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Abstract

This paper introduces granular computing (GrC) into formal concept analysis (FCA). It provides a unified model for concept
lattice building and rule extraction on a fuzzy granularity base for different granulations. One of the strengths of GrC is that larger
granulations help to hide some specific details, whereas FCA in a GrC context can prevent losses due to concept lattice complexity.
However, the number of superfluous rules increases exponentially with the scale of the decision context. To overcome this we present
some inference rules and maximal rules and prove that the set of all these maximal rules is complete and nonredundant. Thus, users
who want to obtain decision rules should generate maximal rules. Examples demonstrate that application of the method is valid and
practicable. In summary, this approach utilizes FCA in a GrC context and provides a practical basis for data analysis and processing.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Formal concept analysis (FCA) is an order-theoretic method for mathematical analysis of scientific data that was
pioneered by Wille in 1982 [28]. FCA comes from a philosophical understanding and a concept, viewed as the for-
malization of a unit of thought, consists of extent and intent. The extent is understood as the collection of all objects
belonging to the concept, while the intent is the multitude of all attributes common to all those objects. A concept lattice
is an effective tool in FCA and is very suitable for mining potential concepts of data sets. In recent years, FCA has been
extensively studied [2–4,9–11,16,19,25] and has become a powerful tool for machine learning, software engineering
and information retrieval.

Although FCA with its strong mathematical foundation can easily generate induced concepts from a given data
set, a great number of concepts will be produced when the quantity of objects or attributes is very large, and use-
ful concepts may be overwhelmed. To avoid this problem, granular computing (GrC), described by Zadeh in 1996
[31], is introduced into FCA in this paper. This addresses the impacts of complex data sets to some extent in that
larger granulations can help to hide some specific details and the problem can be solved from the overall picture. As an
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Table 1
A sample data set.

a1 a2 a3 a4 a5 a6 a7 a8

1 × × × × × ×
2 × ×
3 × × × ×
4 ×
5 × × × × × × ×
6 × ×
7 × × × × ×
8 × × × × × ×

effective tool with vast potential for knowledge acquisition, GrC has been widely investigated by researchers in the
field of artificial intelligence [5,15,17,18,20,21,24].

In addition, the fuzzy equivalence relation [30] of fuzzy set theory is introduced into FCA, and we propose a model
of FCA based on the fuzzy equivalence for different granulations. Introduction of fuzzy equivalence relations into FCA
was inspired by several studies. Aswani Kumar et al. proposed a method based on fuzzy k-means clustering to reduce the
size of the concept lattice, and applied the proposed method to information retrieval and information visualization [1].
Three types of variable threshold concept lattice were defined, with properties analogous to those of classical concept
lattices [32]. Wu et al. presented a general framework for the study of fuzzy rough sets in which both constructive and
axiomatic approaches were used [29]. Fan et al. proposed a new form of fuzzy concept lattice and used three types of
known fuzzy concept lattice and the new fuzzy concept lattice to propose two coherent fuzzy inference methods (lower
and upper approximate fuzzy inferences) [7]. Based on both lattice-theoretic and fuzzy set-theoretic operators, two new
pairs of rough fuzzy set approximations within a fuzzy formal context were defined [23]. Li and Zhang proposed a type
of fuzzy concept lattice by T implication in a fuzzy formal context at the level � ∈ IT , and investigated �-reducts [13].

Normally, existing knowledge acquisition models only adopt different logic methods locally and cannot provide a
uniform technology for knowledge acquisition overall. To avoid the problem mentioned above, a unified method based
on fuzzy granularity base for different granulations is proposed. The fuzzy granularity base not only offers a uniform
technology for knowledge acquisition overall, but also facilitates knowledge sharing.

The remainder of the paper is organized as follows. Section 2 describes basic FCA notions. Section 3 constructs
a fuzzy granularity base with different granulations. Section 4 builds a �-concept lattice based on fuzzy granularity
with granulation �(R�), and extracts a complete and nonredundant set of �-rules from the �-concept. Section 5 extracts
(�, �)-rules from a (�, �)-decision context based on fuzzy granularity bases with multi-granulations, which yields a
�-complete and �-nonredundant set of (�, �)-rules. Section 6 discusses perspectives for further work.

2. Basic notions of FCA

This section only provides the most basic FCA notions. For more extensive information, readers are referred to
Ganter and Wille [8].

A formal context is a triplet K = (G, M, I ), where G and M are sets, and I ⊆ G × M is a binary relation. In this
case, members of G are called objects and members of M are called attributes, and I is viewed as an incidence relation
between objects and attributes. Accordingly, gIm or (g, m) ∈ I denotes “object g has attribute m”.

Formal contexts are mostly represented by rectangular tables in which row headers are object names and column
headers are attribute names. In a table, a cross denotes that the row object has the column attribute. For example, a formal
context for a grocery shop is shown in Table 1. The set of objects G is composed of 1, 2, . . . , 8 denoting customer codes,
while the set M of attributes comprises a1, a2, . . . , a8 to denote commodity codes. If customer i purchases commodity
a j , this is denoted as (i, a j ) ∈ I , which is shown in the table by “×”.

In a formal context K = (G, M, I ), for a set A ⊆ G we define

A∗ = {m ∈ M |gI m, ∀g ∈ A}.
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Correspondingly, for a set B ⊆ M we define

B∗ = {g ∈ G|gI m, ∀m ∈ B}.

(A, B) is called a formal concept if A∗ = B and B∗ = A. In this case, A is called the extent and B is called the intent
of (A, B). The set of all concepts is denoted as B(K ). If (A1, B1), (A2, B2) ∈ B(K ), we define

(A1, B1) � (A2, B2) ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2.

