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a b s t r a c t

How to automatically mining the spatial association patterns in spatial data is a challeng-

ing task in spatial data mining. In this paper, we propose three indices that represent the

per-class, inter-class, and overall spatial associations of a nominal variable, which are based

on the conditional probabilities of surface object categories. These indices represent relative

quantities and are normalized to the region [−1, 1], which more accord with the intuitive

cognition of people. We present some algorithms for detecting spatial associations that are

based on these indices. The proposed method can be regarded as an extension of join count

statistics and Transiogram. Several constructive examples were used to illustrate the advan-

tages of the new method. Using two real data sets, vegetation types in Qingxian, Shanxi, China

and neural tube birth defects in Heshun, Shanxi, China, we ran comparative experiments with

other commonly used methods, including join count statistics, co-location quotient, and Q(m)

statistics. The experimental results show that the proposed method can detect more subtle

spatial associations, and is not sensitive to the sequence of neighbors.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Spatial associations play an active role in spatial analysis. As an important source of information, they can assist scientists to

make more accurate decisions. This is a fundamental issue in spatial analysis, and has been extensively researched. Ahuja [1] used

spatial association as the second order image statistics to fit models to a given ensemble of images. Lam et al. [31] applied spatial

association analysis to county-level Acquired Immune Deficiency Syndrome (AIDS) data of four regions of the United States for

the period 1982–1990 to characterize the spatial-temporal spread of the AIDS epidemic. Overmars et al. [44] demonstrated the

presence of the spatial associations in the land use data of Ecuador at different spatial scales. Barbounis and Theocharis [8]

used spatial auto-correlation to predict the wind speeds in wind farms. Yang et al. [58] used spatial auto-correlation to analyze

the changes in the spatial distribution patterns of population density. Fuller and Enquist [21] used Moran’s I to take spatial

associations into account in the null models of tree species’ association. Diniz-Filho et al. [18] analyzed the spatial associations

in the abundance of 28 terrestrially breeding anuran species from Central Amazonia. Meng et al. [38] used Moran’s I to select
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an optimal segmentation scale for high resolution remotely sensed imagery. Thach et al. [52] studied the relationship between

thermal stress and mortality in Hong Kong using global and local spatial association measures.

Spatial associations are particular important in geosciences. Spatial associations describe the patterns that the similar ob-

jects or activities tend to agglomerate in space. These patterns lead to non-Gaussian distribution of the regression residuals of

spatial data when using the ordinary least squares regression [3,28]. They produce redundant information in samples of spatial

objects which leads to probability reasoning with low accuracy when using traditional statistical inference methods [26,56].

The existence of spatial associations in data will greatly influence the analysis of spatial data. Therefore, the analysis of spatial

associations is a necessary step in analyzing spatial data.

Due to that spatial associations commonly exist in spatial data and greatly influences spatial analysis in many aspects, how to

effectively detect and measure the spatial associations has attracted many researchers’ attentions in the last few decades. Spatial

associations can be measured for different types of spatial data. Measures for the point based data include quadrat analysis [53],

nearest neighbor analysis [12], Ripley’s K-function [47], network K-function [42,43], etc. Measures for the area-based data include

Moran’s I [15,40], Geary’s C [23], Getis’ G [24], join count statistics (JCS) [14], etc. Some researchers have extended point based

method, for example the Ripley’s K-function, to measure spatial associations among points, lines and polygons [27].

The spatial associations of lattice data can be measured for two different types of variables: continuous and interval variables,

and nominal variables. There are three commonly used measures for continuous or interval variables, Moran’s I [2,15,29,40],

Geary’s C [23] and Getis’ G [24]. These measures depict the spatial association from different perspectives. Moran’s I is based on

the covariance of a regionalized attribute, and measures the similarity of two surface objects; Geary’s C is based on the variance

of the attribute [31]; and Getis’ G is based on the distance statistics [24].

For nominal variables, JCS [13–15,40] is an effective tool for detecting spatial associations. This method has been extensively

applied in ecology [17], remote sensing [11], economics [46], and sociology [16]. JCS compares the observed number of joins that

connect objects with the same category (rr join) or different categories (rs join) with the corresponding expected join number

from the random distribution to judge whether there are spatial associations in spatial data or not. Some extensions and mod-

ifications have been proposed. For example, Kabos and Csillag [30] proposed a JCS model that did not assume the first order

homogeneity on regular lattices. [9,10] proposed local indicators for nominal attributes based on JCS. [51] proposed a modi-

fied JCS to take into account the influences of the underlining irrigation systems on the spatial aggregation. Farber et al. [20]

used a similarity count to construct new statistical tests based on both random permutation simulations and derived asymptotic

distributions for detecting nonlinear dependencies.

The other objective when considering spatial associations is to measure the degree of the dependence between different

categories for nominal variables [32,33]. However, [25] noted that, “join count statistics do not lead to a simple summary index or

indices analogous to the Geary or Moran measures”. The interpretation of JCS depends on the shape and configuration of surface

objects. As an index for testing the significance of spatial associations, JCS is a relative quantity associated with the observed

join number and the expected join number. This means it is not appropriate for measuring the degree of spatial association. In

addition, JCS cannot detect whether one category attracts or repels another category [32].

Many researchers have attempted to solve the problems of JCS. An easily interpretive measure, the co-location quotient

(CLQ) [32], was designed for detecting and measuring spatial associations for point-based data. This measure can detect the

attraction and resistance between two categories. Nonetheless, CLQ only uses the nearest neighbors of surface objects, and can

hardly detect higher order spatial associations [37]. Furthermore, selecting the nearest neighbors rather than all the necessary

neighbors of the surface objects means that CLQ can overlook the existence of spatial associations in some situations. Addition-

ally, CLQ is not suitable for irregular lattice data.

Q(m) statistics [36,37,45,48,49] utilized the symbolic entropy to inspect whether the m-surrounding pattern is significantly

different from that of a random distribution or not. This measure can detect the existence of complex patterns of m − 1 nearest

neighbors. However, Q(m) cannot lead to a spatial association index for a category. The probability distribution of different con-

figurations is also needed besides Q(m) to find which patterns are in the m-surrounding. By Q(m), one may not judge which kind

of spatial association, positive or negative, exists among the surface object and its neighbors when using the equivalent based

m-surrounding. An example of this situation is presented in Section 5.1.2. In addition, if there are many possible configuration

patterns in the m-surrounding, Q(m) is computationally expensive.

Spatial association can be detected through the conditional probability of observing surface objects from one category with

neighbors from another category. This idea has been used by Galiano [22] to detect the segregation between plant species for

point based data. However, Galiano’s method only checked if the conditional probability is larger than the marginal probability,

and could not give an explicit metric for detecting spatial associations. Same idea was also used by Transiogram [33] in describing

spatial variabilities of nominal variables. Unlike Q(m) statistics and CLQ, Transiogram can detect the higher order spatial vari-

abilities of nominal variables and is insensitive to the sequence of neighboring surface objects. However, Transiogram did not

provide an overall measure of spatial association with respect to all categories, and a baseline of the random spatial distribution

for comparison, which make it hard to detect attraction or repulsion between categories.

