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a b s t r a c t

Functional data type, which is an important data type, is widely prevalent in many fields such as eco-

nomics, biology, finance, and meteorology. Its underlying process is often seen as a continuous curve. The

classification process for functional data is a basic data mining task. The common method is a two-stage

learning process: first, by means of basis functions, the functional data series is converted into multivari-

ate data; second, a machine learning algorithm is employed for performing the classification task based

on the new representation. The problem is that a majority of learning algorithms are based on Euclidean

distance, whereas the distance between functional samples is L2 distance. In this context, there are three

very interesting problems. (1) Is seeing a functional sample as a point in the corresponding Euclidean

space feasible? (2) How to select an orthonormal basis for a given functional data type? (3) Which one

is better, orthogonal representation or non-orthogonal representation, under finite basis functions for the

same number of basis? These issues are the main motivation of this study. For the first problem, the-

oretical studies show that seeing a functional sample as a point in the corresponding Euclidean space

is feasible under the orthonormal representation. For the second problem, through experimental analy-

sis, we find that Fourier basis is suitable for representing stable functions(especially, periodic functions),

wavelet basis is good at differentiating functions with local differences, and data driven functional princi-

pal component basis could be the first preference especially when one does not have any prior knowledge

on functional data types. For the third problem, experimental results show that orthogonal representa-

tion is better than non-orthogonal representation from the viewpoint of classification performance. These

results have important significance for studying functional data classification.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Recent years have witnessed considerable improvements in

data acquisition technology and data storage abilities. As a result,

it has become imperative to classify individual systems in various

research fields based on one or more data series. The underlying

process of every data series is an unknown function (continuous

curve), called functional data. The classification process for func-

tional data is typically the same as that for their underlying gener-

ation functions.

At present, for the classification of functional data, there are

two types of commonly used methods. One involves construct-

ing functional classifiers, such as a functional support vector ma-
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hine (SVM) by means of kernel techniques [3,33,48] and func-

ional logistic regression [5,18,24,43,47,49], and the other is a two-

tage classification method [28]. For the second method, in the first

tage, usually, functional samples are represented in a finite di-

ensional functional subspace by means of basis functions; thus,

unctional data with infinite dimension becomes multivariate data,

hich consists of coefficients before the basis functions. In the sec-

nd stage, a classical learning algorithm for finite dimensional data

s used. The reason is that the high dimensionality of data series

enders many data mining methods ineffective and fragile [8]. This

bstacle is sometimes referred to as the “curse of dimensional-

ty” [14]. In most data series mining problems, there is a need for

imensionality reduction and forming new data series represen-

ations [27]. It is required that the new representation preserves

ufficient information for solving data series mining problems cor-

ectly. Once the basis is chosen, the optimal value for the number

f basis functions can be derived from the data [48].

http://dx.doi.org/10.1016/j.knosys.2015.12.016
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Table 1

The observation form of functional data.

Sample t1 t2 ��� tp

X1 X1(t1) X1(t2) ��� X1(tp)

X2 X2(t1) X2(t2) ��� X2(tp)

� �
. . . �

XN XN(t1) XN(t2) ��� XN(tp)
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Representing data series in the transformed domain is a com-

on dimensionality reduction approach. Some of the popular

ransformation techniques are Fourier transform [15,33,53] and

avelet transform [11,16,32,37]. Functional principal component

nalysis(FPCA) [10,21,29,39,43,46,54–56] is a popular technique

hat uses statistical methods. Other methods include B-spline func-

ions [1,3,35,59], Mercer kernel transforms [36,38], radial basis

unctions [4,5,26], etc.

In fact, the representation of functional data is essentially a

ind of approximation of itself. In the process of machine learn-

ng of functional data, a kind of structured representation using

asis functions is used to transform functional data into multivari-

te data, and then, the distances between functional samples are

onverted into the Euclidean distances between the corresponding

ultivariate data. However, the representability of using the cor-

esponding multivariate data to represent functional data, and the

ationality of using the distance between the corresponding two

ultivariate data to replace the distance between two functional

amples have not been studied in detail. Therefore, the relationship

f different spaces is first introduced, and then the orthonormal

epresentation theory is employed to explain the representability

nd rationality.