In this case, (A2, B2) is a superconcept of (A1, B1), (A1, B1) is a subconcept of (A2, B2), and “�” is a hierarchical
order of concepts. The set of all concepts ordered in this way is called the concept lattice induced from K, which is still
denoted as B(K ) in the absence of ambiguity. In addition, let B1, B2 ⊆ M . If B∗

1 ⊆ B∗
2 , then we say B1 → B2 is a

rule of K.

Proposition 1. In a formal context (G, M, I ), let A, A1, A2 ⊆ G be sets of objects and let B, B1, B2 ⊆ M be sets of
attributes. Then

(1) A1 ⊆ A2 ⇒ A∗
2 ⊆ A∗

1 (2) B1 ⊆ B2 ⇒ B∗
2 ⊆ B∗

1 ,

(3) A ⊆ A∗∗; B ⊆ B∗∗ (4) A∗ = A∗∗∗; B∗ = B∗∗∗.

3. Fuzzy granularity base for different granulations

Let X and Y be two finite and nonempty sets. A fuzzy subset R̃ ∈ F(X × Y ) is referred to as a fuzzy relation
from X to Y. R̃(x, y) is the degree of relation between x and y, where (x, y) ∈ X × Y . If X = Y , then R̃ is referred
to as a fuzzy relation on X. Let R̃ be a fuzzy relation on X. R̃ is a reflexive fuzzy relation if R̃(x, x) = 1 for all
x ∈ X . R̃ is a symmetric fuzzy relation if R̃(x, y) = R̃(y, x) for all x, y ∈ X . R̃ is a transitive fuzzy relation if
R̃(x, z)≥∨y∈X (R̃(x, y) ∧ R̃(y, z)) for all x, z ∈ X . R̃ is a fuzzy equivalence relation if R̃ is a reflexive, symmetric and

transitive fuzzy relation. It is easy to see that R̃ is a fuzzy equivalence relation iff R̃a is an equivalence ordinary binary
relation for all a ∈ [0, 1].

Fuzzy granularity base: In a formal context K = (G, M, I ), if R is a fuzzy equivalence relation on M, then � = (M, R)
is referred to as a fuzzy granularity base, where R is obtained by the method below.

The similarity between any two elements ai , a j ∈ M is defined as

ri j =
|a∗

i ∩ a∗
j |

|a∗
i ∪ a∗

j |
.

Obviously, the fuzzy relation (or matrix)

R̃ = (ri j )|M |×|M |

is a reflexive and symmetric fuzzy relation, but it is not a transitive fuzzy relation in most cases. In this case, the
transitive closure is used to compute a fuzzy equivalence relation from a given fuzzy relation. Given a fuzzy relation
R̃, its transitive closure R is computed as

R = R̃ ∪ R̃2 ∪ · · · ∪ R̃n−1.

To decrease the complexity, various methods have been proposed to accelerate the computation [6,12,27]. Lee et al.
proposed an algorithm for computing the transitive closure of a fuzzy similarity relation that runs in time linearly
proportional to the number of elements in the relation, i.e. O(n2) if the relation (or matrix) is an n × n relation
(or matrix) [12]. In view of its low complexity and easy realization, we use this to compute the transitive closure R of
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R̃ in this paper. For example, in Table 1 R̃ can be calculated as

R̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 a5 a6 a7 a8

a1 1 0.33 0.14 0.20 0.40 0.60 0.75 0.17

a2 0.33 1 0.25 0.60 0.50 0.67 0.50 0.50

a3 0.14 0.25 1 0.33 0.29 0.43 0.29 0.50

a4 0.20 0.60 0.33 1 0.40 0.60 0.40 0.40

a5 0.40 0.50 0.29 0.40 1 0.50 0.60 0.33

a6 0.60 0.67 0.43 0.60 0.50 1 0.80 0.50

a7 0.75 0.50 0.29 0.40 0.60 0.80 1 0.33

a8 0.17 0.50 0.50 0.40 0.33 0.50 0.33 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and by the transitive closure algorithm [12] the fuzzy equivalence relation R induced from R̃ is

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.67 0.50 0.60 0.60 0.75 0.75 0.50

0.67 1 0.50 0.60 0.60 0.67 0.67 0.50

0.50 0.50 1 0.50 0.50 0.50 0.50 0.50

0.60 0.60 0.50 1 0.60 0.60 0.60 0.40

0.60 0.60 0.50 0.60 1 0.60 0.60 0.50

0.75 0.67 0.50 0.60 0.60 1 0.80 0.50

0.75 0.67 0.50 0.60 0.60 0.80 1 0.50

0.50 0.50 0.50 0.40 0.50 0.50 0.50 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To transform a fuzzy equivalence relation to crisp equivalence relations, a parameter � ∈ [0, 1] is introduced. Let
� ∈ [0, 1]. If R ∈ F(M × M) is a fuzzy equivalence relation, then the corresponding �-cut equivalence relation R�
can be defined as

R� = (r̃i j ) where r̃i j =
{

1, ri j≥�,

0, ri j < �.

There are some important corresponding properties. For example, R� is still an equivalence relation and M/R� is a
partition.

It is important to study FCA in the light of GrC, which has theoretical significance and application potential. One of
the strengths of GrC is that larger granulations help in identifying useful information and hide some specific details,
and the problem can be solved from the overall picture. Although GrC has been widely explored for in data mining,
studies and applications of GrC in FCA are few at present, so further efforts are still needed. In this paper, GrC is
introduced into a fuzzy granularity base, and FCA based on this fuzzy granularity base for different granulations is
proposed. An axiomatic definition of the granulation of a fuzzy granularity base with � ∈ [0, 1] is given [14]. Let
M/R� = {P1, P2, . . . , Pm}. Then the granulation of R� can be defined as

�(R�) = 1

|M |2 ·
m∑

i=1

|Pi |2.

Pi ∈ M/R� is called a granule. � = (M, R) with the granulation �(R�) is denoted as �� = (M�, R�), where
M� = M/R�.