This paper combines the merits of Transiogram and JCS to develop some new measures for detecting the degrees of the

spatial associations of a nominal variable. This new method inherits some advantages of Transiogram and JCS. For example,

compared with CLQ and Q(m) statistics, this method can detect higher order spatial associations and is not sensitive to the

sequence of neighboring surface objects. Meanwhile, it extends Transiogram and JCS to measure inter-class, per-class and overall

spatial associations for a nominal variable. This method quantifies and normalizes the per-class, inter-class, and overall spatial

associations of a study area using several indices that range between [−1, 1]. Furthermore, each surface object’s contribution to
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the global per-class and inter-class spatial association can be calculated by the new method. One illustrative example and two

real life examples were given to validate the new method. Comparisons between the proposed method and other three methods

including JCS, Q(m) statistics and CLQ were also made in the experiments. The results demonstrate that the new method is

consistent with other methods and can effectively measure the degrees of the higher order spatial associations.

The rest of this paper is organized as follows. Section 2 presents some notations and terminologies used in this paper. Section 3

describes the new spatial association detection method. Section 4 describes two experiments that illustrate and verify the new

method. Finally, there is a discussion of the results of the two examples and the relation between the proposed method and other

methods in Section 5. The last section presents concluding remarks.

2. Notation and terminology

The method proposed in this paper is suitable for lattice data with one nominal attribute. Accordingly, we restrict our discus-

sion to the lattices with only one nominal attribute. For convenience, we review some notations in this section.

Definition 2.1. A one nominal attribute lattice is a pair (U, C), where U = {u1, u2, . . . , uN} is the set of surface objects that repre-

sent different regions in a study area and C is a nominal attribute with domain VC = {c1, c2, . . . , cK}(K ≥ 2).

In this paper, a lattice has one nominal attribute, for simplicity. Meanwhile, our model requires that any surface objects

must have exactly one label, and each ci ∈ VC is observed in the lattice. In Definition 2.1, a surface object uα is represented by

the corresponding region’s location. A value ci in the domain VC indicates a category associated with attribute C, and it can be

regarded as a mapping from U to {0, 1}. If ui belongs to ci, then ci(uα) = 1; otherwise ci(uα) = 0. Meanwhile, attribute C can be

regarded as a mapping from U to VC. If a surface object uα is labeled ci, we denote C(uα) = ci.

Definition 2.2. Let L = (U,C) be a lattice with |U| = N. The adjacency matrix of L is defined as M1 = [m1
i j

]N×N, where m1
i j

= m1
ji

=
1 if ui and uj are 1-adjacent; otherwise m1

i j
= m1

ji
= 0.

In Definition 2.2, the 1-adjacency of two surface objects can be established using any connectivity algorithm [17]. For ex-

ample, two surface objects ui and uj in the study area are called 1-adjacent if they share a border. The adjacency matrix of a

lattice represents all the 1-adjacency relationships between all the surface objects in the lattice. Different lattice data can be

represented by a well-defined adjacency matrix and the attributes of surface objects. For example, each polygon in an irregular

lattice represents a spatial object and the polygons’ adjacency is calculated through judging if two polygons touch each other.

For a regular lattice, each grid in the lattice can be a surface object, and a surface object uα is adjacent to its four neighbors in the

rook directions (immediately above, below, left and right).

The kth order adjacency matrices Mk can be recursively derived using the concept of relation composition. That is, Mk =
M(k) − ∪k−1

i=1
M(i) − E, where M(i) is the relation composition of i Ms. The kth order adjacency matrix of a lattice is defined as

Mk = [mk
i j

]N×N, where mk
i j

= 1 only if two spatial objects ui and uj are adjacent to each other via other k − 1 surface objects

and they are not adjacent to each other via any k′ < k − 1 surface objects; otherwise mk
i j

= 0. Two surface objects are kth order

neighbors to each other if and only if the corresponding element in Mk equals 1.

Let uα be a surface object and u+k
α be its kth order neighbor. The pair (uα, u+k

α ) denotes the path of length k from uα to u+k
α ,

ignoring the intermediate surface objects. uα is called the tail and u+k
α is called the head.

We randomly select a surface object uα in U, and then observe if it belongs to category ci. By Definition 2.1 and its explanation,

ci(uα) can be thought of as an indicator random variable of category ci at uα . A random function can be defined on U as {ci(α), α
∈ U}, and can be characterized using an N-variate cumulative probability distribution function (cdf). In this paper, the analysis of

spatial association only uses univariate and bivariate cdfs of the random function and their corresponding moments. The model

proposed requires the assumption of stationary, i.e., any N-dimensional probability distribution function of the random variable

is invariant with respect to its position. According to [26], univariate and bivariate cdfs of the random function and their moments

are location-independent under the stationary assumption, and α can be dropped from expressions.

The stationary assumption has been generally accepted when modeling spatial data. As noted by Anselin [4], “In most in-

stances of analyzing spatial data, the proper perspective is not to consider spatial data as a random sample with many obser-

vations, but instead as a single realization of a stochastic process. Provided that the underlying stochastic process is sufficiently

stationary, the observed pattern will yield information on the characteristics of that process.” Many spatial association detecting

and measuring methods for lattice data are based on the stationary assumption. That is, they need the assumption that “every

location is assumed to have the same chance of receiving any particular value [9,30,33,41]”. Our model also uses this generally

accepted stationary assumption.

For a surface object pair (uα, u+k
α ), P(ci) represents the probability that the tail is labeled ci, i.e., P(ci) = P(ci(uα) = 1)

and Pk(ci) represents the probability that the head is labeled ci, i.e., Pk(ci) = P(ci(u+k
α ) = 1). Under the stationary assump-

tion, Pk(ci) = P(ci) [26]. Pk(cj|ci) represents the conditional probability of the event c j(u+k
α ) = 1 when the event ci(uα) = 1

occurs, i.e., Pk(c j|ci) = P(c j(u+k
α ) = 1|ci(uα) = 1). Pk(cj|ci) can also be regarded as the probability that the surface object cate-

gory transforms from ci into cj along the path (uα, u+k
α ) [33]. Pk(cj ∩ ci) represents the co-occurrence probability of two events

c j(u+k
α ) = 1 and ci(uα) = 1. That is, the probability of a pair with a tail labeled ci and a head labeled cj. P{C(uα) = C(u+k

α )}
represents the probability of a pair with a tail and a head labeled with the same category. By E (c ) and E(c ), we denote the
k i i
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expectations of the random variables “the head of a k-th pair is labeled with ci” and “the tail of a kth pair is labeled with

ci”, respectively. That is, Ek(ci) = E(ci(u+k
α )) and E(ci) = E(ci(uα)). By Ek(cjci), we denote the expectation of the product of

c j(u+k
α ) and ci(uα), i.e., Ek(c jci) = E(c j(u+k

α )ci(uα)). By Covk(c j, ci), we denote the cross covariance of c j(u+k
α ) and ci(uα), i.e.,

Covk(c j, ci) = E((c j(u+k
α ) − E(c j(u+k

α )))(ci(uα) − E(ci(uα)))).

3. Measures and algorithms

Intuitively, if category ci attracts category cj in space, then cj will be observed in the neighbors of category ci more frequently

than randomly expected. On the contrary, if category ci repels category cj in space, then cj will be observed in the neighbors of ci

less frequently than randomly expected. Therefore, one can measure the spatial attraction of ci to cj using Pk(cj|ci). Additionally,

if category cj is randomly distributed in the neighbors of category ci, the occurrence of ci in one location will not affect the

probability of the occurrence of cj in its neighbor. Consequently, under the stationary assumption, if Pk(cj|ci) is larger (less) than

P(cj), then ci tends to attract (repel) cj. When ci = c j, the attraction and repulsion are known as the positive and negative spatial

auto-correlations.

3.1. Measuring the spatial association between categories

Let CPk(c j|ci) = Pk(c j|ci) − P(c j). The above discussion suggests that CPk(cj|ci) can depict the spatial association between cate-

gory ci and category cj in the kth order neighbors. However, the following example shows that CPk(cj|ci) cannot perfectly achieve

our requirement.

