and Engineering Management, City University of Hong Kong, Hong Kong

(Received 1 September 2009; final version received 3 June 2010)


#### Abstract

The given attribute reduction approach decides the decision performance of a reduced decision table, which can give a guidance for selecting one rule-extraction method in practical applications. The objective of this study is to compare the decision performance of positive-region reduction, Shannon entropy reduction and Liang entropy reduction. In this paper, the relationships between positive-region reduction, Shannon entropy reduction and Liang entropy reduction are first investigated. Then, by means of three evaluation indices (certainty measure, consistency measure and support measure), we systemically analyse these change mechanisms for decision performance of a decision table induced by each of these three types of reduction approaches. Finally, by numerical experiments, these change mechanisms of a decision table's decision performance are verified for the above-mentioned three attribute reductions.


Keywords: rough set theory; attribute reduction; decision performance evaluation; information entropy

## 1. Introduction

Rough set theory was proposed by Pawlak in 1982. Recently, it has become a popular mathematical framework for pattern recognition, image processing, feature selection, neuro computing, conflict analysis, decision support, data mining and knowledge discovery processing from large data-sets (Pawlak 1991, 1998, 2005, Pal et al. 2001, Bazan et al. 2003, Pawlak and Skowron 2007).

In recent years, more attention has been paid to attribute reduction in information systems and decision tables. Many types of attribute-reduction techniques have been proposed in the last 20 years (Pawlak 1991, 1998, Ziarko 1993, Hu and Cercone 1995, Slezak 1996, Düntsch and Gediaga 1998, Slezak 1998, Nguyen and Slezak 1999, Yao et al. 1999, Quafatou 2000, Beynon 2001, Liang and Xu 2002, Mi et al. 2003, Wang 2003, Yao 2003, 2008, Zhu and Wang 2003, Li et al. 2004, Wang et al. 2005, Wu et al. 2005). For our development, we briefly recall some of these techniques. Skowron and Rauszer (1992) proposed an attribute-reduction algorithm using a discernibility matrix, which can find all reducts. However, it only works in small data-sets because the algorithm is very time consuming.

[^0]It is well known that a special heuristic function is usually used to acquire one of all reducts, which may be a tolerable strategy when only one reduct is needed. To date, several heuristic reduction approaches have been presented. Hu and Cercone (1995) used an attribute dependence to establish a heuristic algorithm for attribute reduction, which can retain certain rules derived from the original table. Wang (2003) and Wang et al. (2005) applied Shannon's information entropy for estimating the significance of an attribute. The reduction algorithm determined by this measure can also obtain one reduct, in which the certainty measure of every decision rule derived from the decision table is not changed. Liang et al. (2002, 2004, 2005, 2006), Liang and Xu (2002) and Liang and Qian (2008) proposed a new uncertainty measure for information systems, and it can be employed to compute an attribute reduct of a decision table. The $\beta$-reduct proposed by Ziarko (1993) provides a kind of attribute-reduction method in the variable precision rough set model. The $\alpha$-reduct and $\alpha$-relative reduct that allow the occurrence of additional inconsistency were proposed by Nguyen and Slezak (1999) for information systems and decision tables, respectively. An attribute-reduction method that preserves the class membership distribution of all objects in information systems was proposed by Slezak (1996, 1998). Five kinds of attribute reducts and their relationships in inconsistent information systems were investigated by Kryszkiewicz (2001), Li et al. (2004) and Mi et al. (2003), respectively. By eliminating some rigorous conditions required by the distribution reduct, a maximum distribution reduct was introduced by Mi et al. (2003). Unlike the possible reduct by Mi et al. (2003), the maximum distribution reduct can derive decision rules that are compatible with the original system. In these reduction approaches, the reduction based on the positive region, the reduction method based on Shannon's entropy and that based on Liang's entropy are three representative reduction approaches. These are mainly focused on in this study.

A set of decision rules can be generated from a decision table by adopting any kind of reduction method (Skowron and Rauszer 1992, Hu and Cercone 1995, Wang 2003, Huynh and Nakamori 2005, Skowron 1995, Wang et al. 2005). Düntsch and Gediaga (1998), based on information entropy, suggested some uncertainty measures of a decision rule and proposed three criteria for model selection. Moreover, several other measures such as certainty measure and support measure are often used to evaluate a decision rule (Greco et al. 2004, Liang et al. 2006). However, all of these measures are only defined for a single decision rule and are not suitable for measuring the decision performance of a rule set. There are two more kinds of measures in the literature (Pawlak 1998), which are approximation accuracy for decision classification and consistency degree for a decision table. Although these two measures, in some sense, could be regarded as measures for evaluating the decision performance of all decision rules generated from a decision table, they have some limitations. For instance, the certainty measure and consistency of a decision table can be well characterised by the approximation accuracy and consistency degree for a degree for a decision table when their values reach zero. To overcome the shortcomings of the existing measures, in the literature (Qian et al. 2008a, 2008b, 2008c), three new measures are proposed for this objective, which are certainty measure $(\alpha)$, consistency measure ( $\beta$ ) and support measure ( $\gamma$ ). These three measures can be used to evaluate the entire decision performance of a given complete and incomplete decision table.

The decision table induced by an attribute reduction still retains the indispensable attributes of the original one through eliminating the redundant attributes. However, the decision performance of the decision table may be changed after each of attribute reductions. In this paper, we have compared the changes of decision performance after
attribute reductions based on positive region, on Shannon's entropy and on Liang's entropy.

The rest of this paper is organised as follows. Some preliminary concepts are briefly recalled in Section 2. In Section 3, the relationships among positive-region reduction, Shannon's entropy reduction and Liang's entropy reduction are investigated. In Section 4, through reviewing three existing measures for decision evaluation, the change mechanism of each of these three criteria is discovered in a decision table. In Section 5, the change of decision performance of a decision table induced by each of three existing types of reduction approaches is systemically analysed. In Section 6, we have also employed a real data-set from the UCI database for experimental analysis. Experimental results show the correctness of the change mechanism obtained in this paper. Section 7 concludes this paper.

## 2. Preliminaries

In this section, we review some basic concepts such as indiscernibility relation, partition, decision tables, decision rules, certainty degree and support degree of a rule and the definition of reduction.

An information system (sometimes called a data table, an attribute-value system, a knowledge representation system, etc.), as a basic concept in rough set theory, provides a convenient framework for the representation of objects in terms of their attribute values.

Let $S=(U, A)$ be an information system, where $U$ is a non-empty and finite set of objects, called a universe, and $A$ is a non-empty and finite set of attributes. For each $a \in A$, a mapping $a: U \rightarrow V_{a}$ is determined by an information system, where $V_{a}$ is the set of all possible values of $a$.

Each non-empty subset $B \subseteq A$ determines an indiscernibility relation in the following way, $R_{B}=\{(x, y) \in U \times U \mid a(x)=a(y), \forall a \in B\}$, where $a(x)$ and $a(y)$ respect the value of object $x$ and $y$ on attribute $a$, respectively. The relation $R_{B}$ partitions $U$ into some equivalence classes given by $U / R_{B}=\left\{[x]_{B} \mid x \in U\right\}$, where $[x]_{B}$ denotes the equivalence class determined by $x$ with respect to $B$, i.e. $[x]_{B}=\left\{y \in U \mid(x, y) \in R_{B}\right\}$. The partition $U / R_{B}$ is further denoted as $U / B$. Furthermore, for any $Y \subseteq U$, one defines that $(\bar{B}(Y), \underline{B}(Y))$ is the rough set of $Y$ with respect to $B$, where the lower approximation $\underline{B}(Y)$ and the upper approximation $\bar{B}(Y)$ of $Y$ are described by

$$
\begin{aligned}
& \underline{B}(Y)=\left\{x \mid[x]_{B} \subseteq Y\right\} \quad \text { and } \\
& \bar{B}(Y)=\left\{x \mid[x]_{B} \cap Y \neq \emptyset\right\} .
\end{aligned}
$$

We define a partial relation $\preceq$ on the family $\{U / B \mid B \subseteq A\}$ as follows: $U / P \preceq U / Q$ (or $U / Q \succeq U / P$ ) if and only if, for every $P_{i} \in U / P$, there exists $Q_{j} \in U / Q$ such that $P_{i} \subseteq Q_{j}$, where $U / P=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ and $U / Q=\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$ are partitions induced by $P, Q \subseteq A$, respectively. In this case, we say that $Q$ is coarser than $P$, or $P$ is finer than $Q$. If $U / P \preceq U / Q$ and $U / P \neq U / Q$, we say $Q$ is strictly coarser than $P$ (or $P$ is strictly finer than $Q$ ), denoted by $U / P<U / Q$ (or $U / Q U / P$ ).

Let $S=(U, C \cup D)$ with $C \cap D=\emptyset$ be an information system, where an element of $C$ is called a condition attribute, $C$ is called a condition attribute set, an element of $D$ is called a decision attribute, and $D$ is called a decision attribute set, then $S$ is defined as a decision table. For example, a decision table about diagnosing rheum is given in Table 1, in which $U=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\}$ is the universe, $C=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}=\{$ Headache, Muscle pain, Animal heat, Cough $\}$ is the condition attribute set and $D=\{d\}=\{$ Rheum $\}$ is the decision attribute set.

Table 1. A decision table about diagnosing rheum.

| Patients | Headache | Muscle pain | Animal heat | Cough | Rheum |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $e_{1}$ | Yes | Yes | Normal | No | No |
| $e_{2}$ | Yes | Yes | High | No | No |
| $e_{3}$ | Yes | Yes | Normal | No | Yes |
| $e_{4}$ | Yes | Yes | High | No | Yes |
| $e_{5}$ | Yes | No | High | Yes | Yes |
| $e_{6}$ | Yes | No | High | Yes | Yes |
| $e_{7}$ | Yes | No | High | Yes | No |
| $e_{8}$ | Yes | Yes | Very high | Yes | Yes |
| $e_{9}$ | Yes | Yes | Very high | Yes | No |
| $e_{10}$ | No | Yes | Normal | Yes | Yes |

If $U / C \preceq U / D$, then $S=(U, C \cup D)$ is said to be consistent, otherwise it is said to be inconsistent. Certain decision rules can be extracted from a consistent decision table, and both uncertain decision rules and certain decision rules can be extracted from an inconsistent decision table. Furthermore, we call the set of these condition classes which are the hypotheses of certain decision rules as the consistent part of a decision table, and call the set of all other condition classes as the inconsistent part of the decision table. This will be indicated by an example.

Example 2.1. From Table 1, we can find that it is an inconsistent table. Moreover, it is obvious that the set $\left\{e_{10}\right\}$ is the consistent part of Table 1 and the set $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, e_{7}, e_{8}, e_{9}\right\}$ is the inconsistent part of Table 1.