Note that in this paper, any two attributes in the same granule are indistinguishable; thus, different attributes in one
granule can be viewed as the same attribute in essence. Any set {p1, p2, . . . , pn} is abbreviated to p1 p2 . . . pn in some
of the following tables.

For any x ∈ M�, if there always exists y ∈ M� such that x ⊆ y, we say M� is a refinement of M� and M� is a
coarsening of M�, which is denoted as M� � M�. That is, by changing the parameter �, we can obtain � = (M, R)
with different granulations.
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Table 2
� with different granulations.

R� �(R�) |M�| M�

R0.50 1.00 1 {a1a2a3a4a5a6a7a8}
R0.60 0.63 2 {a1a2a4a5a6a7, a3a8}
R0.67 0.31 5 {a1a2a6a7, a3, a4, a5, a8}
R0.75 0.22 6 {a1a6a7, a2, a3, a4, a5, a8}
R0.80 0.16 7 {a1, a2, a3, a4, a5, a6a7, a8}
R1.00 0.13 8 {a1, a2, a3, a4, a5, a6, a7, a8}

For example, from Table 2 (induced from Table 1) some conclusions can be immediately drawn.

• Let �, � ∈ [0, 1]. If � ≤ �, then �(R�) ≤ �(R�) and M� � M�.
• Let � ∈ [0, 1]. When �(R�) decreases, |M�| increases; conversely, when �(R�) increases, |M�| decreases.

For convenient description, some formal symbols used in the tables are defined. ai is denoted as �i , where 1≤i≤8.
a1a2a6a7, a3a8 and a1a2a4a5a6a7 are denoted as �9, �10 and �11, respectively.

4. d-Concept lattice and d-rule

Major issues that arise for concept lattices are their high space complexity and time complexity. In particular, for
dense and large contexts, the performance of most algorithms is not ideal. Efficient generation of a concept lattice for
large-scale data has become the primary problem in FCA applications. To address this problem, a new structure called
�-concept lattice is designed to reduce the scale of nodes and the time complexity in generating a concept lattice. In
this section we build a �-concept lattice based on fuzzy granularity with the granulation �(R�), and extract a complete
and nonredundant set of �-rules from the �-concept.

A formal context K = (G, M, I ) with the granulation �(R�) is a quadruplet K� = (G, M, I, M�). For example,
Table 3 is a formal context with the granulation �(R0.67) induced from Table 1.

In K� = (G, M, I, M�), for a set A ⊆ G we define

A′ = {� ∈ M�|x I m and ∃m ∈ � for all x ∈ A}.
Correspondingly, for a set B̃ ⊆ M� we define

B̃ ′ = {x ∈ G|x I m and ∃m ∈ � for all � ∈ B̃}.

Theorem 1. In K�, if A, A1, A2 ⊆ G and B̃, B̃1, B̃2 ⊆ M�, then

(1) A1 ⊆ A2 ⇒ A′
2 ⊆ A′

1 (2) B̃1 ⊆ B̃2 ⇒ B̃ ′
2 ⊆ B̃ ′

1,

(3) A ⊆ A′′; B̃ ⊆ B̃ ′′ (4) A′ = A′′′; B̃ ′ = B̃ ′′′.

Theorem 2. In K�, for every s ∈ S, if As ⊆ G and B̃s ⊆ M�, then

(1)

(⋃
s∈S

As

)′
=
⋂
s∈S

As
′ (2)

(⋃
s∈S

B̃s

)′
=
⋂
s∈S

B̃ ′
s,

where S is an index set.

In K� = (G, M, I, M�), let A ⊆ G and B̃ ⊆ M�. If A′ = B̃ and B̃ ′ = A, we say (A, B̃) is a �-concept. The set of
all �-concepts is denoted as B(K�). Let (A1, B̃1) and (A2, B̃2) be two �-concepts. We define

(A1, B̃1)��(A2, B̃2) ⇔ A1 ⊆ A2 ⇔ B̃1 ⊇ B̃2.
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Table 3
A formal context with the granulation �(R0.67).

G �9 �3 �4 �5 �8

a1 a2 a6 a7 a3 a4 a5 a8

1 × × × × × ×
2 × ×
3 × × × ×
4 ×
5 × × × × × × ×
6 × ×
7 × × × × ×
8 × × × × × ×

The relation “��” is the hierarchical order of �-concepts. Obviously, a lattice structure can be deduced that is a
complete lattice. This is called a �-concept lattice and is described in the following theorem. It is still denoted as B(K�)
if there is no danger of confusion.

Theorem 3. In K�, the partially ordered set B(K�) is a complete lattice, where the corresponding infimum and
supremum are defined as

∧
s∈S

(As, B̃s) =
(⋂

s∈S

As,

(⋃
s∈S

B̃s

)′′)

∨
s∈S

(As, B̃s) =
((⋃

s∈S

As

)′′
,
⋂
s∈S

B̃s

)
.

Comparison reveals many similarities and some slight differences between the model proposed in this paper and
the � Galois lattice of Ventos and Soldano [26], which are two entirely different models. Equivalence relations and
parameters are introduced into the two models, but their effects are different. For example, R� in this paper is an
equivalence relation on the set of attributes, while r in the � Galois lattice is an equivalence relation on the set of
objects. The parameter � in this paper is introduced into a fuzzy equivalence relation, while � in the � Galois lattice
is not.

The steps for generating a �-concept lattice are now described, but detailed descriptions are omitted.

1. Input � ∈ [0, 1] and then generate M� = M/R�.
2. In K� = (G, M, I, M�), because any � ∈ M� can be viewed as an attribute, a �-concept lattice can be generated

using traditional algorithms for building concept lattices with little change.
3. Output the �-concept lattice.