Theoretically, under orthonormal basis, for any two different

unctional samples, the distance between them can be approxi-

ated based on the distance between their low-dimensional rep-

esentations, which is isomorphic to the corresponding Euclidean

istance. At this time, choosing an appropriate orthonormal basis

s still a problem. Therefore, three kinds of common orthonormal

asis and their differences are considered. The three kinds of or-

honormal basis are normal Fourier basis, wavelet basis, and func-

ional principal component basis, the eigenequation of FPCA is de-

ived by means of variational theory.

It is well known that non-orthogonal representation can also

epresent a functional data series as certain multivariate data.

herefore, it is important to verify if orthogonal basis has a

tronger representation ability than non-orthogonal basis for func-

ional data under the same number of basis functions from the

iewpoint of classification performance.

In order to verify the representation ability of the above

rthonormal basis in classification, the extracted features(the

oefficient vector, which consists of coefficients before the

asis functions) of the functional data will be used in clas-

ification model construction. It has been pointed out in the

iterature [17] that support vector machine(SVM) and random

orest are two preferred classification methods, and thus, Lib-

VM [12] and RandomForest [9,44] are first used to classify

he functional data for three kinds of orthonormal representa-

ions. As other choices, logistic regression [29,40], K-nearest neigh-

or [30,31], and artificial neuron network [34,41] will also be

sed as classifiers for discriminating functional samples. Based on

hese classifiers, we shall also compare the classification perfor-

ance of orthogonal representation with that of non-orthogonal

epresentation.

The main objective of this paper is to explain the rationality

ehind converting functional samples into corresponding multi-

ariate data that are to be used for training a classifier. At the

ame time, from the point of view of experiments, we shall explain

hat among the three basis candidates, Fourier basis is suitable for

epresenting stable signals(especially, periodic functions), wavelet

epresentation can yield better results than Fourier representation

or non-stationary signals, and orthonormal basis obtained through

unctional principal components offers good representation ability

or some functional data with complex trend characteristics. Func-

ional principal component analysis (FPCA), in particular, can be

he first choice when people do not have any prior knowledge. Fur-

hermore, we also demonstrate that orthogonal basis is indeed bet-
er than non-orthogonal basis from the viewpoint of classification

erformance.

The remainder of this paper is organized as follows. Some

asic concepts of functional data and some approximation the-

ry under orthonormal representation are presented in Section 2.

ection 3 describes three kinds of common orthonormal repre-

entations for functional data, and in particular, the eigenequa-

ion for functional principal component is derived using the

ariational principle. Section 4 introduces several classification

ethods including LibSVM, RandomForest, logistic regression, K-

earest neighbor, and artificial neuron network. Furthermore, four

lassification performance indexes such as the precision, the re-

all, F1 score, and the accuracy are introduced in detail. Section 5

rovides numerical studies for feature extraction and classification

ethods for functional data. In this section, we analyze the clas-

ification performance of three different kinds orthonormal basis,

oint out which kind of orthonormal basis is appropriate to rep-

esent what type of functional data, and answer whether orthog-

nal representation is better than non-orthogonal representation

or classifying functional data for the same number of finite basis

unctions. Section 6 concludes the paper with some remarks and

iscussions.

. Orthonormal representation for functional data

.1. The basic concepts of functional data

Advances in data collection and storage have led to an increased

resence of functional data, whose graphical representations are

urves, images, or shapes [51]. The observation form of the func-

ional data is also a two-dimensional table, which is shown in

able 1, in which Xi(t) (abbreviated as Xi), t ∈ I, i = 1, 2, . . . , N

s an underlying continuous and smooth function, and Xi ∈ L2(I),

here L2(I) is the space of the square-integrable functions de-

ned on the compact set I, X : I → R, (∫IX
2(t)dt)1/2 < ∞, R is the

eal number space. At the same time, L2(I) is a separable Hilbert

pace with the inner product < X,Y >= ∫
I X(t)Y (t)dt and the norm

X‖2 = (
∫

I X2(t)dt)1/2. Xi(tj) denotes the observed value for Xi(t) at

discrete point tj for the ith functional sample.