Let $S=(U, C \cup D)$ be a decision table, $X_{i} \in U / C$ and $Y_{j} \in U / D$. By $\operatorname{des}\left(X_{i}\right)$ and $\operatorname{des}\left(Y_{j}\right)$, we denote the descriptions of the equivalence classes $X_{i}$ and $Y_{j}$ in the decision table $S$. A decision rule is formally defined as (Pawlak 1991, Liang et al. 2006):

$$
\begin{equation*}
Z_{i j}: \operatorname{des}\left(X_{i}\right) \rightarrow \operatorname{des}\left(Y_{j}\right) \tag{1}
\end{equation*}
$$

The certainty degree $\mu$ and support degree $s$ of a decision rule $Z_{i j}$ are defined as follows (Pawlak 1991, Liang et al. 2006):

$$
\begin{equation*}
\mu\left(Z_{i j}\right)=\left|X_{i} \cap Y_{j}\right| /\left|X_{i}\right| \quad \text { and } \quad s\left(Z_{i j}\right)=\left|X_{i} \cap Y_{j}\right| /|U| \tag{2}
\end{equation*}
$$

where $|\cdot|$ is the cardinality of a set. It is clear that the value of each of $\mu\left(Z_{i j}\right)$ and $s\left(Z_{i j}\right)$ of a decision rule $Z_{i j}$ falls into the interval $[(1 /|U|), 1]$. In subsequent discussions, we denote the cardinality of the set $X_{i} \cap Y_{j}$ by $\left|Z_{i j}\right|$, which is called the support number of the rule $Z_{i j}$.

Let $S=(U, C \cup D)$ be a decision table, the relative positive region $D$ with respect to $C$ is defined as (Pawlak 1991):

$$
\begin{equation*}
\operatorname{POS}_{C}(D)=\bigcup_{i=1}^{n} \underline{C} Y_{i} \tag{3}
\end{equation*}
$$

where $Y_{i} \in U / D, \underline{C} Y_{i}$ indicates the lower approximation of $Y_{i}$ with respect to $C$. Using this denotation, one can give the definition of a positive-region reduct as follows.

Definition 2.1 (Hu and Cercone 1995). Let $S=(U, C \cup D)$ be a decision table and $B \subseteq C$. We call $B$ a positive-region reduct of $D$ with respect to $C$ if $B$ satisfies the following conditions:
(1) $\operatorname{POS}_{C}(D)=\operatorname{POS}_{B}(D)$ and
(2) for $\forall a \in B, \operatorname{POS}_{B}(D) \neq \operatorname{POS}_{B-\{a\}}(D)$.

In Wang (2003) and Wang et al. (2005), Shannon's condition entropy of condition attribute set $C$ with respect to decision attribute set $D$ in a decision table $S=(U, C \cup D)$ is defined as

$$
\begin{equation*}
H(D \mid C)=-\sum_{i=1}^{m} \frac{\left|X_{i}\right|}{|U|} \sum_{j=1}^{n} \frac{\left|X_{i} \cap Y_{j}\right|}{\left|X_{i}\right|} \log _{2} \frac{\left|X_{i} \cap Y_{j}\right|}{\left|X_{i}\right|} \tag{4}
\end{equation*}
$$

where $X_{i} \in U / C$ and $Y_{j} \in U / D$.
Definition 2.2 (Wang 2003, Wang et al. 2005). Let $S=(U, C \cup D)$ be a decision table, $B \subseteq C$. We call $B$ a Shannon entropy reduct of $D$ with respect to $C$ if $B$ satisfies the following conditions:
(1) $H(D \mid C)=H(D \mid B)$ and
(2) for $\forall a \in B, H(D \mid B) \neq H(D \mid B-\{a\})$.

In Liang et al. $(2002,2004,2006)$ and Liang and Qian (2008), Liang's entropy of condition attribute set $C$ with respect to decision attribute set $D$ in a decision table $S=(U, C \cup D)$ is depicted as

$$
\begin{equation*}
E(D \mid C)=\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left|X_{i} \cap Y_{j}\right|}{\left|X_{i}\right|} \frac{\left|Y_{j}^{c}-X_{i}^{c}\right|}{\left|X_{i}\right|} \tag{5}
\end{equation*}
$$

where $Y_{j}^{c}$ and $X_{i}^{c}$ are the complements of $Y_{j}$ and $X_{i}$, respectively.
In terms of this description, one can give the definition of a Liang entropy reduct as follows.

Definition 2.3. Let $S=(U, C \cup D)$ be a decision table, $B \subseteq C$. We call $B$ a Liang entropy reduct of $D$ with respect to $C$ if $B$ satisfies the following conditions:
(1) $E(D \mid C)=E(D \mid B)$ and
(2) for $\forall a \in B, E(D \mid B) \neq E(D \mid B-\{a\})$.

Positive region, Shannon's entropy and Liang's entropy are usually applied for the attribute reduction of a decision table.

## 3. Relationships among three kinds of reductions

In this section, we will analyse the relationships among positive-region reduction, Shannon's entropy reduction and Liang's entropy reduction.

The rough monotonicity of Shannon's information entropy has been proved (Wang 2003, Wang et al. 2005), which is shown as follows.

Theorem 3.1 (Wang 2003, Wang et al. 2005). Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables, $U / C=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots\right.$,
$\left.X_{v-1}, X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$ and $U / D=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$, then

$$
H(D \mid B) \geq H(D \mid C)
$$

especially, if and only if $\frac{\left|X_{u} \cap Y_{j}\right|}{\left|X_{u}\right|}=\frac{\left|X_{v} \cap Y_{j}\right|}{\left|X_{v}\right|}$ for $j \leq n$, i.e. $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$ for $j \leq n$,

$$
H(D \mid B)=H(D \mid C)
$$

From Theorem 3.1, we can see that Shannon's entropy of a decision table will be not more than the one in the table with the coarser partition.

For convenience, suppose that $\operatorname{RED}_{D}^{P}(C)$ is the set of all positive-region reduct, $B(P) \in \operatorname{RED}_{D}^{P}(C)$ a positive-region reduct, $\operatorname{RED}_{D}^{S}(C)$ the set of all Shannon entropy reduct, $B(S) \in \operatorname{RED}_{D}^{S}(C)$ a Shannon entropy reduct, $\operatorname{RED}_{D}^{L}(C)$ the set of all Liang entropy reduct and $B(L) \in \operatorname{RED}_{D}^{L}(C)$ a Liang entropy reduct. In the following, we establish the relationship among positive-region reduction, Shannon's entropy reduction and Liang's entropy reduction with four theorems and four corollaries.
Theorem 3.2 (Wang 2003, Wang et al. 2005). Let $S=(U, C \cup D)$ be a decision table. If an attribute set $B(S)$ is a Shannon entropy reduct, then there exists a positive-region reduct $B(P)$ such that $B(P) \subseteq B(S)$.

Proof. Let $B(S)$ be a Shannon entropy reduct, thus $H(D \mid C)=H(D \mid B(S))$. From Theorem 3.1, it follows that

$$
\frac{\left|X_{u} \cap Y_{j}\right|}{\left|X_{u}\right|}=\frac{\left|X_{v} \cap Y_{j}\right|}{\left|X_{v}\right|}, \quad j \leq n,
$$

then $\operatorname{POS}_{C}(D)=\operatorname{POS}_{B(S)}(D)$. Furthermore, it is certain a set $B(P) \subseteq B(S)$ exists, which satisfies $\forall a \in B(P), \operatorname{POS}_{B(P)}(D) \neq \operatorname{POS}_{B(P)-\{a\}}(D)$. Therefore, there exists $B(P)$ a positive-region reduct.

By Theorem 3.2, it follows that for a decision table, there exists a subset of its Shannon entropy reducts which is a positive-region reduct.

Corollary 3.3 (Wang 2003, Wang et al. 2005). Let $S=(U, C \cup D)$ be a decision table, $\operatorname{RED}_{D}^{S}(C)$ a set of all Shannon entropy reducts and $\operatorname{RED}_{D}^{P}(C)$ a set of all positiveregion reducts, then $\min \left\{|B(P)|: B(P) \in \operatorname{RED}_{D}^{P}(C)\right\} \leq \min \left\{|B(S)|: B(S) \in \operatorname{RED}_{D}^{S}(C)\right\}$.

Corollary 3.3 shows that for a decision table, the cardinality of the minimum Shannon entropy reduct is not less than the cardinality of the minimum positive-region entropy reduct.

Theorem 3.4. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables, $U / C=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, \quad U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots, X_{v-1}, X_{v+1}, \ldots, X_{m}\right.$, $\left.X_{u} \cup X_{v}\right\}$ and $U / D=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$, then

$$
E(D \mid B) \geq E(D \mid C)
$$

especially, if and only if $\mu\left(Z_{u w}\right)=\mu\left(Z_{v w}\right)=1$ for $w \leq n$ and $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)=0$ for $j \leq n$ and $j \neq w$, then

$$
E(D \mid B)=E(D \mid C)
$$

Proof. For the existing condition, one has that

$$
\begin{aligned}
E_{\Delta} & =E(D \mid B)-E(D \mid C)=\sum_{j=1}^{n} \frac{\left|X_{u} \cap Y_{j}\right|+\left|X_{v} \cap Y_{j}\right|}{|U|} \frac{\left|X_{u}-Y_{j}\right|+\left|X_{v}-Y_{j}\right|}{|U|} \\
& -\sum_{j=1}^{n} \frac{\left|X_{u} \cap Y_{j}\right|\left|X_{u}-Y_{j}\right|}{|U|}-\sum_{j=1}^{n} \frac{\left|X_{v} \cap Y_{j}\right|}{|U|} \frac{\left|X_{v}-Y_{j}\right|}{|U|} \\
& =\sum_{j=1}^{n} \frac{\left|X_{u} \cap Y_{j}\right|}{|U|} \frac{\left|X_{v}\right|-\left|X_{v} \cap Y_{j}\right|}{|U|}+\sum_{j=1}^{n} \frac{\left|X_{v} \cap Y_{j}\right|}{|U|} \frac{\left|X_{u}\right|-\left|X_{u} \cap Y_{j}\right|}{|U|} \\
& =\sum_{j=1}^{n} \frac{\left|X_{u}\right|\left|X_{v}\right|\left(\mu\left(Z_{u j}\right)+\mu\left(Z_{v j}\right)-2 \mu\left(Z_{u j}\right) \mu\left(Z_{v j}\right)\right)}{|U|^{2}} .
\end{aligned}
$$

Let $f_{j}=\mu\left(Z_{u j}\right)+\mu\left(Z_{v j}\right)-2 \mu\left(Z_{u j}\right) \mu\left(Z_{v j}\right)$. It is clear that $0 \leq \mu\left(Z_{u j}\right) \leq 1$ and $0 \leq \mu\left(Z_{v j}\right) \leq 1$. The sign of $f_{j}$ will be investigated as follows.