For a traditional formal context K = (G, M, I ) with |M | = n, the upper bound on the number of nodes in the
corresponding lattice structure is 2n , which seems a serious impediment to application of concept lattices. Although a
formal concept with upper bound 2n is rare in the real world, the upper bound of common formal contexts can still be
reached

N = 2 + C1
n + C2

n + · · · + Ck
n

(suppose each object in K has k attributes at most). Similarly, for K� = (G, M, I, M�) with |M�| = m we can obtain
the upper bound

N� = 2 + C1
m + C2

m + · · · + Cl
m
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Fig. 1. B(K1).

(suppose each object g in K� satisfies |{g}′|≤l). Furthermore, we can draw the following conclusions:

• When the value of � increases, the value of N� also increases. In particular, when � = 1, then N� = 2 + C1
n +

C2
n + · · · + Ck

n .
• When the value of � decreases, the value of N� also decreases. In particular, when � = 0, then N� = 2.

Currently, to generate a concept lattice from (G, M, I ) in the worst case, although the minimum time complexity
of some algorithms is O((|G| + |M |) · |M | · |L|) (where |L| is the number of nodes in the concept lattice and there is
an exponential relationship between |L| and |M |), the time complexity of most algorithms is O(|G| · |M |2 · |L|). For
the completeness of concept lattices, identification of a construction algorithm with much better time complexity than
existing algorithms seems impossible. Thus, efficient lattice construction from a large context is still a key issue in
FCA research. We can obtain the time complexity for generating B(K�) as follows. In K� = (G, M, I, M�), we know
the time complexity for generating M� will be O(2 · |M |2); the time complexity for generating a �-concept lattice will
be O((|G| + |M�|) · |M�| · |L�|) (where |L�| is the number of nodes in B(K�) and there is an exponential relationship
between |L�| and |M�|). Thus, the time complexity for generating B(K�) will be

O(2 · |M |2 + (|G| + |M�|) · |M�| · |L�|).
We can obtain the following conclusions.

• When the value of � increases, the time complexity for generating B(K�) also increases and converges to O((|G| +
|M�|) · |M�| · |L�|). In particular, when � = 1, the time complexity is O((|G| + |M |) · |M | · |L|).

• When the value of � decreases, the time complexity for generatingB(K�) also decreases and converges to O(2·|M |2).
In particular, when � = 0, the time complexity is O(2 · |M |2).

The above analysis indicates that the time complexity can be reduced to some extent, but this is not necessarily
good, especially for larger experiments. Thus, research is still valuable because we strongly believe that GrC is key to
reducing the time complexity and the scale of nodes for efficient generation of a concept lattice.

We illustrate the above method for generating a �-concept lattice with an example. For Table 3, B(K0.67) is depicted
in Fig. 2. Table 5 is a specific interpretation of all nodes in Fig. 2. For B(K1) depicted in Fig. 1 and B(K0.6) in Fig. 3,
the nodes are explained in Tables 4 and 6, respectively.

From the above illustration it is evident that when the granulation �(R�) decreases, the size of the �-concept lattice
increases. Conversely, when the granularity �(R�) increases, the size of the �-concept lattice decreases. In practical
applications, by changing the parameter �, users can build �-concepts to meet their needs.

Many researchers have studied the problem of rule extraction from concept lattices. Compared with other methods,
rules extracted from a concept lattice have equal or better effects. Considering the situation mentioned above, we
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Table 4
Specific interpretation of all the nodes in Fig. 1.

a (12345678, ∅) j (578, �2�4�6) s (57, �2�3�4�6�8)
b (14578, �2) k (157, �2�6�8) t (56, �3�5)
c (13578, �6) l (138, �1�6�7) u (8, �1�2�4�5�6�7)
d (1568, �5) m (357, �3�6) v (1, �1�2�5�6�7�8)
e (1578, �2�6) n (257, �3�8) w (3, �1�3�6�7)
f (1358, �6�7) o (58, �2�4�5�6�7) x (5, �2�3�4�5�6�7�8)
g (1257, �8) p (15, �2�5�6�7�8) y (∅, �1�2�3�4�5�6�7�8)
h (23567, �3) q (18, �1�2�5�6�7)
i (158, �2�5�6�7) r (35, �3�6�7)

Table 5
Specific interpretation of all the nodes in Fig. 2.

a (12345678, ∅) f (257, �3�8) k (15, �9�5�8)
b (1257, �8) g (157, �9�8) l (56, �3�5)
c (23567, �3) h (357, �9�3) m (57, �9�3�4�8)
d (1568, �5) i (158, �9�5) n (58, �9�4�5)
e (134578, �9) j (578, �9�4) o (5, �9�3�4�5�8)

Fig. 2. B(K0.67).

Fig. 3. B(K0.6).
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Table 6
Specific interpretation of all the nodes in Fig. 3.

w (12345678, ∅) y (1345678, �11)
x (123567, �10) z (13567, �10�11)

Table 7
A complete and nonredundant set of 1-rules.

�1
1−→ �6�7 �1�2�6�7

1−→ �5 �2�4�5�6
1−→ �7

�4
1−→ �2�6 �1�2�3�5�6�7

1−→ �4�8 �2�4�6�7
1−→ �5

�7
1−→ �6 �1�2�3�5�6�7�8

1−→ �4 �2�4�6�8
1−→ �3

�5�8
1−→ �2�6�7 �2�3�6�8

1−→ �4 �5�6�7
1−→ �2

�6�8
1−→ �2 �1�2�4�6�7

1−→ �5 �6�7�8
1−→ �2�5

�5�6
1−→ �2�7 �1�5�6�7

1−→ �2 �2�3�5�6�7
1−→ �4�8

�2�8
1−→ �6 �1�6�7�8

1−→ �2�5 �2�3�5�6�7�8
1−→ �4

�2�5
1−→ �6�7 �2�6�7

1−→ �5

�2�3
1−→ �4�6�8 �2�3�4�6

1−→ �8

Table 8
A complete and nonredundant set of 0.67-rules.