Example 3.1. Suppose that there are two lattices L1 = {U1,C} and L2 = {U2,C}, where VC = {c1, c2, . . . , cK} (K ≥ 2). In L1, P(ci) =
0.3, P(c j) = 0.3 and P1(c j|ci) = 1.0. In L2, P(ci) = 0.1, P(c j) = 0.1 and P1(c j|ci) = 0.85. Then CP1(cj|ci) for the two lattices L1 and

L2 are 0.7 and 0.75, respectively. This suggests that category ci attracts category cj in both lattices. Although CP1(cj|ci) of L2 is

larger than that of L1, the degree that ci attracts cj in L2 is smaller than in L1. Apparently, all the neighbors of the category ci must

belong to the category cj in L1. However, approximately 15% of the neighbors of the category ci do not belong to category cj in L2.

Because CPk(cj|ci) is an absolute quantity but not a relative quantity, it is unsuitable to the relative comparison of spatial

association degree. In other words, we cannot use CPk(c j1
|ci) = CPk(c j2

|ci) to determine which pair, (c j1
, ci) or (c j2

, ci), has a

larger kth order spatial association. Take, for example, the positive spatial association, i.e., Pk(cj|ci) > P(cj), we hope to know

that the enlarged degree of the probability of cj under the condition “ci occurs” with respect to the largest potential enlarged

degree 1 − P(c j), i.e., CPk(c j|ci)/[1 − P(c j)]. For negative spatial associations, i.e., Pk(cj|ci) < P(cj), the largest potential change in

the probability of cj under “ci occurs” is P(cj), so we can use CPk(cj|ci)/P(cj) to depict the negative spatial association.

By the above discussion we have the following definition.

Definition 3.1. Let L = (U,C) be a lattice with U = {u1, u2, . . . , uN} VC = {c1, c2, . . . , cK} (K ≥ 2), and P(cj) > 0 for all cj ∈ VC. For a

kth order pair (uα, u+k
α ) with C(uα) = ci and C(u+k

α ) = c j, we define the index of the kth order inter-class spatial association of cj

with respect to ci as

NCPk(c j|ci) =

⎧⎪⎨
⎪⎩

CPk(c j|ci)

1 − P(c j)
, CPk(c j|ci) ≥ 0

CPk(c j|ci)

P(c j)
, CPk(c j|ci) < 0

. (1)

In Definition 3.1, if ci = c j, NCPk(cj|ci) is called the index of the kth order spatial auto-correlation (per-class spatial association)

of ci, and is denoted as NCPk(ci). Note that our model requires P(cj) > 0, ∀cj ∈ VC. If P(c j) = 1 for category cj, then Pk(c j) = 1 under

the stationary assumption. This means that the whole study area has only one category. This is of little use when measuring

spatial associations for lattice data, because the whole area is filled with one category. Some measures can be applied to the

spatial associations of spatial data with one category, for example the Ripley’s K function [47]. However, these measures are

designed for point based data rather than lattice data. The spatial associations of point-based data are beyond the scope of this

paper.

Definition 3.1 implies that −1 ≤ NCPk(c j|ci) ≤ 1. NCPk(c j|ci) = 0 means that cj is neither attracted nor repelled by ci at its kth

order neighbors. NCPk(cj|ci) > 0 means that cj is attracted by ci at its kth order neighbors. NCPk(cj|ci) < 0 means that ci repels cj

at its kth order neighbors.

Property 3.1. The index of spatial association NCPk(cj|ci) can be rewritten as
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NCPk(c j|ci) =

⎧⎪⎨
⎪⎩

1

P(ci)(1 − P(c j))
Covk(c j, ci), CPk(c j|ci) ≥ 0

1

P(ci)P(c j)
Covk(c j, ci), CPk(c j|ci) < 0

. (2)

Proof. From the stationary assumption it follows that Pk(c j) = P(c j). By the conditional probability formula, it is obvious that

CPk(c j|ci) = Pk(c j|ci)P(ci) − P(c j)P(ci)

P(ci)
= Pk(c j ∩ ci) − Pk(c j)P(ci)

P(ci)
.

Let ξ be an indicator random variable, i.e., ξ only takes two values 0 or 1. Then the expectation E(ξ ) is the probability of the

event ξ = 1, i.e., E(ξ) = P(ξ = 1).

It should be noticed that c j(uk
α)ci(uα) is also an indicator random variable when both c j(uk

α) and ci(uα) are indicator random

variables. Then, c j(uk
α)ci(uα) = 1 if and only if c j(uk

α) = 1 and ci(uα) = 1. So Pk(c j(uk
α)ci(uα) = 1) = Pk(c j ∩ ci). This means that

Pk(c j ∩ ci) = E(c jci).

We have that

CPk(c j|ci) = Ek(c jci) − Ek(c j)E(ci)

P(ci)
= Covk(c j, ci)

P(ci)
.

We can immediately obtain Formula (2) by plug this formula into Formula (1). This completes the proof of the property. �

Formula (1) shows that each central surface object uα with label ci, as the tails of some kth order pairs, may contribute to

NCPk(cj|ci). Some make NCPk(cj|ci) biased towards a positive value (positive contribution), and the others make NCPk(cj|ci) biased

towards a negative value (negative contribution). If uα is labeled ci and the proportion of all its neighboring surface objects that

are labeled cj is larger than P(cj), it will have a positive contribution to NCPk(cj|ci). Otherwise, it will have a negative contribution

to NCPk(cj|ci). A positive contribution of uα to NCPk(cj|ci) means that the surface objects labeled cj tend to congregate in the

neighbors of uα .

Remark. How to evaluate if a central surface object uα with category ci significantly contributes to NCPk(cj|ci)? Suppose there

are q neighbors that are labeled cj in all s kth order neighbors of uα . One can evaluate the contribution significance of uα to

NCPk(cj|ci) by inspecting if the event “q neighbors are labeled cj in all s kth order neighbors of uα” is a small probability event

under the marginal probability P(cj) of the category cj. It is easy to compute this probability using the binomial distribution (see

also [54] and [9]).

RPq
s (uα) =

(
s

q

)
Pq(c j)(1 − P(c j))

s−q. (3)

A vary small RP
q
s (uα), for example RP

q
s (uα) ≤ 0.05, means that the event is a small probability event. According to the prin-

ciple of a small probability event, i.e., “a small probability event cannot actually happen in once test”, we have reason to believe

that the observed fact “q neighbors are labeled cj in all s kth order neighbors of uα” cannot happen by chance. In other words,

occurring q neighbors with category cj in all s kth order neighbors of uα significantly depends on uα belonging to ci. In the

significance test, the values 0.05 or 0.01 are usually known as the significance level.

3.2. Measuring the spatial association of an attribute

Let L = (U,C) be a lattice with U = {u1, u2, . . . , uN}, VC = {c1, c2, . . . , cK} (K ≥ 2), and P(cj) > 0 for all cj ∈ VC. To determine if

attribute C is kth order spatially auto-correlated, we must consider every category ci ∈ VC. The neighbors of surface objects tend to

belong to the same category as the central surface object, if there is a positive spatial association. Therefore, the kth order spatial

association of an attribute can be measured via comparing the probability of observing pairs of surface objects with the same

category with the theoretical value under the assumption of no spatial association. The assumption of no spatial association

means that “every location is assumed to have the same chance of receiving any particular value and the chance of receiving

that value at any location is assumed to be independent of values at other locations [41]”. Under the assumptions of no spatial

association and stationary, the following lemma holds.