If $\mu\left(Z_{u j}\right)=0$ and $0<\mu\left(Z_{v j}\right) \leq 1$ (or $0<\mu\left(Z_{u j}\right) \leq 1$ and $\mu\left(Z_{v j}\right)=0$ ), then $f_{j}>0$.
If $\mu\left(Z_{u j}\right)=0$ and $\mu\left(Z_{v j}\right)=0$, then $f_{j}=0$.
If $\mu\left(Z_{u j}\right)=1$ and $0 \leq \mu\left(Z_{v j}\right)<1$ (or $0 \leq \mu\left(Z_{u j}\right)<1$ and $\mu\left(Z_{v j}\right)=1$ ), then $f_{j}>0$.
If $\mu\left(Z_{u j}\right)=1$ and $\mu\left(Z_{v j}\right)=1$, then $f_{j}=0$.
If $0<\mu\left(Z_{u j}\right)<1$ and $0<\mu\left(Z_{v j}\right)<1$, then $f_{j}>0$.
From the above-mentioned several cases, we have that $f_{j} \geq 0$. Then $E_{\Delta}=\sum_{j=1}^{n}\left(\left|X_{u} \| X_{\nu}\right| f_{j}\right) /\left(|U|^{2}\right) \geq 0$. Furthermore, one has that $E_{\Delta}=0$ iff $f_{j}=0$. In other words, $E(D \mid B)=E(D \mid C)$ holds, if and only if $\mu\left(Z_{u w}\right)=\mu\left(Z_{v w}\right)=1$ for $w \leq n$ and $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)=0$ for $j \leq n$ and $j \neq w$.

Theorem 3.4 indicates that Liang's entropy of a decision table will not be more than the one of the table with the coarser condition attribute set.

Theorem 3.5. Let $S=(U, C \cup D)$ be a decision table. If an attribute set $B(L)$ is a Liang entropy reduct, then there exists a Shannon entropy reduct $B(S)$ such that $B(S) \subseteq B(L)$.

Proof. Since $B(S)$ is a Shannon entropy reduct, we have that $E(D \mid C)=E(D \mid B(L))$. And from Theorem 3.4, it follows that there exists $w \leq n$ such that $\mu\left(Z_{u w}\right)=\mu\left(Z_{v w}\right)=1$ and $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)=0, \quad j \leq n, \quad j \neq w, \quad$ i.e. $\quad \mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right), \quad j \leq n . \quad$ Therefore, $H(D \mid C)=H(D \mid B(L))$. Furthermore, there exists a set $B(S) \subseteq B(L)$, which satisfies $\forall a \in B(S), \operatorname{POS}_{B(S)}(D) \neq \operatorname{POS}_{B(S)-\{a\}}(D)$. From Definition 2.1, $B(S)$ is a Shannon entropy reduct.

Theorem 3.5 shows that there exists a subset of its Liang entropy reducts which is its Shannon entropy reduct.

Corollary 3.6. Let $S=(U, C \cup D)$ be a decision table, $\operatorname{RED}_{D}^{L}(C)$ a set of all Liang entropy reducts and $\operatorname{RED}_{D}^{S}(C)$ a set of all Shannon entropy reducts, then $\min \left\{|B(S)|: B(S) \in \operatorname{RED}_{D}^{S}(C)\right\} \leq \min \left\{|B(L)|: B(L) \in \operatorname{RED}_{D}^{L}(C)\right\}$.

From Corollary 3.6, we can see that, for a decision table, there exists a subset of its Shannon reducts which is its positive-region reduct.

Corollary 3.7. Let $S=(U, C \cup D)$ be a decision table. If $B(L)$ is a Liang entropy reduct, then there exists a positive-region reduct $B(P)$ and a Shannon entropy reduct $B(S)$ such that $B(P) \subseteq B(S) \subseteq B(L)$.

The relationship among positive-region reducts, Shannon entropy reducts and Liang entropy reducts is indicated by Corollary 3.7.

Corollary 3.8. Let $S=(U, C \cup D)$ be a decision table, $\operatorname{RED}_{D}^{L}(C)$ a set of all Liang entropy reducts, $\operatorname{RED}_{D}^{S}(C)$ a set of all Shannon entropy reducts and $\operatorname{RED}_{D}^{P}(C)$ a set of all Shannon entropy reducts, then $\min \left\{|B(P)|: B(P) \in \operatorname{RED}_{D}^{P}(C)\right\} \leq \min \{|B(S)|: B(S) \in$ $\left.\operatorname{RED}_{D}^{S}(C)\right\} \leq \min \left\{|B(L)|: B(L) \in \operatorname{RED}_{D}^{L}(C)\right\}$.

These relationships among the above three kinds of attribute reductions in Corollary 3.8 are illustrated by the following Example 3.1.

Example 3.1. We employ Table 1 to illustrate the relationship among the three kinds of attribute reductions. By computing, we have that
$\operatorname{RED}_{D}^{P}(C)=\{\{$ Headache $\},\{$ Animal heat, Cough $\}\}$,
$\operatorname{RED}_{D}^{S}(C)=\{\{$ Headache, Muscle pain $\},\{$ Animal heat, Cough $\}\}$ and
$\operatorname{RED}_{D}^{L}(C)=\{\{$ Headache, Animal heat, Muscle pain $\},\{$ Animal heat, Cough $\}\}$.
Obviously, one can obtain the following inclusion relationships:

$$
\begin{aligned}
& \underbrace{\{\text { Headache }\}}_{\text {a positive-region reduct }} \subseteq \underbrace{\{\text { Headache, Muscle pain }\}}_{\text {a Shannon entropy reduct }} \\
& \subseteq \underbrace{\{\text { Headache, Animal heat, Muscle pain }\}}_{\text {a Liang entropy reduct }}, \\
& \underbrace{\{\text { Animal heat, Cough }\}}_{\text {a positive-region reduct }} \subseteq \underbrace{\{\text { Animal heat, Cough }\}}_{\text {a Shannon entropy reduct }} \subseteq \underbrace{\{\text { Animal heat, Cough }\}}_{\text {a Liang entropy reduct }} .
\end{aligned}
$$

Therefore, $\quad \min \left\{|B(P)|: B(P) \in \operatorname{RED}_{D}^{P}(C)\right\}=\mid\{$ Headache $\} \mid, \quad \min \{|B(S)|: B(S) \in$ $\left.\operatorname{RED}_{D}^{S}(C)\right\}=\mid\{$ Animal heat, Cough $\} \mid$ and $\min \left\{|B(L)|: B(L) \in \operatorname{RED}_{D}^{L}(C)\right\}=\mid\{$ Animal heat, Cough $\} \mid$, then $\mid\{$ Headache $\}|\leq|\{$ Animal heat, Cough $\}|\leq|\{$ Animal heat, Cough $\} \mid$.

From the example, we can see that the relationship among minimal positive-region reduct, the minimal Shannon entropy reduct and the minimal Liang entropy reduct corresponds to Corollary 3.8.

## 4. Change mechanism of decision performance of a decision table

In this section, we investigate the change mechanism of decision performance of a decision table from the viewpoint of decision evaluation.

Approximation accuracy of a classification $a_{C}(F)$ was introduced in Pawlak (1991). Let $F=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ be a classification of the universe $U$ and $C$ a condition attribute set. Then, $C$-lower and $C$-upper approximations of $F$ are given by $\underline{C} F=$ $\left\{\underline{C} Y_{1}, \underline{C} Y_{2}, \ldots, \underline{C} Y_{n}\right\}$ and $\bar{C} F=\left\{\bar{C} Y_{1}, \bar{C} Y_{2}, \ldots, \bar{C} Y_{n}\right\}$, respectively, where $\underline{C} Y_{i}=$ $\cup\left\{x \in U \mid[x]_{C} \subseteq Y_{i} \in F\right\}, 1 \leq i \leq n \quad$ and $\quad \bar{C} Y_{i}=\cup\left\{x \in U \mid[x]_{C} \cap Y_{i} \neq \emptyset, Y_{i} \in\right.$ $F\}, 1 \leq i \leq n$. The approximation accuracy of $F$ by $C$ is defined as

$$
a_{C}(F)=\frac{\sum_{Y_{i} \in F}\left|\underline{C} Y_{i}\right|}{\sum_{Y_{i} \in F}\left|\bar{C} Y_{i}\right|} .
$$

The approximation accuracy expresses the percentage of possible correct decisions when classifying objects by employing the attribute set $C$. In a broad sense, $a_{C}(F)$ can be used to measure the certainty of a decision table. However, it has some limitations. In Qian et al. (2008b), a new certainty measure $\alpha$ was proposed for overcoming these limitations, which is shown as follows.

Definition 4.1 (Qian et al. 2008b). Let $S=(U, C \cup D)$ be a decision table and RULE $=\left\{Z_{i j} \mid Z_{i j}: \operatorname{des}\left(X_{i}\right) \rightarrow \operatorname{des}\left(Y_{j}\right), X_{i} \in U / C, Y_{j} \in U / D\right\}$. The certainty measure $\alpha$ of $S$ is defined as

$$
\begin{equation*}
\alpha(S)=\sum_{i=1}^{m} \sum_{j=1}^{n} s\left(Z_{i j}\right) \mu\left(Z_{i j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left|X_{i} \cap Y_{j}\right|^{2}}{|U|\left|X_{i}\right|} . \tag{6}
\end{equation*}
$$

Through using the definition, one can get the following Theorem 4.2.
Theorem 4.2. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $U / C=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, \quad U / B=\left\{X_{1}, X_{2}, \ldots, \quad X_{u-1}, X_{u+1}, \ldots, X_{v-1}\right.$, $\left.X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$ and $U / D=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$, then $\alpha\left(S^{\prime}\right) \leq \alpha(S)$, especially $\alpha\left(S^{\prime}\right)=\alpha(S)$ iff $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$ for $j \leq n$.

Proof. From the definition of certainty measure $\alpha$, it follows that

$$
\begin{aligned}
\alpha_{\Delta}=\alpha\left(S^{\prime}\right)-\alpha(S)= & \sum_{i=1, i \neq u, i \neq v}^{m} \sum_{j=1}^{n} \frac{\left|X_{i} \cap Y_{j}\right|^{2}}{|U|\left|X_{i}\right|}+\sum_{j=1}^{n} \frac{\left(\left(\mid X_{u} \cup X_{v}\right) \cap Y_{j} \mid\right)^{2}}{|U|\left(\left|X_{u} \cup X_{v}\right|\right)} \\
& -\sum_{i=1, i \neq u, i \neq v}^{m} \sum_{j=1}^{n} \frac{\left|X_{i} \cap Y_{j}\right|^{2}}{|U|\left|X_{i}\right|}-\sum_{j=1}^{n} \frac{\left|X_{u} \cap Y_{j}\right|^{2}}{|U|\left|X_{u}\right|}-\sum_{j=1}^{n} \frac{\left|X_{v} \cap Y_{j}\right|^{2}}{\left|U \| X_{v}\right|} \\
= & \sum_{j=1}^{n} \frac{\left(\left|X_{u} \cap Y_{j}\right|+\left|X_{v} \cap Y_{j}\right|\right)^{2}}{|U|\left(\left|X_{u}\right|+\left|X_{v}\right|\right)}-\sum_{j=1}^{n} \frac{\left|X_{u} \cap Y_{j}\right|^{2}}{|U|\left|X_{u}\right|}-\sum_{j=1}^{n} \frac{\left|X_{v} \cap Y_{j}\right|^{2}}{|U|\left|X_{\nu}\right|} \\
= & -\sum_{j=1}^{n} \frac{\left(\left|X_{u}\right|\left|X_{v} \cap Y_{j}\right|-\left|X_{v}\right|\left|X_{u} \cap Y_{j}\right|\right)^{2}}{\left|U \| X_{u}\right|\left|X_{v}\right|\left(\left|X_{u}\right|+\left|X_{v}\right|\right)} \\
= & -\sum_{j=1}^{n} \frac{\left|X_{u}\right|\left|X_{v}\right|\left(\mu\left(Z_{u j}\right)-\mu\left(Z_{v j}\right)\right)^{2}}{|U|\left(\left|X_{u}\right|+\left|X_{v}\right|\right)} \leq 0 .
\end{aligned}
$$

Clearly, one has that $\alpha_{\Delta}=0$ when $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$. That is $\alpha(S)=\alpha\left(S^{\prime}\right)$.
The following Corollary 4.3 is directly derived from Theorem 4.2.
Corollary 4.3. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $U / B \succ U / C$, then $\alpha\left(S^{\prime}\right) \leq \alpha(S)$.