�4
0.67−−→ �9 �9�4�8

0.67−−→ �3 �9�5
0.67−−→ �4�8 �9�3�5�8

0.67−−→ �4

�9�3�4
0.67−−→ �8 �5�8

0.67−−→ �9 �9�3�8
0.67−−→ �4

investigate �-rules extracted from �-concept lattices and obtain some significant conclusions. By adopting the method
in [8] with little changes, we can extract �-rules and obtain a complete and nonredundant set of �-rules, where a �-rule
is defined as follows.

In K� = (G, M, I, M�), let B̃1, B̃2 ⊆ M�. If B̃ ′
1 ⊆ B̃ ′

2, we say that B̃1
�−→ B̃2 is a �-rule. For example, from

Fig. 1 a complete and nonredundant set of 1-rules can be extracted, as shown in Table 7, and from Fig. 2 a complete
and nonredundant set of 0.67-rules can be extracted, as shown in Table 8. The number of �-rules is much less in Table 8
than in Table 7. In fact, as the granulation �(R�) increases, the number of �-rules will obviously decrease. Moreover, in
a formal context K = (G, M, I ), if there are no identical columns, then some conclusions can be inferred immediately,
as follows.

• There exists a bijection 	 : M → M1.
• If (A, B) ∈ B(K ), then (A, 	(B)) ∈ B(K1).
• B(K )�B(K1).

• 	(C1)
1−→ 	(C2) is equal to C1 → C2, where C1, C2 ⊆ M .

In other words, B(K ) is just a special case of B(K�) and C1 → C2 is just a special case of 	(C1)
�−→ 	(C2).

5. (h, r)-Rules

In decision contexts, decision rules have become a common form of knowledge representation in practice because
of their expressiveness and ease of understanding. In this section, we discuss decision rules called (�, �)-rules.

A formal context K = (G, M, I ) is called a decision context if M = B ∪ D and I = I B ∪ I D , where B is the set of
condition attributes, D is the set of decision attributes, I B = I ∩ (G × B) and I D = I ∩ (G × D).

The decision context shown in Table 9 is for a grocery shop. The set of objects G is composed of 1, 2, . . . , 8 denoting
customer codes, the set of attributes B is composed of a1, a2, . . . , a8 denoting commodity codes, and the set D of
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Table 9
A sample data set.

G a1 a2 a3 a4 a5 a6 a7 a8 d1 d2 d3 d4 d5

1 × × × × × × × × ×
2 × × × × ×
3 × × × × × × ×
4 × × × ×
5 × × × × × × × × × ×
6 × × × × × ×
7 × × × × × × ×
8 × × × × × × × ×

Table 10
A (0.67,0.8)-decision context.

G �9 �3 �4 �5 �8 
6 
3 
4 
5
a1 a2 a6 a7 a3 a4 a5 a8 d1 d2 d3 d4 d5

1 × × × × × × × × ×
2 × × × × ×
3 × × × × × × ×
4 × × × ×
5 × × × × × × × × × ×
6 × × × × × ×
7 × × × × × × ×
8 × × × × × × × ×

decision attributes is composed of d1, d2, . . . , d5, also denoting commodity codes. If customer i purchases commodity
a j or dk , this is denoted as (i, a j ) ∈ IB or (i, dk) ∈ ID and is shown as “×” in the table.

A decision context consists of two subcontexts, the condition subcontext K B = (G, B, I B) and the decision subcon-
text K D = (G, D, I D). The fuzzy granularity base of K B is denoted as �B = (B, RB), while the fuzzy granularity base
of K D is denoted as �D = (D, RD). �B with the granulation �(RB

� ) is denoted as �B
� = (B�, RB

� ), where B� = B/RB
� .

Similarly, �D with the granulation �(RD
� ) is denoted as �D

� = (D�, RD
� ), where D� = D/RD

� .
Let �, � ∈ [0, 1]. If K B

� is a subcontext with the granulation �(RB
� ) and K D

� is a subcontext with the granulation
�(RD

� ), we say that K is a (�, �)-decision context. Table 10 shows a (�, �)-decision context.
For convenience, some formal symbols for a (�, �)-decision context are defined as follows. For A ⊆ G, A′ in K B

� is

denoted as AI1 and A′ in K D
� as AI2 ; correspondingly, for B̃1 ⊆ B�, B̃ ′

1 in K B
� is denoted as B̃ I1

1 , and for D̃1 ⊆ D�,

D̃′
1 in K D

� is denoted as D̃ I2
1 . The set of all intents of �-concepts in B(K B

� ) is denoted as UB
� and the set of all intents

of �-concepts in B(K D
� ) is denoted as UD

� .

Theorem 4. In a (�, �)-decision context, let B̃1 ⊆ B� and D̃1 ⊆ D�. Then

(1) B̃ I1 I1
1 = (B̃1)+� (2) D̃ I2 I2

1 = (D̃1)+� ,

where (B̃1)+� = ⋂{T̃ ∈ UB
� |B̃1 ⊆ T̃ } and (D̃1)+� = ⋂{T̃ ∈ UD

� |D̃1 ⊆ T̃ }.

In a (�, �)-decision context, let B̃1 ⊆ B� and D̃1 ⊆ D�. If B̃ I1
1 ⊆ D̃ I2

1 , then we say that B̃1
(�,�)−−→ D̃1 is a (�, �)-rule;

if B̃1 = (B̃1)+� and D̃1 = (D̃1)+� , then we say that the (�, �)-rule B̃1
(�,�)−−→ D̃1 is a (�, �)-concept rule.
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Theorem 5. In a (�, �)-decision context, let B̃1, B̃2 ⊆ B� and D̃1, D̃2 ⊆ D�. If B̃1
(�,�)−−→ D̃1 is a (�, �)-concept rule,

then:

(1) If B̃1 ⊆ B̃2 and D̃2 ⊆ D̃1, then B̃2
(�,�)−−→ D̃2.