Lemma 3.1. Let L = (U,C) be a lattice with U = {u1, u2, . . . , uN}, VC = {c1, c2, . . . , cK} (K ≥ 2) and P(cj) > 0 for all cj ∈ VC. If any

surface objects have exactly one label, the theoretical value of P{C(uα) = C(u+k
α )} under the assumptions of no spatial association and

stationary is

Pk
E = P{C(uα) = C(u+k

α )} =
∑
ci∈VC

P2(ci).

Proof. P{C(uα) = C(u+k
α )} is the probability that pairs have tails and heads from the same category. There are |VC| categories

in the study area, so there are at most |V | possible outcomes for C(uα) = C(u+k), i.e., C(uα) = C(u+k) = c , i ∈ {1, . . . , |V |}.
C α α i C
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Algorithm 1 Calculation of NCPk(cj|ci).

Input:

L(U,C): the lattice containing N surface objects to be analyzed;

ci, c j: the categories of the tail and head respectively;

Mk: the k-th order adjacency matrix;

Output:

NCPk(c j|ci);

function InterNCP(L(U,C), ci, c j, Mk)

P(ci) = P(c j) =0;

for each uα ∈ U do

Tuα = 0; Iuα = 0;

if c j(uα) == 1 then

P(c j) = P(c j) + 1;

end if

if ci(uα) == 1 then

P(ci) = P(ci) + 1;

for each u+k
α in terms of Mk do

Tuα =Tuα +1;

if c j(u+k
α ) == 1 then

Iuα =Iuα +1;

end if

end for

end if

Set T = T + Tuα and I = I + Iuα ;

end for

P(ci) = P(ci)/N; P(c j) = P(c j)/N;

Pk(c j|ci) = I/T ;

Calculate NCPk(c j|ci) in terms of Equation (1).

return NCPk(c j|ci);

end function
Accordingly, P{C(uα) = C(u+k
α )} = P{∪ci∈VC

(C(uα) = C(u+k
α ) = ci)}. Meanwhile, because the surface objects have exactly one la-

bel, then events C(uα) = C(u+k
α ) = ci and C(uα) = C(u+k

α ) = ci are disjoint if ci and cj are different. Therefore, P{∪ci∈VC
(C(uα) =

C(u+k
α ) = ci)} = ∑

ci∈VC
Pk{C(uα) = C(u+k

α ) = ci} = ∑
ci∈VC

Pk(ci ∩ ci). Under the assumption of no spatial association and station-

ary, Pk(ci|ci) = Pk(ci) = P(ci). Accordingly, Pk(ci|ci) = Pk(ci

⋂
ci)/Pk(ci) = P(ci). Then, Pk(ci

⋂
ci) = PK(ci)P(ci) = P2(ci). Therefore,

P{∪ci∈VC
(C(uα) = C(u+k

α ) = ci)} = ∑
ci∈VC

Pk(ci

⋂
ci) = ∑

ci∈VC
P2(ci). �

Let CPO
k
(C) = Pk{C(uα) = C(u+k

α )} − Pk
E

. Similarly to measuring the spatial association between categories, we divide CPO
k
(C)

by the largest possible change, 1 − Pk
E

and Pk
E

under CPO
k
(C) ≥ 0 and CPO

k
(C) < 0, respectively. That is,

NCPO
k (C) =

⎧⎪⎪⎨
⎪⎪⎩

CPO
k
(C)

1 − Pk
E

, CPO
k
(C) ≥ 0

CPO
k
(C)

Pk
E

, CPO
k
(C) < 0

. (4)

We call NCPO
k
(C) as the index of the kth order overall spatial association of an attribute. In practical applications, P{C(uα) =

C(u+k
α )} can be approximated using the ratio of joins with the same category to all joins in a map, which is similar to counting

the rr joins in JCS [13].

It is easy to show that −1 ≤ NCPO
k
(C) ≤ 1. And NCPO

k
(C) = 0 means that the attribute has no kth order auto-correlation.

NCPO
k
(C) > 0 means the kth order positive auto-correlation of the attribute, and NCPO

k
(C) < 0 means the kth order negative auto-

correlation of the attribute.

3.3. Spatial association detection algorithm

Based on the measures proposed in the previous sections, we developed a new algorithm for detecting spatial associations

using NCP values. This algorithm calculates different order NCPs. The orders of adjacency are determined in terms of the appli-

cations. NCPk(cj|ci) is approximated by estimating of P(ci) and Pk(cj|ci), and is the key ingredient of the algorithm. NCPk(ci) is a

special case of NCPk(cj|ci) when ci = c j . Here, we suppose that there are N surface objects in the study area, and that Mk is the kth

order adjacency matrix used. Algorithm (1) shows how to calculate NCPk(cj|ci).
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To calculate the overall NCP, we must approximate Pk{C(uα) = C(u+k
α )} and Pk

E
. Pk{C(uα) = C(u+k

α )} can be approximated using

the quotient of the total number of joins between surface objects divided by the number of rr joins. Pk
E

can be approximated using

the marginal probability of each category in the study area. The calculation of the overall NCP is shown in Algorithm (2).

Algorithm 2 Calculation of NCPO
k
(C).

Input:

L(U,C): the lattice containing N surface objects to be analyzed;

Mk: the k-th order adjacency matrix;

Output:

NCPO
k
(C);

function OverallNCP(L(U,C), Mk)

for each ci in VC do

P(ci) = 0;

end for

J = Jrr = 0;

for each uα in U do

for each ci in VC do

P(ci) = P(ci) + ci(uα);

end for

for each u+k
α in terms of Mk do

J = J + 1;

if C(uα) = C(u+k
α ) then

Jrr = Jrr + 1;

end if

end for

end for

for each ci in VC do

P(ci) = P(ci)/N;

end for

Pk
E

= ∑
ci∈VC

(P(ci))
2;

Calculate NCPO
k
(C) using Equation (4);

return NCPO
k
(C);

end function

The statistical significances of NCPk(cj|ci) and NCPO
k

are tested using permutation test [39], because it does not require any

assumptions regarding the expected distribution and has been widely used by other methods, such as JCS, Moran’s I, CLQ and

Q(m) statistics. The permutation test proceeds as follows. First, n ≥ 1000 random permutations are generated from the original

data. Each permutation is a random reshuffle of the original data over space. The values of NCPs for all the permutations are

recomputed and then all the NCPs of all permutations result a reference distribution. Then, the reference distribution is compared

with the NCPs of the original data to determine the probability that the observed NCPs come from a random distribution. For

example, if the original NCPs are more extreme than all but n′ of the calculated NCPs from permutations, the permutation’s p-

value would be (n′ + 1)/(n + 1). If the p-value is smaller than a given threshold (significance level, e.g., 0.01), then the calculated

NCP is statistically significant.

3.4. Illustrative examples

We used three simulated data sets with known spatial patterns to illustrate and validate the algorithm. These data sets were:

(a) a negative auto-correlated lattice; (b) a positive auto-correlated lattice; and (c) a randomly distributed lattice. For simplicity,

there were only two categories, denoted as B (black) and W (white). The three simulated data sets are shown in Fig. 1. In this

example, there were 100 units in each simulated data set and four nearest neighbors in the rook directions were the first order

neighbors. The marginal probability of each category in all the data sets was 0.5. In this paper, the significant levels were all set

to 0.01.