Corollary 4.3 shows that certainty measure $\alpha$ of the decision table after the condition attribute set becomes coarser will not be more than the one in the original table.

As follows, we analyse the change mechanism of the consistency measure of a decision table. The consistency measure from Qian et al. (2008b) is another important measure for assessing the decision performance of a decision table, which is shown in Definition 4.4.

Definition 4.4 (Qian et al. 2008b). Let $S=(U, C \cup D)$ be a decision table and RULE $=\left\{Z_{i j} \mid Z_{i j}: \operatorname{des}\left(X_{i}\right) \rightarrow \operatorname{des}\left(Y_{j}\right), X_{i} \in U / C, Y_{j} \in U / D\right\}$. The consistency measure
$\beta$ of $S$ is defined as

$$
\begin{equation*}
\beta(S)=\sum_{i=1}^{m} \frac{\left|X_{i}\right|}{|U|}\left[1-\frac{4}{\left|X_{i}\right|} \sum_{j=1}^{N_{i}}\left|X_{i} \cap Y_{j}\right| \mu\left(Z_{i j}\right)\left(1-\mu\left(Z_{i j}\right)\right)\right], \tag{7}
\end{equation*}
$$

where $N_{i}$ is the number of decision rules determined by the condition class $X_{i}$ and $\mu\left(Z_{i j}\right)$ is the certainty degree of the rule $Z_{i j}$.

Using the consistency measure, the following Theorem 4.5 can be derived.
Theorem 4.5. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables, if $U / C=$ $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots, X_{v-1}, X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$, $U / D=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$ then the relationship between $\beta\left(S^{\prime}\right)$ and $\beta(S)$ is uncertain, especially, $\beta(S)=\beta\left(S^{\prime}\right)$ iff $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$ for $j \leq n$.

Proof. From the definition of consistency measure, it is easy to know that

$$
\begin{aligned}
\beta(S)= & \sum_{i=1}^{m} \frac{\left|X_{i}\right|}{|U|}\left[1-\frac{4}{\left|X_{i}\right|} \sum_{j=1}^{N_{i}}\left|X_{i} \cap Y_{j}\right| \mu\left(Z_{i j}\right)\left(1-\mu\left(Z_{i j}\right)\right)\right] \\
= & 1-\frac{4}{|U|} \sum_{i=1}^{m} \sum_{j=1}^{n}\left|X_{i} \cap Y_{j}\right| \mu\left(Z_{i j}\right)\left(1-\mu\left(Z_{i j}\right)\right) \\
\beta_{\Delta}=\beta\left(S^{\prime}\right)-\beta(S)= & \frac{4}{|U|} \sum_{j=1}^{n}\left(\frac{\left|X_{u} \cap Y_{j}\right|^{2}}{\left|X_{u}\right|}-\frac{\left|X_{u} \cap Y_{j}\right|^{3}}{\left|X_{u}\right|^{2}}\right) \\
& +\frac{4}{|U|} \sum_{j=1}^{n}\left(\frac{\left|X_{v} \cap Y_{j}\right|^{2}}{\left|X_{v}\right|}-\frac{\left|X_{v} \cap Y_{j}\right|^{3}}{\left|X_{v}\right|^{2}}\right) \\
& -\frac{4}{|U|} \sum_{j=1}^{n}\left(\frac{\left(\left|X_{u} \cap Y_{j}\right|+\left|X_{v} \cap Y_{j}\right|\right)^{2}}{\left|X_{u}\right|+\left|X_{v}\right|}-\frac{\left(\left|X_{u} \cap Y_{j}\right|+\left|X_{v} \cap Y_{j}\right|\right)^{3}}{\left(\left|X_{u}\right|+\left|X_{v}\right|\right)^{2}}\right) .
\end{aligned}
$$

Let $x=\left|X_{u}\right|, y=\left|X_{v}\right|, \delta_{j}=\left(\left|X_{u} \cap Y_{j}\right| /\left|X_{u}\right|\right)$ and $\sigma_{j}=\left(\left|X_{v} \cap Y_{j}\right| /\left|X_{v}\right|\right)$. It follows that

$$
\begin{aligned}
\beta_{\Delta}= & \sum_{j=1}^{n} \frac{\left(\delta_{j} x\right)^{2}}{x}-\frac{\left(\delta_{j} x\right)^{3}}{x^{2}}+\sum_{j=1}^{n} \frac{\left(\sigma_{j} y\right)^{2}}{y}-\frac{\left(\sigma_{j} y\right)^{3}}{y^{2}}-\sum_{j=1}^{n} \frac{\left(\delta_{j} x+\sigma_{j} y\right)^{2}}{x+y}-\frac{\left(\delta_{j} x+\sigma_{j} y\right)^{3}}{(x+y)^{2}} \\
= & \sum_{j=1}^{n} \frac{x y}{(x+y)^{2}}\left(\left(\left(\delta_{j}-\sigma_{j}\right)^{2}-2 \delta_{j}^{3}-\sigma_{j}^{3}+3 \delta_{j}^{2} \sigma_{j}\right) x\right) \\
& +\sum_{j=1}^{n} \frac{x y}{(x+y)^{2}}\left(\left(\left(\delta_{j}-\sigma_{j}\right)^{2}-\delta_{j}^{3}-2 \sigma_{j}^{3}+3 \delta_{j} \sigma_{j}^{2}\right) y\right) \\
= & \sum_{j=1}^{n} \frac{x y\left(\delta_{j}-\sigma_{j}\right)^{2}}{(x+y)^{2}}\left(\left(1-2 \delta_{j}-\sigma_{j}\right) x+\left(1-2 \sigma_{j}-\delta_{j}\right) y\right) .
\end{aligned}
$$

Obviously, when $\delta_{j}=\sigma_{j}, \forall j \leq n$, i.e. $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$, we have that $\beta_{\Delta}=0$. Thus, $\beta\left(S^{\prime}\right)=\beta(S)$. Otherwise, the value of $\beta_{\Delta}$ is uncertain.

Theorem 4.5 easily deduces the following corollary.

Corollary 4.6. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $U / C<U / B$, then the relationship between $\beta\left(S^{\prime}\right)$ and $\beta(S)$ is uncertain.

Corollary 4.6 indicates that, for a decision table, the change of the consistency measure $\beta$ is uncertain after the condition attribute set becomes coarser.

Theorem 4.7. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables, if $U / C=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, \quad U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots, X_{v-1}, \quad X_{v+1}, \ldots, X_{m}\right.$, $\left.X_{u} \cup X_{v}\right\}, U / D=\left\{Y_{1}, Y_{2}\right\}$, then $\beta\left(S^{\prime}\right) \leq \beta(S)$, especially, $\beta(S)=\beta\left(S^{\prime}\right)$ iff $\mu\left(Z_{u j}\right)=$ $\mu\left(Z_{v j}\right)$ for $j \leq 2$.

Proof. Let $x=\left|X_{u}\right|, y=\left|X_{v}\right|, \delta_{j}=\left(\left|X_{u} \cap Y_{j}\right| /\left|X_{u}\right|\right)$ and $\sigma_{j}=\left(\left|X_{v} \cap Y_{j}\right| /\left|X_{v}\right|\right)$. From the proof of Theorem 4.5, we have that

$$
\beta_{\Delta}=\beta\left(S^{\prime}\right)-\beta(S)=\sum_{j=1}^{n} \frac{x y\left(\delta_{j}-\sigma_{j}\right)^{2}}{(x+y)^{2}}\left(\left(1-2 \delta_{j}-\sigma_{j}\right) x+\left(1-2 \sigma_{j}-\delta_{j}\right) y\right)
$$

Furthermore, by the existing condition $U / D=\left\{Y_{1}, Y_{2}\right\}$, we have that $\delta_{1}+\delta_{2}=1$ and $\sigma_{1}+\sigma_{2}=1$. Thus, it follows that

$$
\begin{aligned}
\beta_{\Delta}= & \frac{x y\left(\delta_{1}-\sigma_{1}\right)^{2}}{(x+y)^{2}}\left(\left(1-2 \delta_{1}-\sigma_{1}\right) x+\left(1-2 \sigma_{1}-\delta_{1}\right) y\right) \\
& +\frac{x y\left(\delta_{2}-\sigma_{2}\right)^{2}}{(x+y)^{2}}\left(\left(1-2 \delta_{2}-\sigma_{2}\right) x+\left(1-2 \sigma_{2}-\delta_{2}\right) y\right) \\
= & -2 \frac{x y\left(\delta_{1}-\sigma_{1}\right)^{2}}{(x+y)} \leq 0 .
\end{aligned}
$$

Obviously, when $\delta_{j}=\sigma_{j}$, i.e. $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$ for $j \leq 2$, we have that $\beta\left(S^{\prime}\right)=\beta(S)$.
The following Corollary 4.8 generalises the results of Theorem 4.7.
Corollary 4.8. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables, if $U / C<U / B$ and $U / D=\left\{Y_{1}, Y_{2}\right\}$, then $\beta\left(S^{\prime}\right) \leq \beta(S)$.

Corollary 4.8 shows that, for a decision table with two decision values, consistency measure $\beta$ of the decision table is not more than the one after the condition attribute set becomes coarser.

In Qian et al. (2008b), the support measure of a decision table is proposed for computing the entire support measure of all decision rules. In the following, we will consider the mechanism of the measure.

Definition 4.9 (Qian et al. 2008b). Let $S=(U, C \cup D)$ be a decision table and RULE $=\left\{Z_{i j} \mid Z_{i j}: \operatorname{des}\left(X_{i}\right) \rightarrow \operatorname{des}\left(Y_{j}\right), X_{i} \in U / C, Y_{j} \in U / D\right\}$. The support measure $\gamma$ of $S$ is defined as

$$
\begin{equation*}
\gamma(S)=\sum_{i=1}^{m} \sum_{j=1}^{n} s^{2}\left(Z_{i j}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left|X_{i} \cap Y_{j}\right|^{2}}{|U|^{2}} . \tag{8}
\end{equation*}
$$

The following Theorem 4.10 gives the monotonicity of the support measure in the context of decision tables.