(2) If B̃1 = (B̃2)+� and D̃1 = (D̃2)+� , then B̃2
(�,�)−−→ D̃2.

Proof. (1) From B̃1 ⊆ B̃2 and D̃2 ⊆ D̃1, it follows that B̃ I1
2 ⊆ B̃ I1

1 and D̃ I2
1 ⊆ D̃ I2

2 . Then we can obtain B̃ I1
2 ⊆ D̃ I2

2

based on B̃1
(�,�)−−→ D̃1 ⇒ B̃ I1

1 ⊆ D̃ I2
1 . Hence, B̃2

(�,�)−−→ D̃2 holds.

(2) From B̃1 = (B̃2)+� and D̃1 = (D̃2)+� , it follows that B̃ I1 I1
2 = B̃1 and D̃ I2 I2

2 = D̃1. Then B̃ I1
2 = B̃ I1

1 and D̃ I2
2 = D̃ I2

1 .

In addition, B̃1
(�,�)−−→ D̃1 ⇒ B̃ I1

1 ⊆ D̃ I2
1 . Hence, B̃ I1

2 ⊆ D̃ I2
2 ; that is, B̃2

(�,�)−−→ D̃2 holds. �

In general, the number of (�, �)-rules in a decision context is quite large, and in a given set of (�, �)-rules there are
many redundant (�, �)-rules that can be deduced from others by means of so-called inference rules.

(�, �)-Decision inference: In a (�, �)-decision context, let B̃1
(�,�)−−→ D̃1 be a (�, �)-concept rule and let B̃2

(�,�)−−→ D̃2
be a (�, �)-rule. Then:

• ((�, �)-inference rule 1) If B̃1 ⊆ B̃2, D̃2 ⊆ D̃1 and B̃2
(�,�)−−→ D̃2 is a (�, �)-concept rule, then B̃2

(�,�)−−→ D̃2 can be

inferred from B̃1
(�,�)−−→ D̃1.

• ((�, �)-inference rule 2) If B̃1 = (B̃2)+� and D̃1 = (D̃2)+� , then B̃2
(�,�)−−→ D̃2 can be inferred from B̃1

(�,�)−−→ D̃1.

(�, �)-Inference rule 1 takes the following form:

B̃1 ⊆ B̃2, D̃2 ⊆ D̃1, (�, �)-concept rule B̃1
(�,�)−−→ D̃1

(�, �)-concept rule B̃2
(�,�)−−→ D̃2

,

which means that if B̃1 ⊆ B̃2, D̃2 ⊆ D̃1 and B̃1
(�,�)−−→ D̃1 is a (�, �)-concept rule, then a (�, �)-concept rule B̃2

(�,�)−−→ D̃2
can be inferred. Correspondingly, (�, �)-inference rule 2 takes the form

B̃1 = (B̃2)+� , D̃1 = (D̃2)+� , (�, �)-concept rule B̃1
(�,�)−−→ D̃1

B̃2
(�,�)−−→ D̃2

.

That is, if B̃1 = (B̃2)+� , D̃1 = (D̃2)+� and B̃1
(�,�)−−→ D̃1 is a (�, �)-concept rule, then a (�, �)-rule B̃2

(�,�)−−→ D̃2 can be
inferred.

In a (�, �)-decision context, let �(�,�) be a set of (�, �)-rules and let B̃1
(�,�)−−→ D̃1 be a (�, �)-rule. If B̃1

(�,�)−−→ D̃1

can be inferred from �(�,�) by some decision inference �, we say that B̃1
(�,�)−−→ D̃1 can be �-inferred from �(�,�). In

this case, we call B̃1
(�,�)−−→ D̃1 redundant relative to �(�,�). If all (�, �)-rules can be �-inferred from �(�,�), we say that

�(�,�) is �-complete. Moreover, a (�, �)-concept rule B̃1
(�,�)−−→ D̃1 is maximal if:

(1) There is no (�, �)-concept rule B̃2
(�,�)−−→ D̃1 satisfying B̃2 ⊂ B̃1.

(2) There is no (�, �)-concept rule B̃1
(�,�)−−→ D̃2 satisfying D̃1 ⊂ D̃2.

Theorem 6. In a (�, �)-decision context, if �(�,�) is the set of all maximal (�, �)-concept rules and � is the (�, �)-decision
inference, then �(�,�) is �-nonredundant and �-complete.

Proof. First, we prove that �(�,�) is �-nonredundant. If we assume that �(�,�) is �-redundant, then there must exist a

maximal (�, �)-concept rule B̃1
(�,�)−−→ D̃1, which can be inferred from B̃2

(�,�)−−→ D̃2 in �(�,�)\(B̃1
(�,�)−−→ D̃1) based
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on (�, �)-inference rule 1. Obviously, we have B̃2 ⊆ B̃1 and D̃1 ⊆ D̃2. In addition, since B̃1
(�,�)−−→ D̃1 /∈ �(�,�)\

(B̃1
(�,�)−−→ D̃1), there must exist B̃1�B̃2 or D̃1�D̃2.

If D̃1�D̃2, then D̃1 ⊂ D̃2. Since B̃2 ⊆ B̃1, B̃ I1
2 ⊇ B̃ I1

1 holds. In addition, we can obtain B̃ I1
2 ⊆ D̃ I2

2 by B̃2
(�,�)−−→ D̃2.