We calculated the first order NCPs for all three data sets to illustrate the new method. Consider the example in Fig. 1(b). There

are 180 neighbors of white units, and 170 of these are white. Therefore, P1(W |W) = 17/18 and NCP1(W) = (17/18 − 0.5)/(1 −
−0.5) ≈ 0.889, according to Eq. 1. There are ten black neighboring units. Therefore, P1(B|W) = 1/18 and NCP1(B|W) = (1/18 −
0.5)/0.5 = −0.889. The NCP1(B) and NCP1(W|B) can also be calculated in the same way. Among all neighbors of white units, there

are 180 joins between units, and 170 of them connect two units with same category. Therefore, P1{C(uα) = C(u+k
α )} = 17/18.

Given that P1
E = 0.5, NCPO

1
(C) ≈ 0.889.

To validate the effectiveness of the new method, we calculate the first order JCS, Q(m) statistics, and CLQ for all three data sets.

The first order per-class and overall NCPs together with the first order per-class and overall JCSs for all three data sets are shown
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cba

Fig. 1. Three simulated data sets: (a) negatively auto-correlated simulated data; (b) positively auto-correlated simulated data; and (c) randomly distributed

simulated data.

Table 1

The first order adjacency per-class and overall NCPs, JCSs and Q statistics for data sets (a), (b) and (c). W

represents white, B represents black and C ={W,B}.

Ba Wa Ca Bb Wb Cb Bc Wc Cc

NCP −1 −1 −1 0.889 0.889 0.889 −0.151a −0.138a −0.144a

JCS 90 −45 −45 −80 40 40 13a −6a −7a

Q(5) NA NA 398.718 NA NA 422.046 NA NA 31.2214a

a Failed to pass the permutation test.

Table 2

The inter-class NCPs for data sets

(a), (b), and (c). W represents white

and B represents black.

W|B B|W

Data (a) 1 1

Data (b) −0.889 −0.889

Data (c) 0.150a 0.138a

a Failed to pass the permutation

test.

Table 3

The CLQs of data sets (a), (b), and (c). W represents white and

B represents black.

W|W B|W B|B W|B Overall

Data (a) 0 2 0 2 0

Data (b) 1.93 0.11 1.93 0.11 1.91

Data (c) 0.86a 1.16a 0.88a 1.13a 0.86a

a Failed to pass the permutation test.
in Table 1. The first order inter-class NCP is shown in Table 2. The Q(m) statistics for the first order neighbors Q(5) are shown in

Table 1 for the three data sets. The CLQs for the three data sets are shown in Table 3. For convenience, the original symbol ‘ci →
cj’ used in [32] has been replaced by ‘cj|ci’.

For the spatially negatively auto-correlated data, the observed number of rs joins was larger than the expected number and

the number of rr joins for each category was less than the corresponding expected value. The per-class and overall JCSs passed the

permutation test. This means that Fig. 1(a) is not from a random distribution. The overall and per-class NCPs were −1, and both

passed the permutation test. This means there were negative auto-correlations in the data and NCP was consistent with JCS. The

inter-class measures NCP1(W|B) and NCP1(B|W) were both equal 1, which means that surface objects with different categories

tended to be neighbors. Similarly, the NCPs and JCSs were consistent with each other for the positively correlated data. For the

randomly distributed data, the JCSs and NCPs failed to pass the permutation test, which supports that Fig. 1(c) is from a random

distribution. The CLQ result was also consistent with the NCPs. For example, the overall CLQ for data sets (a) and (b) were 0

and 1.91, respectively, and the overall CLQ for data set (c) failed to pass the permutation test. Accordingly, data sets (a) and (b)
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Fig. 2. Map of vegetation types in Qingxian, Shanxi, China.
have negative and positive spatial associations, and data set (c) has no significant spatial associations. This is consistent with the

overall NCPs.

Compared with other indices, the Q(m) statistics could not discern the positive and negative spatial associations without the

help of the distribution of different configurations of the m-surrounding patterns. For example, the Q(m) statistics of data sets (a)

and (b) both passed the permutation test. However, it is hard to judge the difference between the spatial associations of these

two data sets using this measure alone. For (a), the most frequent configurations were {B,W,W,W,W} and {W,B,B,B,B}. Therefore,

the units in (a) tend to have neighbors from different categories. Similarly, units in (b) tend to have neighbors from the same

category. This is consistent with the results from the NCPs.

4. Experiments

We ran two experiments to further validate the new method. The first experiment analyzed spatial associations of vegetation

types in Qingxian, Shanxi, China. The vegetation types were stored in a regular lattice. We calculated the first to ninth order NCPs.

The second experiment analyzed the spatial distribution of the Neural Tube Birth Defects (NTD) in Heshun, Shanxi, China. We

calculated the first to fourth order NCPs, and the contribution of each village. In both experiments, We compared the NCPs with

other indices, such as JCS, Q(m) statistics and CLQ, to validate the effectiveness of the new method.

4.1. Vegetation types in Qingxian

In the first experiment, we analyzed the spatial association trends of vegetation types in Qingxian, Shanxi, China over distance.

The data (Fig. 2) is from the Global Land Cover 2000 Project [19], and has a spatial resolution of 1km at Equator. The upper-left

latitude and longitude are 111°47′53.87′′E and 37°6′26.28′′N, and the lower-right latitude and longitude are 112°48′26.31′′E and

36°12′22.66′′N. There are six different types of vegetation in the study area: (1) broadleaved, deciduous and closed tree cover;

(2) needle-leaved and evergreen tree cover; (3) burnt tree cover; (4) closed-open herbaceous cover; (5) cultivated and managed

areas; and (6) water bodies. For convenience, we identified the six categories by ‘Veg’ plus the corresponding code number. For

example, the category of broadleaved, deciduous and closed tree cover was identified using ‘Veg1’.

To inspect the trends of the spatial associations of different types of vegetation, we calculated the first to ninth order NCPs

using the new method. Two units of the lattices are first order neighbors if they are neighbors in the rook directions. Higher order

adjacency matrices can be established recursively. The first to ninth order inter-class and per-class NCPs are shown in Fig. 3,

which contains 36 trellises. In each trellis, the horizontal axis of the chart represents the order of adjacency and the vertical

axis represents the corresponding NCP. The strip on each trellis denotes its content. For example, the trellis corresponding to

‘Veg2|Veg3’ contains the first to ninth order inter-class NCP of ‘Veg2’ with respect to ‘Veg3’. The gray line in the middle of each

trellis represents zero NCP. All NCPs that fail to pass the permutation test were set to zero.

Different order JCSs were also calculated to validate the new measure. Tables 4 and 5 contain the different order per-class

and overall NCPs and JCSs, respectively. In these two tables, the first row contains the order of adjacency, and the first column

indicates the vegetation type or overall spatial association. Table 4 contains the per-class or overall NCPs. Table 5 contains the

differences between the observed and expected numbers of joins.
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Fig. 3. The per-class and inter-class NCP trends of the vegetation types in Qingxian, Shanxi, China.

Table 4

The first to ninth order per-class and overall NCPs of the vegetation types in Qingxian, Shanxi,

China.

1 2 3 4 5 6 7 8 9

Overall 0.64 0.51 0.43 0.38 0.34 0.31 0.28 0.26 0.24

Veg1 0.65 0.52 0.44 0.39 0.35 0.32 0.29 0.27 0.24

Veg2 0.64 0.53 0.45 0.40 0.36 0.32 0.30 0.28 0.27

Veg3 0.32 0.16 0.08 0.03 0.01 0.00a −0.11a −0.22a 0.00a

Veg4 0.49 0.33 0.24 0.20 0.17 0.14 0.12 0.10 0.09

Veg5 0.72 0.61 0.54 0.49 0.45 0.43 0.40 0.37 0.36

Veg6 0.67 0.51 0.41 0.34 0.29 0.24 0.20 0.17 0.15

a Failed to pass the permutation test.