Theorem 4.10. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $U / C=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, \quad U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, \quad U / D=\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}\right.$, $\left.X_{u+1}, \ldots, X_{v-1}, X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$, then $\gamma\left(S^{\prime}\right) \geq \gamma(S)$.

Proof. By the existing condition, it follows that

$$
\begin{aligned}
\gamma_{\Delta} & =\gamma\left(S^{\prime}\right)-\gamma(S)=\sum_{k=1}^{l} \sum_{j=1}^{n} \frac{\left|X_{k}^{\prime} \cap Y_{j}\right|^{2}}{|U|^{2}}-\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\left|X_{i} \cap Y_{j}\right|^{2}}{|U|^{2}} \\
& =\sum_{j=1}^{n} \frac{\left(\left|X_{u} \cap Y_{j}\right|+\left|X_{v} \cap Y_{j}\right|\right)^{2}}{|U|^{2}}-\sum_{j=1}^{n} \frac{\left|X_{u} \cap Y_{j}\right|^{2}}{|U|^{2}}-\sum_{j=1}^{n} \frac{\left|X_{v} \cap Y_{j}\right|^{2}}{|U|^{2}} \\
& =\sum_{j=1}^{n} \frac{2\left|X_{u} \cap Y_{j}\right|\left|X_{v} \cap Y_{j}\right|}{|U|^{2}} \geq 0 .
\end{aligned}
$$

Corollary 4.11. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $U / C<U / B$, then $\gamma\left(S^{\prime}\right) \geq \gamma(S)$.

From Corollary 4.11, we know that, for a given decision, the finer condition attribute set usually decreases the support measure $\gamma$.

## 5. Change in decision performance induced by reduction approaches

In this section, we investigate the three kinds of attribute-reduction methods, namely positive region reduction, Shannon's entropy reduction and Liang's entropy reduction. We analyse the difference between the decision performance of a reduced decision table and that of the original one.

### 5.1 Change in decision performance induced by positive-region reduction

The analysis on change of decision performance of a decision table after performing a positive-region reduction is shown in this subsection.

Theorem 5.1. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables, and $B$ be a positive-region reduct of $C$. If $X_{u} \in U / C$ and $X_{v} \in U / C$ are in the consistent part of the decision table $S$, and $X_{u} \cup X_{v}=X_{w}, X_{w} \in U / B$, then $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$ for $Y_{j} \in U / D$, where $\mu\left(Z_{i j}\right)=\left|X_{i} \cap Y_{j}\right| /\left|X_{i}\right|$.

Proof. From the condition, we have that the two classes $X_{u}$ and $X_{v}$ in the consistent part of $S$ combines a new condition class $X_{w}$ in $S^{\prime}$. Therefore, the condition classes $X_{w}$ will fall in the inconsistent part of $S^{\prime}$ if $\exists j \leq n$ such that $\mu\left(Z_{u j}\right) \neq \mu\left(Z_{v j}\right)$. Clearly, the positive region of $S$ is unequal to the one of $S^{\prime}$, which is in contradiction with the assumption that $B$ is a positive-region reduct of $C$. Thus, $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$ for $Y_{j} \in U / D$.

Theorem 5.1 indicates that if some condition classes in the consistent part of a decision table combine to a new condition class after performing the positive-region reduction, then the rules induced by these condition classes have the same certainty measures.

Moreover, we first investigate the change mechanism of the entire certainty measure $\alpha$ with respect to the positive-region reduction.

Theorem 5.2. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $S$ is consistent and $B$ is a positive-region reduct of $C$, then

$$
\alpha\left(S^{\prime}\right)=\alpha(S), \beta\left(S^{\prime}\right)=\beta(S), \gamma\left(S^{\prime}\right) \geq \gamma(S)
$$

Proof. By the existing condition that $B$ is a positive-region reduct of $C$, we have $U / B \succeq U / C$. It is obvious that $\alpha\left(S^{\prime}\right)=\alpha(S), \beta\left(S^{\prime}\right)=\beta(S), \gamma\left(S^{\prime}\right)=\gamma(S)$ if $U / B=U / C$, and the case $U / B U / C$ will be analysed in detail.

For simplicity, without any loss of generality, let $U / C=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, $U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots, X_{v-1}, X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$ and $U / D=\left\{Y_{1}\right.$, $\left.Y_{2}, \ldots, Y_{n}\right\}$.

Since the decision table $S$ is consistent, then the decision table $S^{\prime}$ after performing the positive-region reduction is also consistent. Furthermore, according to Theorem 5.1, we have that $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$ for $j \leq n$. Thus, by Theorems 4.2, 4.5 and 4.10, we have that $\alpha\left(S^{\prime}\right)=\alpha(S), \beta\left(S^{\prime}\right)=\beta(S), \gamma\left(S^{\prime}\right) \geq \gamma(S)$, respectively.

Theorem 5.2 shows that, for a consistent table, if it is reduced by performing the positive-region reduction, then the certainty measure of the table will be unchanged.

Theorem 5.3. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $B$ is a positive-region reduct of $C$, then $\alpha\left(S^{\prime}\right) \leq \alpha(S)$, the relationship between $\beta\left(S^{\prime}\right)$ and $\beta(S)$ is uncertain, and $\gamma\left(S^{\prime}\right) \geq \gamma(S)$.

Proof. From the condition that $B$ is a positive-region reduct of $C$, we have $U / B \succeq U / C$. It is obvious that $\alpha\left(S^{\prime}\right)=\alpha(S), \beta\left(S^{\prime}\right)=\beta(S), \gamma\left(S^{\prime}\right)=\gamma(S)$ if $U / B=U / C$, and the case $U / B \succ U / C$ will be analysed in detail.

For simplicity, without any loss of generality, we suppose that $U / C=\left\{X_{1}, X_{2}, \ldots\right.$, $\left.X_{m}\right\}, U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots, X_{v-1}, X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$ and $U / D=$ $\left\{Y_{1}, Y_{2}, \ldots, Y_{n}\right\}$.

Through using the positive-region reduction, the change of condition classes has two cases. One is the combination of the condition classes in the consistent part of a decision table and the other is combination of the condition classes in the inconsistent part of a decision table. These two cases are listed as follows:
(1) The condition classes combined in the consistent part. Let the two classes $X_{u}$ and $X_{v}$ in the consistent part of decision table $S$ become a new condition class $X_{u} \cup X_{v}$ after performing the positive-region reduction and the other condition classes are unchanged. From Theorem 5.1, it follows that $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right), j \leq n$. Furthermore, by Theorems 4.2, 4.5 and 4.10, one has that $\alpha\left(S^{\prime}\right)=\alpha(S), \beta\left(S^{\prime}\right)=$ $\beta(S)$ and $\gamma\left(S^{\prime}\right) \geq \gamma(S)$, respectively.
(2) The condition classes combined in the inconsistent part. Let the two classes $X_{u}$ and $X_{v}$ in the inconsistent part of table $S$ be combined to a class $X_{u} \cup X_{v}$ after the positive-region reduction and other condition classes remain unchanged. From Theorems 4.2, 4.5 and 4.10, it follows that $\alpha\left(S^{\prime}\right) \leq \alpha(S)$, the relationship between $\beta\left(S^{\prime}\right)$ and $\beta(S)$ is uncertain, and $\gamma\left(S^{\prime}\right) \geq \gamma(S)$.

In conclusion, $\alpha\left(S^{\prime}\right) \leq \alpha(S)$, the relationship between $\beta\left(S^{\prime}\right)$ and $\beta(S)$ is uncertain, and $\gamma\left(S^{\prime}\right) \geq \gamma(S)$, if $B$ is a positive-region reduct of $C$.

Theorem 5.3 states that, for a decision table, the certainty measure $\alpha$ of the decision table after using the positive-region reduction will be no more than that of the original one,
the consistency measure $\beta$ of the reduced table will be uncertain after performing a positive-region reduction and the support measure $\gamma$ after using the positive-region reduction will be no less than that of the original one. Example 5.1 shows their change mechanism.

Example 5.1. We employ Tables 2 and 3 to illustrate the change in the decision performance of a decision table after performing the positive-region reduction.

It is easy to calculate using Definition 2.1 that the set of all positive-region reducts of Table 2 is $\operatorname{RED}_{D}^{P}(C)=\{\{$ Muscle pain, Cough $\}\}$. Let $B(P)=\{$ Muscle pain, Cough $\}$, $S^{\prime}=(U, B(P) \cup D)$, we have that

$$
\begin{array}{ll}
\alpha(S)=0.4861, & \alpha\left(S^{\prime}\right)=0.4833 \\
\beta(S)=0.2639, & \beta\left(S^{\prime}\right)=0.2667 \\
\gamma(S)=0.1528, & \gamma\left(S^{\prime}\right)=0.2778
\end{array}
$$

It is clear that

$$
\alpha\left(S^{\prime}\right)<\alpha(S), \beta\left(S^{\prime}\right)>\beta(S), \gamma\left(S^{\prime}\right)>\gamma(S) .
$$

Furthermore, we can obtain that the set of all positive-region reducts of Table 3 is $\operatorname{RED}_{D}^{P}(C)=\{\{$ Muscle pain, Cough $\}\}$. Let $B(P)=\{$ Muscle pain, Cough $\}$, $S^{\prime}=(U, B(P) \cup D)$, one has

$$
\begin{array}{ll}
\alpha(S)=0.4861, & \alpha\left(S^{\prime}\right)=0.4860 \\
\beta(S)=0.2639, & \beta\left(S^{\prime}\right)=0.2600 \\
\gamma(S)=0.1528, & \gamma\left(S^{\prime}\right)=0.2500
\end{array}
$$

Obviously,

$$
\alpha\left(S^{\prime}\right)<\alpha(S), \quad \beta\left(S^{\prime}\right)<\beta(S), \quad \gamma\left(S^{\prime}\right)>\gamma(S)
$$

Theorem 5.4. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables, $U / D=\left\{Y_{1}, Y_{2}\right\}$. If $B$ is a positive-region reduct of $C$, then $\alpha\left(S^{\prime}\right) \leq \alpha(S), \beta\left(S^{\prime}\right) \leq \beta(S)$ and $\gamma\left(S^{\prime}\right) \geq \gamma(S)$.