Furthermore, B̃ I1
1 ⊆ D̃ I2

2 ; that is, B̃1
(�,�)−−→ D̃2 holds. Obviously, B̃1

(�,�)−−→ D̃2 contradicts the condition whereby

B̃1
(�,�)−−→ D̃1 is a maximal (�, �)-concept rule.

When D̃1 = D̃2 and B̃1�B̃2, because B̃2 ⊆ B̃1, then B̃2 ⊂ B̃1. Since D̃1 = D̃2, there exists B̃2
(�,�)−−→ D̃1, which

contradicts the condition whereby B̃1
(�,�)−−→ D̃1 is a maximal (�, �)-concept rule. Hence, it is clear that �(�,�) is

�-nonredundant from the above discussion.

Next, we prove that �(�,�) is �-complete. Let B̃2
(�,�)−−→ D̃2 /∈ �(�,�) be a (�, �)-rule. We can easily see that B̃2

(�,�)−−→ D̃2

can be inferred from (B̃2)+�
(�,�)−−→ (D̃2)+� based on (�, �)-inference rule 2. Furthermore, we can see that there must

exist a maximal (�, �)-concept rule B̃1
(�,�)−−→ D̃1, and that (B̃2)+�

(�,�)−−→ (D̃2)+� can be inferred from B̃1
(�,�)−−→ D̃1

based on (�, �)-inference rule 1. Hence, B̃2
(�,�)−−→ D̃2 can be inferred from B̃1

(�,�)−−→ D̃1. This indicates that �(�,�) is
�-complete. �

Although many inference rules can be used to eliminate superfluous (�, �)-rules, the (�, �)-inference rules proposed
here are perhaps more intuitive and simpler in comparison with other inference rules. Based on B(K B

� ) and B(K D
� ),

the steps for generating a �-complete and �-nonredundant set �(�,�) of (�, �)-rules are as follows.

1. For every (A, Ẽ) ∈ B(K B
� ), find (Ci , D̃i ) ∈ B(K D

� ), which is the minimal concept satisfying B̃
(�,�)−−→ D̃i . Then add

(Ci , D̃i ) to X .
2. Choose (C j , D̃ j ) from X randomly, then find (Ak, B̃k) ∈ B(K B

� ), which is the maximal concept satisfying

B̃k
(�,�)−−→ D̃ j . Delete (C j , D̃ j ) from X .

3. Add B̃k
(�,�)−−→ D̃ j to �(�,�); if X�∅, switch to 2.

4. Output �(�,�).

The number of �-concepts is denoted as p and the number of �-concepts is denoted as q. Then the time complexity
for generating �(�,�) will be O(p · q2 + p2 · q). This is not desirable, especially for larger experiments. Thus, the
algorithm only serves as a basis for opportunities for further development.

For example, the fuzzy granularity base of K D induced from Table 9 is denoted as �D = (D, RD), where

RD =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0.8 0.28 0.28 0.6

0.8 1 0.28 0.28 0.6

0.28 0.28 1 0.67 0.28

0.28 0.28 0.67 1 0.28

0.6 0.6 0.28 0.28 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

The �D with different granulations is shown in Table 11. Some formal symbols in the following tables are defined for
convenience. di is denoted as 
i , where 1≤i≤5. d1d2 and d3d4 are denoted as 
6 and 
7, respectively.

In a (�, �)-decision context, if �B with the granulation �(RB
� ) or �D with the granulation �(RD

� ) is too fine or too
coarse for users, it can be changed by adjusting the parameters � and �. Then the set of (�, �)-rules satisfying user
needs can be obtained. For example, Tables 13 and 14 can be obtained from Table 9 based on Tables 12, 4 and 5.

By Theorem 6, all (�, �)-rules can be inferred from �(�,�) with the (�, �)-decision inference. For example,

�4�5�6�7
(1,1)−−→ 
3
4 is a (1, 1)-rule in Table 9, because �2�4�5�6�7 = (�4�5�6�7)+1 and 
3
4 = (
3
4)+1 ,

�4�5�6�7
(1,1)−−→ 
3
4 can be inferred from �2�4�5�6�7

(1,1)−−→ 
3
4 based on inference rule 2. In addition, because


3
4 ⊆ 
3
4 and �2�6 ⊆ �2�4�5�6�7, �2�4�5�6�7
(1,1)−−→ 
3
4 can be inferred from �2�6

(�,�)−−→ 
3
4 based on
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Table 11
�D with different granulations.

RD
� �(D�) |D�| D�

R0.28 1.00 1 {d1d2d3d4d5}
R0.60 0.52 2 {d1d2d5, d3d4}
R0.67 0.36 3 {d1d2, d3d4, d5}
R0.80 0.28 4 {d1d2, d3, d4, d5}
R1.00 0.20 5 {d1, d2, d3, d4, d5}

Table 12
B(K D

� ) with � = 1, � = 0.8 and � = 0.67.

B(K D
1 )

(1578, 
3
4) (56, 
3
5) (12, 
1
4) (3456, 
5)
(12346, 
1) (16, 
1
3) (1, 
1
3
4) (346, 
1
2
5)
(2346, 
1
2) (6, 
1
2
3
5) (2, 
1
2
4) (5, 
3
4
5)
(15678, 
3) (12578, 
4) (G, ∅) (∅, D1)

B(K D
0.8)

(1578, 
3
4) (56, 
3
5) (12, 
4
6) (3456, 
5)
(12346, 
6) (16, 
3
6) (1, 
3
4
6) (346, 
5
6)
(15678, 
3) (6, 
3
5
6) (G, ∅) (5, 
3
4
5)
(12578, 
4) (∅, D0.8)

B(K D
0.67)

(12346, 
6) (56, 
5
7) (G, ∅) (3456, 
5)
(125678, 
3
4) (126, 
6
7) (6, 
5
6
7) (346, 
5
6)

inference rule 1. Hence, �4�5�6�7
((1,1)−−−→ 
3
4 can be inferred from the maximal (1, 1)-concept rule �2�6

(1,1)−−→ 
3
4
by the (1, 1)-decision inference.