Table 5

The first to ninth order JCSs of the vegetation types in Qingxian, Shanxi, China.

1 2 3 4 5 6 7 8 9

Overall −8342 −13196 −16485 −19202 −21438 −23174 −24431 −25519 −26386.9

Veg1 5064 8604 11446 14012 16434 18554 20446 22202 23688

Veg2 3952 6800 9034 11000 12786 14376 15890 17452 19024

Veg3 36 36 28 14 8 4a 2a 2a 4a

Veg4 3982 6114 7660 9114 10462 11678 12706 13636 14618

Veg5 14166 25928 36356 46108 55146 63622 71444 78886 85894

Veg6 532 776 902 974 994 980 930 882 812

a Failed to pass the permutation test.
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Table 6

Q(m) statistics of the vegetation types in Qingxian, Shanxi, China. ‘ ≥20’ is the number of configurations that occurred at

least 20 times.

m 5 13 25 41 61 85 113 145 181

Q(m) 88049.8 308307 696453 1227720 1896900 2701320 3640840 4715510 5925240

≥ 20 72 12 6 2 2 2 1 1 1

∗Failed to pass the permutation test.

Table 7

CLQs of the vegetation types in Qingxian, Shanxi, China.

Veg1 Veg2 Veg3 Veg4 Veg5 Veg6

Veg1 3.79 0.90 1.18a 0.47 0.13 0.05

Veg2 0.90 4.59 0.18 0.49 0.10 0

Veg3 1.18a 0.18 112 0.69a 0.67 0

Veg4 0.47 0.49 0.68a 3.22 0.54 0.16

Veg5 0.13 0.10 0.67 0.54 1.87 0.61

Veg6 0.05 0 0 0.17 0.60 31

Overall 2.51

a Failed to pass the permutation test.

Table 8

The first to forth order NCPs and JCSs for Heshun, Shanxi, China. Zero represents

“Have no NTD” and one represents “Have NTD”. 00 represents joins between two

surface objects both labeled “Have no NTD”. 11 represents joins between two sur-

face objects both labeled “Have NTD”. 01 represents joins between two surface ob-

jects labeled “Have no NTD” and “Have NTD”, respectively.

k NCPO
k
(C) NCPk(0) NCPk(1) O01 − E01 O00 − E00 O11 − E11

1 0.13 0.12 0.15 −49 477a 139

2 0.12 0.11 0.13 −77 833a 241

3 0.05a 0.03a 0.09 −57a 1240a 355

4 0.00a 0.01a −0.06a −2a 1664a 484a

a Failed to pass the permutation test.
The Q(m) statistics and CLQ were also calculated for comparison. Table 6 contains the Q(m) statistics for the vegetation types.

The first row contains m, which corresponds to the order of adjacency. For example, if the second order adjacency is taken into

account, then m is the sum of the central grid, the first order neighbors, and the second order neighbors. The second row contains

the Q(m) statistics and the last row contains the number of configurations that occurred at least 20 times. The neighboring grids

were sorted according to the rules introduced in [48]. Table 7 contains the CLQs for the vegetation types. The first column of the

table corresponds the tail values of the surface objects’ pairs, and the first row corresponds to the head. The last row of the table

contains the overall CLQs for all categories. Each entry of the table represents a corresponding CLQc j|ci
. For example, 0.90 in the

first row is the value of CLQVeg2|Veg1.

4.2. Neural tube birth defects of Heshun

The NTD data set has been investigated in many previous studies [6,7,34,35,55,57]. Most inhabitants of Heshun are farmers

whose living environment seldom changes. There has not been any significant wide-range migration in this district in the past.

People here have similar inherited and congenital causes of birth defects. This only explains a few NTD cases. In the study area,

there are 322 villages and one town. The locations of these villages were determined by the Geographical Information System

for spatial analysis (see Figure 4). All the data were collected by our own field survey. This research project was approved by

the Ministry of Science and Technology of the People’s Republic of China. The study used only local statistical data. There is no

experimental work or ethical issue. As there are no boundaries defined for the villages, we drew them for each village using

Voronoi polygons. In [7,57], the spatial auto-correlations of the occurrence rate of NTDs were carried out to detect hot-spots

using Getis’ G and Moran’s I, respectively. In our experiment, we used zero to represent “Have no NTD” and one to represent

“Have NTD”.

We used four methods, NCPs, JCS, Q(m) statistics and CLQ, to detect spatial associations of the occurrence of NTDs in the

village. If a village had NTD instances, then the attribute was one; otherwise it was zero. Two villages are adjacent to each other

in the first order adjacency matrix if they share borders. High order adjacency matrices can be recursively derived in terms of the

first order adjacency matrix.

The first to forth order per-class and overall JCSs and NCPs are shown in Table 8. The first to forth order inter-class NCPs are

shown in Table 9. we also calculated the Q(m) statistics and CLQ using the point based NTD data that was used to generate the
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Fig. 4. Map of NTD instances or not for Heshun, Shanxi, China.

Table 9

The first to fourth order inter-

class NCPs for the NTD data.

k NCPk(1|0) NCPk(0|1)

1 −0.12 −0.15

2 −0.11 −0.13

3 −0.03a −0.09

4 −0.01a −0.06a

a Failed to pass the permuta-

tion test.

Table 10

Standard symbol based and equivalent sym-

bol based Q(m) statistics for the NTD data.

STD represents standard symbol based Q(m)

statistics, and EQU represents equivalent

symbol based Q(m) statistics. ‘ ≥20’ is the

number of configurations that occurred at

least 20 times.

m 5 6 7 8

STD 348a 437a 591a 800

≥ 20 6 3 1 1

EQU 1274 1631 2014 2393

≥ 20 3 3 2 2

a Failed to pass the permutation test.
Voronoi polygons. Both standard symbol based and equivalent symbol based Q(m) statistics were calculated. The parameter m

of Q(m) was set to five to eight which represents the numbers of the first order neighbors for most villages. Table 10 shows the

results of the Q(m) statistics and the number of configurations that occurred at least 20 times. Table 11 shows the results from

the CLQ using the point based NTD data. All the per-class, inter-class and overall CLQs were calculated for the NTD data.
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Table 11

CLQ for the NTD data.

CLQ1|1 CLQ0|1 CLQ0|0 CLQ1|0 CLQGlobal

1.44a 0.82 1.03a 0.95a 1.09a

a Failed to pass the permutation test.

Fig. 5. Significant positive contributions of each village.
The positive contribution of each village to {NCP1(cj|ci)|ci, cj ∈ {0, 1}} is shown in Fig. 5. Villages where RP
q
s (uα) > 0.05 are

colored white in this Figure. Villages colored black significantly positively contribute to NCP1(1|1), and villages colored gray

significantly positively contribute to NCP1(1|0), given the significance level 0.05.

5. Discussion

5.1. Comparison with other methods

We compared the proposed method with three existing methods, JCS, Q(m) statistics and CLQ, to show its effectiveness and

advantages. The comparison shows that the NCP results are consistent with other methods. Additionally, the proposed method

can more effectively detect the spatial associations in some cases. For example, NCP can detect inter-class associations but JCS

cannot. Compared with Q(m) statistics, NCP does not need to reanalyze the distribution of the configurations of the m neighbors.

Although CLQ and NCP both provide inter-class, per-class, and overall spatial association measures, NCP is not confined to the

nearest neighbors and can measure higher order spatial associations.