Table 2. A decision table about diagnosing rheum.

| Patients | Headache | Muscle pain | Animal heat | Cough | Rheum |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $e_{1}$ | Yes | No | High | Yes | No |
| $e_{2}$ | Yes | Yes | High | No | Yes |
| $e_{3}$ | Yes | Yes | Normal | Yes | No |
| $e_{4}$ | Yes | Yes | Normal | Yes | No |
| $e_{5}$ | Yes | Yes | Normal | Yes | Yes |
| $e_{6}$ | Yes | Yes | Normal | Yes | Possible |
| $e_{7}$ | No | Yes | High | Yes | No |
| $e_{8}$ | No | Yes | High | Yes | No |
| $e_{9}$ | No | Yes | High | Yes | No |
| $e_{10}$ | No | Yes | High | Yes | Yes |
| $e_{11}$ | No | Yes | High | Yes | Yes |
| $e_{12}$ | No | Yes | High | Yes | Possible |

Table 3. A decision table about diagnosing rheum.

| Patients | Headache | Muscle pain | Animal heat | Cough | Rheum |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $e_{1}$ | Yes | No | High | Yes | No |
| $e_{2}$ | Yes | Yes | High | No | Yes |
| $e_{3}$ | Yes | Yes | Normal | Yes | No |
| $e_{4}$ | Yes | Yes | Normal | Yes | No |
| $e_{5}$ | Yes | Yes | Normal | Yes | Yes |
| $e_{6}$ | Yes | Yes | Normal | Yes | Possible |
| $e_{7}$ | No | Yes | High | Yes | No |
| $e_{8}$ | No | Yes | High | Yes | Yes |
| $e_{9}$ | No | Yes | High | Yes | Yes |
| $e_{10}$ | No | Yes | High | Yes | Yes |
| $e_{11}$ | No | Yes | High | Yes | Possible |
| $e_{12}$ | No | Yes | High | Yes | Possible |

Proof. According to the condition that $B$ is a positive-region reduct of $C$, we have $U / B \succeq U / C$. It is obvious that $\alpha\left(S^{\prime}\right)=\alpha(S), \beta\left(S^{\prime}\right)=\beta(S), \gamma\left(S^{\prime}\right)=\gamma(S)$ if $U / B=U / C$, and the case $U / B \succ U / C$ will be investigated in detail.

For simplicity, without any loss of generality, we suppose that $U / C=\left\{X_{1}, X_{2}, \ldots\right.$, $\left.X_{m}\right\}, U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots, X_{v-1}, X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$ and $U / D=$ $\left\{Y_{1}, Y_{2}\right\}$.

Through using the positive-region reduction, the change of condition classes has two cases. One is the combination of the condition classes in the consistent part of a decision table and the other is the combination of the condition classes in the inconsistent part of a decision table. These two cases are listed as follows:
(1) The condition classes combined in the consistent part. Let the two classes $X_{u}$ and $X_{v}$ in the consistent part of decision table $S$ become a new condition class $X_{u} \cup X_{v}$ after performing the positive-region reduction and the other condition classes remain unchanged. From Theorem 5.1, it follows that $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right), j \leq n$. Furthermore, by Theorems 4.2, 4.7 and 4.10, one has that $\alpha\left(S^{\prime}\right)=\alpha(S), \beta\left(S^{\prime}\right)=$ $\beta(S)$ and $\gamma\left(S^{\prime}\right) \geq \gamma(S)$, respectively.
(2) The condition classes combined in the inconsistent part. Let the two classes $X_{u}$ and $X_{v}$ in the inconsistent part of table $S$ be combined to a class $X_{u} \cup X_{v}$ after the positive-region reduction and the other condition classes remain unchanged. From Theorems 4.2, 4.7 and 4.10, it follows that $\alpha\left(S^{\prime}\right) \leq \alpha(S), \beta\left(S^{\prime}\right) \leq \beta(S)$ and $\gamma\left(S^{\prime}\right) \geq \gamma(S)$.

In conclusion, $\alpha\left(S^{\prime}\right) \leq \alpha(S), \beta\left(S^{\prime}\right) \leq \beta(S)$ and $\gamma\left(S^{\prime}\right) \geq \gamma(S)$, if $B$ is a positive-region reduct of $C$ and there are only two decision values in a decision table.

Theorem 5.3 states that, for a decision table with two decision values, the certainty measure $\alpha$ and the consistence measure $\beta$ after using the positive-region reduction will be no more than that in original table, and the support measure $\gamma$ will be no less than that of original one. It is illustrated by the following example.

Example 5.2. We employ Table 1 to illustrate the change in the decision performance of a decision table after performing the positive-region reduction.

It is easy to obtain by Definition 2.1 that the set of all positive-region reducts $\operatorname{RED}_{D}^{P}(C)=\{\{$ Headache $\},\{$ Animal heat, Cough $\}\}$. Let $B_{1}(P)=\{$ Headache $\}$, $B_{2}(P)=\{$ Animal heat, Cough $\}, S_{1}=\left(U, B_{1}(P) \cup D\right)$ and $S_{2}=\left(U, B_{2}(P) \cup D\right)$, we have
that

$$
\begin{array}{lll}
\alpha(S)=0.5667, & \alpha\left(S_{1}\right)=0.5556, & \alpha\left(S_{2}\right)=0.5667 \\
\beta(S)=0.1333, & \beta\left(S_{1}\right)=0.1111, & \beta\left(S_{2}\right)=0.1333 \\
\gamma(S)=0.1200, & \gamma\left(S_{1}\right)=0.4200, & \gamma\left(S_{2}\right)=0.1200
\end{array}
$$

It is clear that

$$
\begin{array}{ll}
\alpha\left(S_{1}\right)<\alpha(S), & \alpha\left(S_{2}\right)=\alpha(S), \\
\beta\left(S_{1}\right)<\beta(S), & \beta\left(S_{2}\right)=\beta(S), \\
\gamma\left(S_{1}\right)>\gamma(S), & \gamma\left(S_{2}\right)=\gamma(S) .
\end{array}
$$

### 5.2 Change in decision performance induced by Shannon's entropy reduction

In this subsection, we will analyse the change mechanism of decision performance of a decision table through performing Shannon entropy reduction.

Theorem 5.5. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $B$ is a Shannon entropy reduct of $C$, then

$$
\alpha(S)=\alpha\left(S^{\prime}\right), \quad \beta(S)=\beta\left(S^{\prime}\right) \quad \text { and } \quad \gamma(S) \leq \gamma\left(S^{\prime}\right) .
$$

Proof. For simplicity, without any loss of generality, let $U / C=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, $U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots, X_{v-1}, X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$ and $U / D=\left\{Y_{1}\right.$, $\left.Y_{2}, \ldots, Y_{n}\right\}$. From the existing condition that $B$ is a Shannon entropy reduct of $C$ and Theorem 3.1, it follows that $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$.

Therefore, by Theorem 4.2, $\alpha(S)=\alpha\left(S^{\prime}\right)$, from Theorem 4.5, $\beta(S)=\beta\left(S^{\prime}\right)$ and according to Theorem 4.7, $\gamma(S) \leq \gamma\left(S^{\prime}\right)$.

Theorem 5.5 states that the certainty measure $\alpha$ of a decision table will be unchangeable after Shannon's entropy reduction, the consistent measure $\beta$ of a decision table will also be unchangeable after using Shannon's entropy reduction, and the support measure $\gamma$ through using Shannon's entropy reduction will be no less than that of the original one. Example 5.4 illustrates the change mechanism of the support measure.

Example 5.3. We employ Table 1 to illustrate the change in the decision performance of a decision table after performing the Shannon's entropy reduction.

It is easy to calculate from Definition 2.2 that the set of all Shannon entropy reducts $\operatorname{RED}_{D}^{S}(C)=\{\{$ Headache, Muscle pain $\}$, $\{$ Animal heat, Cough $\}\}$. Let $B_{1}(S)=$ $\{$ Headache, Muscle pain $\}, B_{2}(S)=\{$ Animal heat, Cough $\}$ and $S_{1}=\left(U, B_{1}(S) \cup D\right), S_{2}=$ $\left(U, B_{2}(S) \cup D\right)$, we have that

$$
\begin{array}{lll}
\alpha(S)=0.5667, & \alpha\left(S_{1}\right)=0.5667, & \alpha\left(S_{2}\right)=0.5667, \\
\beta(S)=0.1333, & \beta\left(S_{1}\right)=0.1333, & \beta\left(S_{2}\right)=0.1333, \\
\gamma(S)=0.1200, & \gamma\left(S_{1}\right)=0.2400, & \gamma\left(S_{2}\right)=0.1200 .
\end{array}
$$

Obviously,

$$
\alpha\left(S_{1}\right)=\alpha\left(S_{2}\right)=\alpha(S), \quad \beta\left(S_{1}\right)=\beta\left(S_{2}\right)=\beta(S), \quad \gamma\left(S_{1}\right)>\gamma(S), \quad \gamma\left(S_{2}\right)=\gamma(S) .
$$

### 5.3 Change in decision performance induced by Liang's entropy reduction

In this subsection, one will express a variety of decision performance through Liang's entropy reduction.

Theorem 5.6. Let $S=(U, C \cup D)$ and $S^{\prime}=(U, B \cup D)$ be two decision tables. If $B$ is a Liang entropy reduct of $C$, then

$$
\alpha(S)=\alpha\left(S^{\prime}\right), \quad \beta(S)=\beta\left(S^{\prime}\right) \quad \text { and } \quad \gamma(S) \leq \gamma\left(S^{\prime}\right) .
$$

Proof. For simplicity, without any loss of generality, let $U / C=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$, $U / B=\left\{X_{1}, X_{2}, \ldots, X_{u-1}, X_{u+1}, \ldots, X_{v-1}, X_{v+1}, \ldots, X_{m}, X_{u} \cup X_{v}\right\}$ and $U / D=\left\{Y_{1}, Y_{2}\right.$, $\left.\ldots, Y_{n}\right\}$. Through using Liang's entropy reduction, we suppose that the two classes $X_{u}$ and $X_{v}(u, v<m)$ combine to a new class $X_{u} \cup X_{v}$. From Theorem 3.4, it follows that $\mu\left(Z_{u j}\right)=\mu\left(Z_{v j}\right)$.

Therefore, from Theorem 4.2, $\alpha(S)=\alpha\left(S^{\prime}\right)$, by Theorem 4.5, $\beta(S)=\beta\left(S^{\prime}\right)$ and from Theorem 4.7, $\gamma(S) \leq \gamma\left(S^{\prime}\right)$.

Theorem 5.6 shows that the certainty measure $\alpha$ will be unchanged after performing Liang's entropy reduction, the consistency measure will also be unchanged after performing a Liang's entropy reduction and the support measure after using Liang's entropy reduction will be no less than that of the original one. This idea can be explained by the following example.

Example 5.4. We employ Table 1 to illustrate the change in the decision performance of a decision table after performing Liang's entropy reduction.

Using Definition 2.3, it is easy to get the set of all Liang entropy reducts $\operatorname{RED}_{D}^{L}(C)=\{\{$ Headache, Animal heat, Muscle pain $\}$, \{Animal heat, Cough \}\}. Let $B_{1}(L)=\{$ Headache, Animal heat, Muscle pain $\}, B_{2}(L)=\{$ Animal heat, Cough $\}$ and $S_{1}=\left(U, B_{1}(L) \cup D\right), S_{2}=\left(U, B_{2}(L) \cup D\right)$. We have that

$$
\begin{array}{lll}
\alpha(S)=0.5667, & \alpha\left(S_{1}\right)=0.5667, & \alpha\left(S_{2}\right)=0.5667 \\
\beta(S)=0.1333, & \beta\left(S_{1}\right)=0.1333, & \beta\left(S_{2}\right)=0.1333 \\
\gamma(S)=0.1200, & \gamma\left(S_{1}\right)=0.1200, & \gamma\left(S_{2}\right)=0.1200
\end{array}
$$

Obviously,

$$
\alpha\left(S_{1}\right)=\alpha\left(S_{2}\right)=\alpha(S), \quad \beta\left(S_{1}\right)=\beta\left(S_{2}\right)=\beta(S), \quad \gamma\left(S_{1}\right)=\gamma\left(S_{2}\right)=\gamma(S) .
$$

## 6. Experimental analysis

In this section, through experimental analysis, we have illustrated the change in the decision performance after using the positive-region reduction, Shannon's entropy reduction and

Liang's entropy reduction, for general decision tables. We have downloaded the data-set Spect from UCI database (Spect is a decision table with two decision values). In order to verify their performance, we randomly extracted 150 objects from the data-set 100 times. As the limitation of the paper's length, one of the 100 tables extracted from Spect is selected to verify our results.