To understand the L2(I) space, the relationship among different

paces is first introduced. It is well known that the introduction of

he distance is for the purpose of studying the convergence. Peo-

le, therefore, defined the metric space. In the metric space, the

istance between any two elements can be computed. If the con-

ept of completion (any Cauchy sequence is a convergent sequence

58]) is introduced in the metric space, the space will become a

omplete metric space.

However, the metric space only has a topological structure,

hich restricts its application area. If a linear operation is in-

roduced to the metric space, a linear normal space [58] can be

btained and the algebraic operation between elements can be

arried out. In this case, the distance is transformed into the

orm, which combines the metric and the linear operations per-

ectly. In other words, the linear normal space not only keeps its

opological structure but also maintains its algebraic structure. The
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Fig. 1. The relationship of different spaces.
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Banach space [2,52], especially, is a complete linear normal space,

in which any element can be approached by a linear combination

of basis vectors.

On the other hand, the inner product space [50,58] is also a lin-

ear normal space, in which the norm is induced by the inner prod-

uct (i.e.,‖X‖2 =< X, X >1/2). Different from an ordinary linear nor-

mal space, in the inner product space, people can define the angle

so as to further discuss the orthogonality. In particular, the Hilbert

space[2] is a complete inner space, in which people can discuss

both approximation and angle. In other words, any element in the

Hilbert space can be infinitely approached by a linear combination

of orthogonal basis.

The relationship of different spaces is clearly shown in Fig. 1.

Through Fig. 1, for a functional object, the complete metric

space can be used to judge whether the object can be approached

or not; the Banach space answers the problem of how to approach

it (i.e., what is used to approximate it); and the Hilbert space indi-

cates that it can be approached by a linear combination of a fam-

ily of orthogonal basis. Functional data belong to the space of the

square-integrable functions defined on the compact set I, just L2(I).

2.2. Some approximation theory for functional data

Owing to L2(I) being a Hilbert space, in this subsection, we dis-

cuss several important properties of the system of normalized or-

thogonal functions in L2(I).

Lemma 1. [58] Let {ϕi} be a system of normalized orthogonal func-

tions in L2(I), X ∈ L2(I). For a given k, suppose

X (k) =
k∑

i=1

aiϕi, (1)

where ai (i = 1, 2, . . . , k) is a real number, then ‖X − X (k)‖2 achieves

its minimum value if ai =< X, ϕi > (i = 1, 2, . . . , k).

Lemma 2. [58] Let {ϕi} be a complete system of orthogonal functions

in L2(I), X ∈ L2(I). Given ai =< X, ϕi > (i = 1, 2, . . .), one has that

lim
k→∞

‖X (k) − X‖2 = 0. (2)

Remark 1. When {ϕi} is a complete system of normalized orthog-

onal functions, as per Lemma 1, one knows that X(k) is the op-

timal approximation of X in the k-dimensional subspace H0 of

L2(I), where H0 is spanned by {ϕ1, ϕ2, . . . , ϕk}. Moreover, Lemma 2

shows that the approximation performance will improve as k in-

creases.

Lemma 3. [57] Let X be a Hilbert space. If {ϕi} is a complete sys-

tem of normalized orthogonal functions of X , then X has the corre-
ponding Parseval equivalent formulation, i.e., ∀X ∈ X ,

X‖2
2 =

∑
a∈A

| < X, ϕi > |2, (3)

here A is an index set.

emark 2. Since L2(I) is a Hilbert space, if {ϕi} is the complete

ystem of normalized orthogonal functions in L2(I), for ∀X ∈ L2(I),

ake ai =< X, ϕi > (i = 1, 2, . . .), we have

X‖2
2 =

∞∑
i=1

a2
i . (4)

Through the above lemmas, one can draw the following conclu-

ion.

heorem 1. Let {ϕi} be a complete system of normalized or-

hogonal functions in L2(I), ∀X, Y ∈ L2(I), and ai =< X, ϕi > (i =
, 2, . . .), bi =< Y, ϕi > (i = 1, 2, . . .). Given X (k) =

k∑
i=1

aiϕi,Y (k) =
k∑
=1

biϕi, we have that

1) ‖ X (k) − Y (k) ‖2
2
=

k∑
i=1

(ai − bi)
2,

2) ‖ X − Y ‖2
2
= lim

k→∞
‖ X (k) − Y (k) ‖2

2
.

roof.