5.1.1. Comparison with JCS

Both experiments demonstrated that the NCP results are consistent with the JCS results. In the first experiment, the overall

and per-class NCPs agreed with JCS. Consider the first order spatial associations. The overall NCP was 0.64, while the observed

number of rs joins was less than the expected count (a difference of −8342). Both the overall NCP and JCS passed the permutation

test. The overall JCS supports that the vegetation types are statistically significantly positively associated in space. Because the

overall NCP was larger than zero, the new method also showed that there were statistically significantly positive associations.

For each vegetation type ‘Vegi’, NCP1(Vegi) > 0 and the corresponding observed number of rr joins was greater than the expected

number under the assumption of randomness. the per-class NCPs and JCSs both passed the permutations test. There were only
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four entries in Tables 4 and 5 that failed to pass the permutation tests, i.e., the sixth to ninth order NCPs and JCSs for category

‘Veg3’ in Table 4. This indicates that they are from a random distribution.

The situation in the second experiment is complicated. For the third and fourth order adjacency, the NCP and JCS were con-

sistent. The two measures were consistent when measuring the overall spatial association and the association for “Have NTD”.

However, they were not consistent when measuring the first and second order spatial associations for “Have no NTD”. The NCP

passed the permutation test but the JCS did not. Although the JCSs of these two special cases did not pass the permutation test,

their p-values were very close to 0.01 (0.014 and 0.043).

As an absolute count of the difference between the actual and expected number of joins, JCS is sensitive to the shape and

arrangement of the lattices [50]. In the NTD data, the average neighbor number of the villages labeled “Have no NTD” is less than

the average neighbor number of all villages from the first to forth order. Compared with the configurations where the villages

labeled “Have no NTD” have an average number of neighbors, there were less joins with “Have no NTD” tail in current situation.

Accordingly, the number of rr joins for “Have no NTD” was also smaller than that of the situations that villages labeled “Have no

NTD” have average number of neighbors, when the degrees of spatial association were the same. This leads to smaller JCSs for

“Have no NTD”, and may lead to large p values in the permutation test when the spatial association is weak. However, NCP takes

the number of neighbors into account via the probability. It is robust with respect to the number of neighbors. This may lead to

the difference in the first and second order JCSs and NCPs in the second experiment.

5.1.2. Comparison with Q(m) statistics

We used a simple illustrative example to compare our method with Q(m) statistics. Although Q(m) statistics can mine complex

spatial patterns, its explanation depends on the probability distributions of different configurations of the m-surrounding no

matter whether equivalent symbols are used or not. Therefore, the distributions of different configurations are as important as

testing the significance of the Q(m) statistics. Meanwhile, because Q(m) statistics do not test which configuration is significant,

the frequency of a configuration is also important in detecting spatial associations.

The Q(m) statistics were also consistent with the NCP. Consider the first experiment. All the Q(m) statistics passed the per-

mutation test. Accordingly, there were significant configurations of the m-surrounding pattern. When m was small, there were

many configurations that occurred at least 20 times. When m increased, the number of configurations that occurred at least 20

times decreased. In these configurations, the neighboring surface objects tended to have the same category as the central object.

This is consistent with the meaning of the overall NCP, i.e., there are positive first to ninth order spatial associations in the study

area. When m was larger than 85, there was only one configuration. in this configuration, the grids were all labeled ‘Veg5’. This

is also consistent with the per-class NCPs. The per-class NCP of Veg5 was the highest of all the categories from the first to ninth

order, in the first experiment.

NCP was more effective than Q(m) statistics in some cases. Consider the second experiment. When m was less than eight,

the standard symbol based Q(m) statistics could not pass the permutation test. When m = 8, although the Q(m) statistics were

significant, there was only one m-surrounding configuration that occurred at least 20 times. This configuration contained objects

labeled “Have no NTD”. Accordingly, the Q(m) statistics only revealed the auto-correlation of the “Have no NTD” category. All the

equivalent based Q(m) statistics for m from five to eight passed the permutation test, and there were at least two configurations

that occurred at least 20 times. However, the equivalent symbol configurations neglected the sequence of the symbols. Accord-

ingly, we cannot distinguish between positive or negative spatial associations for a frequent equivalent based m-surrounding

pattern. For example, the configuration of four villages with no NTD instances and one village with NTD instances occurs 129

times when m = 5. This configuration included at least two situations: the central village having no NTD instances, and the

central village having NTD instances. These two situations lead to completely contradict conclusions. The former configuration

means that villages with no NTD instances tends to have neighbors with no NTD instances, whereas the later indicates that vil-

lages with NTD instances tend to have neighbors with no NTD instances. When using NCP, it is clear that there are first order

per-class and overall positive spatial associations.

5.1.3. Comparison with CLQ

In the first experiment, the first order NCP and CLQ results were consistent. The difference between these two indices is in

their physical meanings. NCP is the degree that the probability of one category conditional to another category deviates from

its expected value, whereas CLQ is the ratio of the observed to expected proportions of one category among another category’s

nearest neighbors. However, CLQ does not take higher order neighbors into account, so it cannot detect relationships between

categories at higher orders. For example, CLQVeg5|Veg6 is less than one, which represents that water bodies repel cultivated and

managed areas. However, according to the NCPk(Veg5|Veg6) when k > 2, managed areas tend to congregated in the neighbors of

water bodies when the order of adjacency is larger than two. This information was not revealed by the CLQ.

We also compared the NCP and CLQ in the second experiment. Table 11 shows that only one inter-class index CLQ0|1 [32]

was less than one and statistically significant. Similarly, NCP1(0|1) was less than zero and passed the permutation test. Both

NCP and CLQ support that category “Have NTD” repels category “Have no NTD”. However, other CLQ indices did not pass the

permutation test, and there were significantly positive overall spatial associations and significant positive spatial associations for

the category “Have NTD”, in terms of JCS and NCP results. Moreover, the NCP result shows that different categories significantly

repel each other in the first order. Although other CLQ indices have same meanings as JCS and NCP, these indices did not pass

the permutation tests. This is because the nearest neighbors are only an approximation of near things. In the second experiment,
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although there are some sort of spatial relationships, either attraction of repulsion, the nearest neighbor cannot sufficiently

model near things.

CLQ only takes the nearest neighbors into account [37]. If the relationships between categories cannot be seen in the nearest

neighbors as in the second experiment, CLQ may ignore some attractions or repulsions between categories. Compared with CLQ,

NCP takes more neighbors into account when detecting the spatial associations. Therefore, NCP is not sensitive to the nearest

neighbors and may lower the odds of neglecting relationships between categories.

5.2. Trends of spatial association

NCP provides summary indices of the spatial associations of nominal attributes analogous to Moran’s I index, so these indices

can be used to mine spatial associations trends in the same way as Moran’s I or Getis G. For example, one can use different order

adjacency matrices to mine spatial association trends over distances using NCPs. Another type of trend is the contribution of each

surface object in the study area. This can be studied using Local Indicators of Spatial Association (LISA) [5] or Local Indicators

for Categorical Data (LICD) [9], which are broadly used in hot-spot detection. We analyzed these two types of trends using two

experiments.