### 6.1 Performance change deriving from positive-region reduction

All the positive-region reducts and their corresponding three performance measures of the original table are shown in Table 4 and Figures 1-3. The values of $\alpha, \beta$ and $\gamma$ of the original table and the corresponding reduced tables are shown in Table 4. Figures 1-3 show that the value of each of $\alpha, \beta$ and $\gamma$ with respect to every positive-region reduct, respectively.

From Table 4 and Figures $1-3$, it is easy to draw the following conclusion. Through using a positive-region reduction, the certainty measure $\alpha$ and the consistency measure

Table 4. All positive-region reducts and decision performance measures of the corresponding reduced tables.

| No. | Reducts | $\alpha$ | $\beta$ | $\gamma$ |
| :--- | :--- | :---: | :---: | :---: |
| 1 | $1,2,3,4,8,9,10,11,12,14,15,16,19,20,21$ | 0.90379 | 0.80758 | 0.01396 |
| 2 | $1,2,3,4,7,8,9,10,11,13,14,15,16,19,20,21$ | 0.90444 | 0.80889 | 0.01244 |
| 3 | $1,2,3,4,8,9,10,11,12,14,17,20,21,22$ | 0.90339 | 0.80679 | 0.01102 |
| 4 | $1,2,3,4,8,9,10,11,12,14,19,21,22$ | 0.90381 | 0.80762 | 0.01262 |
| 5 | $1,2,3,4,5,8,9,10,11,13,14,17,20,21,22$ | 0.90381 | 0.80762 | 0.01058 |
| 6 | $1,2,3,4,7,8,9,10,11,13,14,17,20,21,22$ | 0.90400 | 0.80800 | 0.01004 |
| 7 | $1,2,3,4,8,9,10,11,13,14,16,17,20,21,22$ | 0.90381 | 0.80762 | 0.01031 |
| 8 | $1,2,3,4,8,9,10,11,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.01013 |
| 9 | $1,2,3,4,6,8,9,10,12,14,15,16,19,20,21$ | 0.90379 | 0.80758 | 0.01387 |
| 10 | $1,2,3,4,5,6,8,9,11,12,14,15,19,20,21$ | 0.90379 | 0.80758 | 0.01396 |
| 11 | $1,2,3,4,6,8,9,10,11,12,14,15,19,20,21$ | 0.90379 | 0.80758 | 0.01396 |
| 12 | $1,2,3,4,6,8,9,11,12,14,15,17,19,20,21$ | 0.90379 | 0.80758 | 0.01378 |
| 13 | $1,2,3,4,6,7,8,9,10,13,14,15,16,19,20,21$ | 0.90444 | 0.80889 | 0.01236 |
| 14 | $1,2,3,4,5,6,7,8,9,11,13,14,15,19,20,21$ | 0.90444 | 0.80889 | 0.01262 |
| 15 | $1,2,3,4,6,7,8,9,10,11,13,14,15,19,20,21$ | 0.90444 | 0.80889 | 0.01244 |
| 16 | $1,2,3,4,6,7,8,9,11,13,14,15,17,19,20,21$ | 0.90444 | 0.80889 | 0.01236 |
| 17 | $1,3,4,6,8,9,10,12,14,16,17,20,21,22$ | 0.90339 | 0.80679 | 0.01111 |
| 18 | $1,3,4,6,8,9,10,12,14,16,19,21,22$ | 0.90381 | 0.80762 | 0.01253 |
| 19 | $1,3,4,5,6,8,9,11,12,14,17,21,22$ | 0.90337 | 0.80673 | 0.01307 |
| 20 | $1,3,4,6,8,9,10,11,12,14,17,21,22$ | 0.90337 | 0.80673 | 0.01289 |
| 21 | $1,3,4,6,8,9,11,12,14,17,19,21,22$ | 0.90381 | 0.80762 | 0.01262 |
| 22 | $1,3,4,5,6,8,9,11,12,14,19,21,22$ | 0.90381 | 0.80762 | 0.01271 |
| 23 | $1,3,4,6,8,9,10,11,12,14,19,21,22$ | 0.90381 | 0.80762 | 0.01262 |
| 24 | $1,2,3,4,6,8,9,10,13,14,16,17,20,21,22$ | 0.90381 | 0.80762 | 0.01022 |
| 25 | $1,3,4,6,7,8,9,10,13,14,16,17,20,21,22$ | 0.90400 | 0.80800 | 0.00987 |
| 26 | $1,2,3,4,6,8,9,10,13,14,16,18,19,20,21,22$ | 0.90444 | 0.80889 | 0.00967 |
| 27 | $1,3,4,6,7,8,9,10,13,14,16,19,20,21,22$ | 0.90444 | 0.80889 | 0.00960 |
| 28 | $1,2,3,4,5,6,8,9,11,13,14,17,20,21,22$ | 0.90381 | 0.80762 | 0.01076 |
| 29 | $1,2,3,4,6,8,9,11,13,14,17,19,20,21,22$ | 0.90444 | 0.80889 | 0.01004 |
| 30 | $1,3,4,5,6,7,8,9,11,13,14,17,20,21,22$ | 0.90400 | 0.80800 | 0.01013 |
| 31 | $1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22$ | 0.90444 | 0.80889 | 0.00960 |
| 32 | $1,2,3,4,5,6,8,9,11,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.01033 |
| 33 | $1,3,4,5,6,7,8,9,11,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.00969 |
| $*$ | $0 r i g i n a l, t a b 19$ | 0.90444 | 0.80889 | 0.00933 |
|  |  |  |  |  |



Figure 1. Variation of the certainty measure $\alpha$ after positive-region reducts.


Figure 2. Variation of the consistency measure $\beta$ after positive-region reducts.
$\beta$ are not larger than the original certainty measure and the original consistency measure respectively, and the support measure $\gamma$ is not smaller than the original support measure.

### 6.2 Performance change deriving from Shannon's entropy reduction

All the Shannon entropy reducts and their corresponding three performance measures of the original table are shown in Table 5 and Figures 4-6. The values of $\alpha, \beta$ and $\gamma$ of the original table and the corresponding reduced tables are shown in Table 5. Figures $4-6$ show the values of $\alpha, \beta$ and $\gamma$ with respect to every Shannon entropy reduct respectively.

From Table 5 and Figures 4-6, it is easy to draw the following conclusion: after performing a Shannon entropy reduction, each of the certainty measure $\alpha$ and the consistency measure $\beta$ is the same as each of those induced by an original decision table, and the support measure $\gamma$ is not smaller than the original support measure.


Figure 3. Variation of the support measure $\gamma$ after positive-region reducts.

### 6.3 Performance change deriving from Liang's entropy reduction

All the Liang entropy reducts and their corresponding three performance measures of the original table are shown in Table 6 and Figures 7-9. The values of $\alpha, \beta$ and $\gamma$ of the original table and the corresponding reduced tables are presented in Table 6. Figures 7-9 show the value of each of $\alpha, \beta$ and $\gamma$ with respect to every positive-region reduct, respectively.

Table 5. All Shannon entropy reducts and decision performance measures of the corresponding reduced tables.

| No. | Reducts | $\alpha$ | $\beta$ | $\gamma$ |
| :--- | :--- | :---: | :---: | :---: |
| 1 | $1,2,3,4,8,9,10,11,12,13,14,19,21,22$ | 0.90444 | 0.80889 | 0.01120 |
| 2 | $1,2,3,4,7,8,9,10,11,13,14,15,16,19,20,21$ | 0.90444 | 0.80889 | 0.01240 |
| 3 | $1,2,3,4,8,9,10,11,12,13,14,15,16,19,20,21$ | 0.90444 | 0.80889 | 0.01227 |
| 4 | $1,2,3,4,8,9,10,11,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.01013 |
| 5 | $1,2,3,4,5,6,7,8,9,11,13,14,15,19,20,21$ | 0.90444 | 0.80889 | 0.01262 |
| 6 | $1,2,3,4,6,7,8,9,10,11,13,14,15,19,20,21$ | 0.90444 | 0.80889 | 0.01244 |
| 7 | $1,2,3,4,6,7,8,9,11,13,14,15,17,19,20,21$ | 0.90444 | 0.80889 | 0.01236 |
| 8 | $1,2,3,4,5,6,8,9,11,12,13,14,15,19,20,21$ | 0.90444 | 0.80889 | 0.01236 |
| 9 | $1,2,3,4,6,8,9,10,11,12,13,14,15,19,20,21$ | 0.90444 | 0.80889 | 0.01227 |
| 10 | $1,2,3,4,6,8,9,11,12,13,14,15,17,19,20,21$ | 0.90444 | 0.80889 | 0.01209 |
| 11 | $1,2,3,4,6,7,8,9,10,13,14,15,16,19,20,21$ | 0.90444 | 0.80889 | 0.01236 |
| 12 | $1,2,3,4,6,8,9,10,12,13,14,15,16,19,20,21$ | 0.90444 | 0.80889 | 0.01218 |
| 13 | $1,3,4,5,6,8,9,11,12,13,14,19,21,22$ | 0.90444 | 0.80889 | 0.01120 |
| 14 | $1,3,4,6,8,9,10,11,12,13,14,19,21,22$ | 0.90444 | 0.80889 | 0.01111 |
| 15 | $1,3,4,6,8,9,11,12,13,14,17,19,21,22$ | 0.90444 | 0.80889 | 0.01102 |
| 16 | $1,2,3,4,5,6,8,9,11,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.01013 |
| 17 | $1,2,3,4,6,8,9,11,13,14,17,19,20,21,22$ | 0.90444 | 0.80889 | 0.01004 |
| 18 | $1,3,4,5,6,7,8,9,11,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.00969 |
| 19 | $1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22$ | 0.90444 | 0.80889 | 0.00960 |
| 20 | $1,3,4,6,8,9,10,12,13,14,16,19,21,22$ | 0.90444 | 0.80889 | 0.01111 |
| 21 | $1,2,3,4,6,8,9,10,13,14,16,17,19,20,21,22$ | 0.90444 | 0.80889 | 0.00960 |
| 22 | $1,2,3,4,6,8,9,10,13,14,16,18,19,20,21,22$ | 0.90444 | 0.80889 | 0.00969 |
| 23 | $1,3,4,6,7,8,9,10,13,14,16,19,20,21,22$ | 0.90444 | 0.80889 | 0.00960 |
| $*$ | Original table | 0.90444 | 0.80889 | 0.00933 |



Figure 4. Variation of the certainty measure $\alpha$ after Shannon entropy reducts.