1) It is evident that

‖ X (k) − Y (k) ‖2
2 = ‖

k∑
i=1

aiϕi −
k∑

i=1

biϕi ‖2
2

= ‖
k∑

i=1

(ai − bi)ϕi ‖2
2=

k∑
i=1

(ai − bi)
2.

2) By Lemma 3 and argument (1) of this theorem,

‖X − Y‖2
2 =

∞∑
i=1

| < X − Y, ϕi > |2

=
∞∑

i=1

| < X, ϕi > − < Y, ϕi > |2

=
∞∑

i=1

(ai − bi)
2 = lim

k→∞

k∑
i=1

(ai − bi)
2

= lim
k→∞

‖ X (k) − Y (k) ‖2
2 .

This completes the proof. �
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emark 3. Theorem 1 shows that the distance between two ele-

ents in L2(I) can be approximated by the corresponding distance

etween their low-dimensional representations in a subspace of
2(I). In fact, in a complete system of normalized orthogonal func-

ions, the distance between two elements in the low-dimensional

ubspace equals the Euclidean distance between their coefficient

ectors.

For a classification problem, based on the observation Xi(t j), i =
, 2, . . . , N, j = 1, 2, . . . , p, one first finds an approximation X (k)

i
(t)

f Xi(t), i = 1, 2, . . . , N in a given subspace of L2(I). Based on
(k)
i

(t) = ∑k
j=1 ai jϕ j(t), we know that (ai1, ai2, . . . , aik) can be used

o represent Xi, i = 1, 2, . . . , N. In this case, many classification al-

orithms can be directly applied to the objects characterized by

he new features (ai1, ai2, . . . , aik), i = 1, 2, . . . , N.

. Several orthonormal representations

.1. Fourier basis

It is well known that the Fourier series can provide a basis ex-

ansion. Let X ∈ L2(I) and T be the measure of I, then X can be

epresented by the following orthonormal basis,√
1

T
,

√
2

T
sin

(
2π

T
t

)
,

√
2

T
cos

(
2π

T
t

)
, . . . ,

√
2

T
sin

(
2kπ

T
t

)
,

√
2

T
cos

(
2kπ

T
t

)
, · · ·

oreover, the fast Fourier transform(FFT) provides a strategy to

etermine the coefficients extremely efficiently if p (the observa-

ion number of X) is a power of 2, and the arguments are equally

paced [46]. A point worth noting is that: a Fourier series is well

uited for representing stable functions (especially, periodic func-

ional instances), while it is inappropriate for those functions with

trong local features or discontinuous features.

.2. Functional principal component analysis (FPCA)

Functional principal component basis is also a kind of orthonor-

al basis. However, it differs from Fourier basis in that people can-

ot write out its explicit expression formula, which is often de-

icted by some trend characteristics. Its basic idea originated from

amsay’s work [45]. In order to clearly express the process of ac-

uiring functional principal components, in this subsection, multi-

ariate PCA is introduced and the eigenequation for functional PCA

s derived.

.2.1. Multivariate PCA

We first introduce and discuss the method of multivariate PCA.

For p-dimensional multivariate data X1, X2, ���, XN, let

=

⎛
⎜⎜⎝

X′
1

X′
2
...

X′
N

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xN1 xN2 · · · xNp

⎞
⎟⎟⎠

e a standardized matrix. Multivariate PCA can be used to find a

inear transformation matrix Ak × p(k ≤ p) with a low-dimensional

ubspace, in which sample variance can be maximized on each di-

ension. Let ξ j be the jth column of A′, fi j = ξ ′
j
Xi represents the

core of the ith sample on the jth dimension, and ξ j is the jth prin-

ipal component vector. The overall information mean (the mean
quares of the scores) of all samples on the jth dimension is rep-

esented as 1
N

∑N
i=1 f 2

i j
, j = 1, . . . , k. In fact,

1

N

N∑
i=1

f 2
i j

= 1

N
( f1 j f2 j · · · fN j)