The trend of the spatial association with respect to distance was analyzed in both experiments. In the first experiment, the

trend of spatial association was analyzed via nine different order adjacency matrices that represented different distances be-

tween surface objects. The per-class and overall NCPs are summarized in Table 4. The trend of the per-class NCPs are shown in

the diagonal of Fig. 3. The overall NCP decreased and tended to become stable when the distance increased. The same situation

occurred in the per-class NCPs. This is similar to people’s intuition that near things are more related than distant things. For the

“Veg3” category, NCPk(Veg3) cannot pass the permutation test after the fifth order adjacency, which means that there were no

significant differences with a random distribution. From Fig. 2, it can be seen that the “Veg3” category mainly distributed in three

clusters and the grids in each cluster were almost within four to five grids of each other. Consequently, NCPk(Veg3) tended to

zero after the fifth order.

The inter-class spatial association trends between two vegetation types are shown in Fig. 3, for the first experiment. Most of

the inter-class NCPs were less than or equal to zero, which means that most categories repels the other categories or have no

significant relationships with other categories. In addition, when the order of adjacency increased, most of the inter-class NCPs

approached to zero and became stable. However, there are also some attractions between categories. For example, the inter-class

NCP of ‘Veg5’ with respect to ‘Veg6’ was greater than zero since the third order. This means that cultivated and managed areas

are significantly attracted by water bodies after the third order. Meanwhile, the inter-class NCP for ‘Veg6’ with respect to ‘Veg5’

was equal to zero after the first order, which means that water bodies have no correlation to cultivated and managed areas. This is

consistent with the distribution of these two categories. ‘Veg6’ is mainly distributed in the left of the map and ‘Veg5’ is the most

common category besides water bodies. However, there are many grids with vegetation types other than ‘Veg6’ in the vicinity of

‘Veg5’.

In the second experiment, the attribute was randomly distributed after the second order. This means that “Have NTD” in

one village is only correlated with the first and second order neighbors, i.e., approximately 5–10 km. This is consistent with the

conclusion from [57] that there are grouped distributions of NTDs at a distance scale of 6.2–9.3 km, which are caused by social-

economic activities. According to the inter-class NCPs, villages labeled “Have NTD” repel villages labeled “Have no NTD” from the

first to third order, and villages labeled “Have no NTD” repel villages labeled “Have NTD” from the first and second order. This

also describes the spread of NTDs from the perspective of spatial associations.

We considered the contribution of each surface object in the second experiment. A map of significant positive contributions is

given in Figm 5. The villages colored black positively contributed to NCP1(1|1), and the villages colored gray positively contributed

to NCP1(1|0). There were no villages that significantly positively contributed to NCP1(0|0) or NCP(0|1). The contribution result of

NCP may be used as a starting point for further investigations into the direct courses of NTDs. For example, according to the

contribution distribution of the villages, further studies and investigations should be taken on the villages colored gray and its

neighbors to attempt to determine the factors that protect the central villages from NTDs. Additionally, it is also important to

inspect why the villages colored black tend to have neighbors labeled “Have NTD”.

5.3. Relationship with join count statistics

Although the NCP results were consistent with the JCS results, the two methods are based on different principles. NCP uses

conditional probability to measure the spatial associations whereas JCS uses the number of rs or rr joins. The per-class NCP uses

the conditional probabilities of different categories of neighboring surface objects, whereas JCS counts the number of rr joins for

a category. The overall NCP is more closely related to JCS than the per-class NCP. JCS compares the observed number of rs joins

with the theoretically expected number of rs joins. The overall NCP compares the observed probability of the number of rr joins

with the theoretically expected probability of the occurrence of rr joins for all categories. The ranges of these two measures are

different. JCS does not provide a summary index. The value of JCS depends on the number of adjacent edges in a map and can be

any integer. NCPs are summary indices that range between [−1, 1]. In some sense, NCP can be regarded as a generalized version

of JCS.

Compared with JCS, NCP can measure inter-class spatial associations, provides summary values, and can more conveniently

compare the degree of spatial associations. JCS results are the differences between the number of observed and theoretical
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joins. The explanation of the number depends on the configuration of the surface objects. For example, JCS1 = JCS2 = 20 for

two different experiments may have different meanings. The total number of joins and the probability distribution of different

categories both influence the explanation of JCS. Another example of the explanation of JCS is that although the second order

JCS for “Have NTD” is larger than the first order JCS for “Have NTD” in Table 8, the fourth order JCS is not significantly different

from a random distribution while the corresponding first order JCS is. Therefore, it is not safe to conclude that a larger or smaller

JCS value corresponds to a stronger or weaker spatial association. As a generalized version of JCS, NCP can determine if there are

spatial associations and provides the relative degree of the association. A larger |NCP| corresponds to a conditional probability

that has a larger deviation from the theoretical probability and, therefore a stronger positively or negatively spatial association.

5.4. Relationships with Transiogram

Transiogram is a spatial relationship measure proposed by Li [33]. It is based on the bivariate conditional probability function

pij(h), for two different categories of an attribute over a distance lag h. Li [33] interprets pii(h) and pij(h), i �= j as the auto-

ransiogram and cross-Transiogram, respectively. Although the Transiogram inherits characteristics, such as sill and range, from

geostatistics and can be used as an input in Markov chain models [33], it cannot be directly applied to measure spatial associa-

tions because it lacks a baseline for comparison.

NCP can also be regarded as an extension of Transiogram. Obviously, Pk(cj|ci) is similar to pij(k) if the spatial lag is represented

using the order of adjacency instead of a distance. NCP compares the conditional probability with the theoretical value from

a random distribution, to measure the spatial associations. A permutation test is used to judge if the measure is statistically

significant. Compared with Transiogram, the NCP can measure the overall spatial association (that is, if any two neighboring

surface objects tend to belong to the same category), as well as the inter-class and per-class spatial associations.

6. Conclusions

In this paper, we proposed a new method for measuring the degree of spatial associations of nominal variables, based on the

conditional probability distributions of the categories of neighboring surface objects. We can measure the spatial associations of a

nominal attribute by comparing the observed conditional probability and corresponding theoretical value from a random spatial

distribution. Not only the per-class and overall spatial association, but also the attractions and repulsions between categories can

be measured using the new measure NCP. A positive NCP represents positive spatial associations (attraction), and a negative NCP

represents negative spatial associations (repulsion). Meanwhile, a larger absolute NCP value corresponds to a larger divergence

between the observed and expected values, and a stronger positive (attraction) or negative (repulsion) spatial association.

To show the effectiveness of the new methods, we compared the results with other commonly used methods using one

illustrative and two real-life examples. In all experiments, the new method was consistent with the existing methods. Compared

with JCS, NCP provides comparable indices and can detect inter-class spatial associations. Compared with Q(m) statistics, NCP

provides per-class and inter-class measures and does not need to reanalyze of different m-surrounding patterns. Compared with

CLQ, NCP are not confined to the nearest neighbors and can detect higher order spatial associations. In summary, as an extension

of JCS and Transiogram, NCP provides comparable indices that can measure higher order per-class, inter-class, and overall spatial

associations.

The new method proposed in this paper uses the permutation test to judge if the spatial association is statistically significant.

The permutation test is computationally expensive for large data. In the future, we will study the statistical characteristics of NCP

and search for other significance test methods. Additionally, the local contribution of the new method does not completely satisfy

two standards of local indicators for spatial associations proposed by Anselin [5]. We should further investigate this issue and

develop local indices. Finally, NCP can be applied to many aspects of spatial analysis. For example, the multiple point simulation

relies heavily on the selection of the sufficient nearby grids to acquire acceptable quality simulation result. NCP can be used

as a tool to find the relationship between the simulation quality and the extent to which the simulation should be considered.

Meanwhile, we also plan using information theory to inspect the spatial associations. For example, conditional entropy and

mutual information can potentially be used to explain inter-class spatial associations from different and interesting perspectives.
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