Figure 5. Variation of the consistency measure $\beta$ after Shannon entropy reducts.


Figure 6. Variation of the support measure $\gamma$ after Shannon entropy reducts.

Table 6. All Liang entropy reducts and decision performance measures of the corresponding reduced tables.

| No. | Reducts | $\alpha$ | $\beta$ | $\gamma$ |
| :--- | :--- | :---: | :---: | :---: |
| 1 | $1,2,3,4,7,8,9,10,11,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.00969 |
| 2 | $1,2,3,4,8,9,10,11,12,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.00978 |
| 3 | $1,3,4,6,7,8,9,10,13,14,16,19,20,21,22$ | 0.90444 | 0.80889 | 0.00960 |
| 4 | $1,3,4,5,6,7,8,9,1,1,1,1,1,2,2,2,22$ | 0.90444 | 0.80889 | 0.00069 |
| 5 | $1,2,3,4,6,7,8,9,11,13,14,17,19,20,21,22$ | 0.90444 | 0.80889 | 0.00969 |
| 6 | $1,3,4,6,7,8,9,11,13,14,16,17,19,20,21,22$ | 0.90444 | 0.80889 | 0.00960 |
| 7 | $1,3,4,6,8,9,10,12,13,14,16,19,20,21,22$ | 0.90444 | 0.80889 | 0.00978 |
| 8 | $1,3,4,5,6,8,9,11,12,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.00987 |
| 9 | $1,3,4,6,8,9,10,11,12,13,14,19,20,21,22$ | 0.90444 | 0.80889 | 0.00978 |
| 10 | $1,3,4,6,8,9,11,12,13,14,17,19,20,21,22$ | 0.90444 | 0.80889 | 0.00969 |
| $*$ | Original table | 0.90444 | 0.80889 | 0.00933 |



Figure 7. Variation of the certainty measure $\alpha$ after Liang entropy reducts.


Figure 8. Variation of the consistency measure $\beta$ after Liang entropy reducts.


Figure 9. Variation of the support measure $\gamma$ after Liang entropy reducts.

From Table 6 and Figures 7-9, it is easy to draw the following conclusions: after performing a Liang entropy reduction, the change is similar to Shannon's entropy reduction, each of the certainty measure $\alpha$ and the consistency measure $\beta$ is the same as each of those induced by a original decision table, and the support measure $\gamma$ is not smaller than the original support measure.

## 7. Conclusions

Certainty measure, consistency measure and support measure are three important measures for evaluating the decision performance of a decision table. In this paper, we have analysed the change mechanism of the decision performance after performing the positive-region reduction, Shannon's entropy reduction and Liang's entropy reduction, and have obtained some of their important properties. These three measures may be changed through using a positive-region reduction. However, the certainty measure and the consistency measure are unchanged after using a Shannon entropy reduction and Liang entropy reduction, and the support measure is usually increased. These results may be helpful for determining which of the positive-region reduction, Shannon entropy reduction and Liang's entropy reduction is preferred for a practical decision problem in the context of complete decision tables. Further development will be focused on the change mechanism of three evaluation measures in the context of incomplete decision tables.

## Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 60773133,70971080,60903110), the High Technology Research and Development Programme of China (863) (No. 2007AA 01Z165), the National Key Basic Research and Development Programme of China (973) (Grant No. 2007CB311002) and the Natural Science Foundation of Shanxi Province (Nos 2008011038 and 009021017-1).

## Notes on contributors



Wei Wei is a PhD candidate from the School of Computer and Information Technology at Shanxi University, China. He received his MSc Degree in Computers with Applications at Shanxi University (2007). His research interests include data mining and knowledge discovery, rough set theory and granular computing.


Jiye Liang is a professor of the School of Computer and Information Technology and Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education at Shanxi University. He received his PhD degree in Information Science from Xi'an Jiaotong University. He also has a MS degree in computational mathematics from Xi'an Jiaotong University. His research interests include artificial intelligence, granular computing, data mining and knowledge discovery.


Yuhua Qian is a PhD candidate from the School of Computer and Information Technology at Shanxi University, China. He received his MS degree in Computers with applications at Shanxi University. His research interests include data mining and knowledge discovery, rough set theory, granular computing and artificial intelligence.


Feng Wang is a PhD candidate from the School of Computer and Information Technology at Shanxi University, China. Her research interests include rough set theory and granular computing.


Chuangyin Dang is an Associate Professor of the Department of Manufacture Engineering and Engineering Management at City University of Hong Kong. He received his PhD Degree (Cum Laude) in Operations Research/Economics from Tilburg University, the Netherlands, and MS Degree in Applied Mathematics from Xidian University, China. His research interests are in operations research/optimisation and related fields.

## References

Bazan, J., Peters, J.F., Skowron, A., Nguyen, H.S. and Szczuka, M., 2003. Rough set approach to pattern extraction from classifiers. Electronic notes in theoretical computer science, 82 (4), 1-10.
Beynon, M., 2001. Reducts within the variable precision rough sets model: a further investigation. European journal of operational research, 134 (3), 592-605.
Düntsch, I. and Gediaga, G., 1998. Uncertainty measures of rough set prediction. Artificial intelligence, 106 (1), 109-137.
Greco, S., Pawlak, Z. and Slowinski, R., 2004. Can bayesian confirmation measures be useful for rough set decision rules. Engineering applications of artificial intelligence, 17, 345-361.
Huynh, V.N. and Nakamori, Y., 2005. A roughness measure for fuzzy sets. Information sciences, 173, 255-275.
Hu, X.H. and Cercone, N., 1995. Learning in relational databases: a rough set approach. International journal of computational intelligence, 11 (2), 323-338.
Kryszkiewicz, M., 2001. Comparative study of alternative type of knowledge reduction in inconsistent systems. International journal of intelligent systems, 16, 105-120.
Li, D.Y., Zhang, B. and Leung, Y., 2004. On knowledge reduction in inconsistent decision information systems. International journal of uncertainty, fuzziness and knowledge-based systems, 12 (5), 651-672.
Liang, J.Y., Chin, K.S., Dang, C.Y. and Yam, R.C.M., 2002. A new method for measuring uncertainty and fuzziness in rough set theory. International journal of general systems, 31 (4), 331-342.
Liang, J.Y., Shi, Z.Z. and Li, D.Y., 2004. The information entropy, rough entropy and knowledge granulation in rough set theory. International journal of uncertainty, fuzziness and knowledgebased systems, 12 (1), 37-46.
Liang, J.Y., Qian, Y.H., Chu, C.Y., Li, D.Y. and Wang, J.H., 2005. Rough set approximation based on dynamic granulation. Lecture notes in artificial intelligence, 3641, 701-708.
Liang, J.Y., Shi, Z.Z., Li, D.Y. and Wireman, M.J., 2006. The information entropy, rough entropy and knowledge granulation in incomplete information systems. International journal of general systems, 34 (1), 641-654.
Liang, J.Y. and Xu, Z.B., 2002. The algorithm on knowledge reduction in incomplete information systems. International journal of uncertainty, fuzziness and knowledge-based systems, 24 (1), 95-103.
Liang, J.Y. and Qian, Y.H., 2008. Information granules and entropy theory in information systems. Science in China (Series F), 51 (9), 1427-1444.
Mi, J.S., Wu, W.Z. and Zhang, W.X., 2003. Comparative studies of knowledge reductions in inconsistent systems. Fuzzy systems and mathematics, 17 (3), 54-60.
Nguyen, H.S. and Slezak, D., 1999. Approximate reducts and association rules correspondence and complexity results. In: N. Zhong, A. Skowron and S. Oshuga, eds. Proceeding of RSFDGr3c'99. LNAI 1711. Yamaguchi, Japan, 137-145.
Pal, S.K., Pedrycz, W., Skowron, A. and Swiniarski, R., 2001. Presenting the special isssue on roughneuro computing. Neurocomputing, 36, 1-3.
Pawlak, Z., 1991. Rough sets: theoretical aspects of reasoning about data. London: Kluwer Academic Publisher.

Pawlak, Z., 1998. Rough set theory and its applications in data analysis. Cybernetics and systems, 29, 661-688.
Pawlak, Z., 2005. Some remarks on conflict analysis. Information sciences, 166, 649-654.
Pawlak, Z. and Skowron, A., 2007. Rudiments of rough sets. Information sciences, 177, 3-27.
Qian, Y.H., Liang, J.Y. and Dang, C.Y., 2008a. Consistency measure, inclusion degree and fuzzy measure in decision tables. Fuzzy sets and systems, 159, 2353-2377.
Qian, Y.H., Liang, J.Y., Li, D.Y., Zhang, H.Y. and Dang, C.Y., 2008b. Measures for evaluating the decision performance of a decision table in rough set theory. Information sciences, $178(1,2)$, 181-202.
Qian, Y.H., Liang, J.Y., Dang, C.Y., Zhang, H.Y. and Ma, J.M., 2008c. On the evaluation of the decision performance of an incomplete decision table. Data and knowledge engineering, 65 (3), 373-400.
Quafatou, M., 2000. $\alpha$-RST: a generalization of rough set theory. Information sciences, 124, 301-316.
Skowron, A. and Rauszer, C., 1992. The discernibility matrices and functions in information systems. In: R. Slowiński, ed. Intelligent decision support, handbook of applications and advances of the rough sets theory. Dordrecht: Kluwer Academic, 331-362.
Skowron, A., 1995. Extracting laws from decision tables: a rough set approach. Computational intelligence, 11, 371-388.
Slezak, D., 1996. Approximate reducts in decision tables. Proceeding of IPMU'96. Vol. 3, Granada, Spain, 1159-1164.
Slezak, D., 1998. Searching for dynamic reducts in inconsistent decision tables. Proceeding of IPMU'98. Vol. 2, France, 1362-1369.
Wang, G.Y., 2003. Rough reduction in algebra view and information view. International journal of intelligent systems, 18, 679-688.
Wang, G.Y., Zhao, J., An, J.J. and Wu, Y., 2005. A comparative study of algebra viewpoint and information viewpoint in attribute reduction. Fundamenta Informaticae, 68 (3), 289-301.
Wu, W.Z., Zhang, M., Li, H.Z. and Mi, J.S., 2005. Knowledge reduction in random information systems via Dempster-Shafer theory of evedence. Information sciences, 174, 143-164.
Yao, Y.Y., 2008. Attribute reduction in decision-theoretic rough set models. Information sciences, 178, 3356-3373.
Yao, Y.Y., 2003. Probabilistic approaches to rough sets. Expert systems, 20, 287-297.
Yao, Y.Y., Wong, S.K.M. and Butz, C.J., 1999. On information-theoretic measures of attribute importance. Lecture notes in artificial intelligence, 1574, 231-238.
Zhu, W. and Wang, F.Y., 2003. Reduction and axiomization of covering generalized rough sets. Information sciences, 152, 217-230.
Ziarko, W., 1993. Variable precision rough set model. Journal of computer and system science, 46, 39-59.


[^0]:    *Corresponding author. Email: ljy @sxu.edu.cn