⎛
⎜⎜⎝

f1 j

f2 j

...
fN j

⎞
⎟⎟⎠

= 1

N
ξ ′

j

⎛
⎜⎜⎝

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xN1 xN2 · · · xNp

⎞
⎟⎟⎠

′⎛
⎜⎜⎝

x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xN1 xN2 · · · xNp

⎞
⎟⎟⎠ξ j

= 1

N
ξ jX

′Xξ j. (5)

et V = 1

N
X′X, where V is a sample covariance matrix. Hence, the

th principal component vector ξ j has

ax ξ ′
j Vξ j. (6)

urthermore, in order to guarantee the uniqueness of solutions, the

onstraint condition ξ ′
j
ξ j = 1 needs to be considered. Based on this

onsideration, the above optimization problem becomes the fol-

owing conditional extreme value problem:

(ξ ) = ξ ′Vξ − λ(ξ ′ξ − 1). (7)

aking the derivative with respect to ξ , the following equation is

btained:

′(ξ ) = 2Vξ − 2λξ = 0, (8)

.e., each principal component vector should satisfy the following

igen equation:

ξ = λξ . (9)

In practice, we only select the k eigenvectors ξ1, ξ2, . . . , ξk

ith the top k eigenvalues λ1, λ2, . . . , λk, which constitute an or-

honormal basis of a k-dimensional subspace. In this case, A′ =
(ξ1, ξ2, . . . , ξk). A popular method for choosing the parameter k is

he scree plot, which is a graphical method [23]. To apply it, one

lots the successive eigenvalues λj against j. The method recom-

ends determining the j for which the decrease of the eigenvalues

ppears to level off. This point is used as the selected value of k.

.2.2. Functional PCA

Many statistical applications today involve data that do not

t into classical univariate or multivariate frameworks; for exam-

le, growth curves, spectral curves, and time-dependent gene ex-

ression profiles [19]. These functional objects can be regarded

s the samples in the space of square-integrable functions L2(I),

here I is a compact set. In order to improve the performance

f machine learning and speed up machine learning algorithms,

unctional PCA can be used to extract the important discrimi-

ant features of functional data. In essence, for any X(t) ∈ L2(I),

he aim of functional PCA is to find an optimal approximation
(k)(t) in a low-dimensional functional subspace of L2(I), where
(k)(t) = ∑k

i=1 aiξi(t). The low-dimensional functional subspace H0

s spanned by {ξ1(t), ξ2(t), . . . ,ξ k(t)}. In addition, different from

ourier basis, wavelet basis, spline basis, etc., the functional princi-

al component basis is driven by data.

In this part, we mainly focus on the problem of acquiring func-

ional principal components. Given some centralized functional

bjects X1(t), X2(t), . . . , XN(t), the objective of functional PCA is

o find a functional subspace H so that the information of the
0
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functional data is maximized on each eigen dimension, where

ξ1(t), ξ2(t), . . . , ξk(t) are eigen functions. fi j = ∫
T ξ j(t)Xi(t)dt rep-

resents the score of the ith sample on the jth dimension and ξ j(t)

is the jth principal component function. Similar to multivariate

PCA, the overall information mean of the samples on the jth eigen

dimension can be also represented as

1

N

N∑
i=1

f 2
i j = 1

N

N∑
i=1

[∫
T

ξ j(t)Xi(t)dt

]2

, j = 1, . . . , k. (10)

In order to guarantee the uniqueness of the solutions, the con-

straint condition
∫

T ξ j(t)2dt = 1 needs to be considered. The pro-

cess of mining the principal components basically becomes the

process of finding ξ ′s that maximize:

F (ξ ) = 1

N

N∑
i=1

[∫
T

ξ (t)Xi(t)dt

]2

− λ
[∫

T

ξ (t)2dt − 1

]
. (11)

Given ∀ε ∈ R, ∀η ∈ L2(I), R is the real number space, based

on the formula (11), one can obtain the following variational equa-

tion:

F (ξ + εη) = 1

N

N∑
i=1

[∫
T

(ξ (t) + εη(t))Xi(t)dt

]2

−λ
[∫

T

(ξ (t) + εη(t))2dt − 1

]
. (12)

Especially, when ε = 0, variational Eq. (12) becomes formula (11).