Our work can be viewed as an extension and improvement of Ref. [22] to some extent. We illustrate the comparison
with an example. For the decision context in Table 15, the decision rules generated by the algorithm in [22] are listed
in Table 16 and the decision rules in the present study are listed in Table 17. Obviously, the number of decision rules is
much less in Table 17 than in Table 16. Moreover, the decision rules in [22] are essentially (1,1)-rules; in other words,
the decision rule in [22] is a special case of the (�, �)-rule in this paper.

6. Conclusions

This paper introduced GrC into FCA, and proposed FCA based on fuzzy granularity base for different granula-
tions. The fuzzy granularity base not only offers a uniform technology for knowledge acquisition but also facilitates
knowledge-sharing. Using a fuzzy granularity base, we investigated �-concept lattices, �-rule extraction and (�, �)-
rule extraction. Although many inference rules can be used to eliminate superfluous (�, �)-rules, the (�, �)-inference
rules proposed here are perhaps more intuitive and simpler compared to other inference rules. Our results confirm the
feasibility of introducing GrC into FCA theoretically and can be regarded as an initial exploration of GrC and FCA
combination. We can conclude that our proposed method is probably a much better choice in some FCA applications.
In future work we will study application of this theory to multi-value formal contexts and incomplete formal contexts,
and will explore wider combination of FCA and GrC.
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Table 13
�(�,�) with (�,�) = (1, 1), (�,�) = (1, 0.8) and (�,�) = (1, 0.67).

�(1, 1)

�8
(1, 1)−−−→ 
4 ∅ (1, 1)−−−→ ∅

�3�6�7
(1, 1)−−−→ 
5 �5

(1, 1)−−−→ 
3

�1�3�6�7
(1, 1)−−−→ 
1
2
5 �2�6

(1, 1)−−−→ 
3
4

�1�2�5�6�7�8
(1, 1)−−−→ 
1
3
4 �3�5

(1, 1)−−−→ 
3
5

�2�3�4�5�6�7�8
(1, 1)−−−→ 
3
4
5

�(1, 0.8)

�8
(1, 0.8)−−−−→ 
4 ∅ (1, 0.8)−−−−→ ∅

�3�6�7
(1 0.8)−−−→ 
5 �5

(1, 0.8)−−−−→ 
3

�1�3�6�7
(1 0.8)−−−→ 
5
6 �2�6

(1, 0.8)−−−−→ 
3
4

�1�2�5�6�7�8
(1 0.8)−−−→ 
3
4
6 �3�5

(1, 0.8)−−−−→ 
3
5

�2�3�4�5�6�7�8
(1 0.8)−−−→ 
3
4
5

�(1, 0.67)

�8
(1, 0.67)−−−−−→ 
7 ∅ (1, 0.67)−−−−−→ ∅

�3�6�7
(1, 0.67)−−−−−→ 
5 �5

(1, 0.67)−−−−−→ 
7

�1�3�6�7
(1, 0.67)−−−−−→ 
5
6 �2�6

(1, 0.67)−−−−−→ 
7

�1�2�5�6�7�8
(1, 0.67)−−−−−→ 
6
7 �3�5

(1, 0.67)−−−−−→ 
5
7

Table 14
�(�,�) with (�,�) = (0.67, 1), (�,�) = (0.67, 0.8) and (�,�) = (0.67, 0.67).

�(0.67, 1)

�5�9
(0.67, 1)−−−−−→ 
3
4 ∅ (0.67, 1)−−−−−→ ∅

�4�9
(0.67, 1)−−−−−→ 
3
4 �5

(0.67, 1)−−−−−→ 
3

�8�9
(0.67, 1)−−−−−→ 
3
4 �8

(0.67, 1)−−−−−→ 
4

�3�4�5�8�9
(1, 1)−−−→ 
3
4
5 �3�5

(0.67, 1)−−−−−→ 
3
5

�(0.67, 0.8)

�5�9
(0.67, 0.8)−−−−−−→ 
3
4 ∅ (0.67, 0.8)−−−−−−→ ∅

�4�9
(0.67, 0.8)−−−−−−→ 
3
4 �5

(0.67, 0.8)−−−−−−→ 
3

�8�9
(0.67, 0.8)−−−−−−→ 
3
4 �8

(0.67, 0.8)−−−−−−→ 
4

�3�4�5�8�9
(0.67, 0.8)−−−−−−→ 
3
4
5 �3�5

(0.67, 0.8)−−−−−−→ 
3
5

�(0.67, 0.67)

�8
(0.67, 0.67)−−−−−−→ 
7 ∅ (0.67, 0.67)−−−−−−→ ∅

�4�9
(0.67, 0.67)−−−−−−→ 
7 �5

(0.67, 0.67)−−−−−−→ 
7

�3�5
(0.67, 0.67)−−−−−−→ 
5
7
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Table 15
A sample data set [22].

G a1 a2 a3 a4 a5 a6 d1 d2

1 × × × × × ×
2 × ×
3 × × × ×
4 ×
5 × × × × × × ×
6 × ×
7 × × × × ×
8 × × × × × ×

Table 16
The set of decision rules generated by the algorithm in [22].

∅ → ∅ a4a5 → d1 a1a3a4 → d1d2 a3a4a5 → d1d2

a1 → d1 a5a6 → d1 a1a3a5 → d1d2 a3a5a6 → d1d2

a2a3 → d2 a1a2a3 → d1d2 a2a3a5 → d1d2

Table 17
The set of decision rules �(1,1)).

∅ → ∅ a1a6 → d1 a2a5a6 → d1

a2a3a4a6 → d1 a2a3a4a5a6 → d1d2
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