Let ξ = ξ (t) maximize formula (11). For formula (12), taking

the derivative with respect to ε, one has that

dF

dε

∣∣∣
ε=0

= 0, (13)

in detail,

dF

dε

∣∣∣
ε=0

= 1

N

N∑
i=1

2

∫
T

ξ (t)Xi(t)dt

∫
T

η(s)Xi(s)ds − 2λ

∫
T

ξ (s)η(s)ds

= 2

∫
T

η(s)
[∫

T

υ(s, t)ξ (t)dt − λξ (s)
]

ds, (14)

where υ(s, t) = 1

N

N∑
i=1

Xi(s)Xi(t).

Combining (13), (14) with the arbitrariness of η(s), we have the

following eigen equation∫
T

υ(s, t)ξ (t)dt = λξ (s). (15)

Thus, ξ ′s maximizing formula (11) are solutions of Eq. (15). The

left side of (15) is an integral transform V of the eigen function ξ
defined by

Vξ =
∫

T

υ(s, t)ξ (t)dt. (16)

The integral transform is named as the covariance operator V.

Therefore, we may also express the eigen Eq. (15) directly as (9).

For the computational methods of functional principal compo-

nents, see [46].

In practice, we only select the corresponding k eigenfunctions

ξ1, ξ2, . . . , ξk of the top k eigenvalues λ1, λ2, . . . , λk. In this case,

ξ1, ξ2, . . . , ξk constitute an orthonormal basis in a k-dimensional

functional subspace. ( fi1, fi2, . . . , fik) can be used to represent Xi(t),

i = 1, 2, . . . , N, t ∈ I.

Remark 4. To avoid the influence of different variable units, mul-

tivariate data usually need to be standardized. However, univari-

ate functional data are not influenced by the units. For FPCA,

functional data only need to be centralized. Of course, in order

to better capture critical features, longitudinal transformation for
unctional data can be first carried out before principal compo-

ent analysis. The longitudinal transformations include logarithmic

ransform, first order difference transform, second order difference

ransform, and so on.

.3. Wavelet basis

In the literature [20], it is mentioned that one common ap-

roach of functional data analysis is to project the functional sam-

les onto a finite dimensional subspace of L2(I) and to use the

asis coefficients in a learning algorithm. It is well known that

unctional data with dramatically local changes appear in many

elds including economics, medical science, engineering, etc. Un-

ike Fourier basis and splines, wavelet transform can easily capture

ocal properties of a functional signal. In general, wavelet basis is

onstructed using multiresolution analysis. For any primary resolu-

ion level j0 ≥ 0, the collection {φ j0k, k = 0, 1, . . . , 2 j0 − 1;ψ jk, j ≥
j0, k = 0, 1, . . . , 2 j − 1} constitutes an orthonormal basis of L2(I),

nd φjk(resp.ψ jk) is obtained by translations [13] and dilatations

f a compactly supported function φ(resp. ψ), which is called as a

father’ wavelet(resp. a ‘mother’ wavelet), where

jk(t) =
∑
l∈Z

2 j/2φ(2 j(t − l) − k) (17)

nd

jk(t) =
∑
l∈Z

2 j/2ψ(2 j(t − l) − k). (18)

The idea underlying the wavelet approach is that a broad class

f functions can be arbitrarily well approximated by a wavelet se-

ies [7]; i.e., for any function X(t) ∈ L2(I),

(t) =
2 j0 −1∑
k=0

< X, φ j0k > φ j0k(t) +
∞∑

j= j0

2 j−1∑
k=0

< X,ψ j,k > ψ j,k(t).

(19)

he coefficient < X, φ j0k > and < X, ψ j, k > are called the scaling

nd wavelet coefficients of X(t), respectively.

The first term in Eq. (19) is the smooth approximation of X(t) at

evel j0, and the second term is the detail part of the wavelet rep-

esentation. We assume that each functional curve X is observed

n a fine sampling grid t1, . . . , tp. Note that a wavelet decomposi-

ion of X can also be given in a form similar to that in (19). For

j0 = 0, we have

(tl ) =< X, φ00 > φ00(tl ) +
J−1∑
j=0

2 j−1∑
k=0

< X,ψ j,k > ψ j,k(t), (20)

here J := log2(N) is the maximal number of wavelet levels and <

, φ00 > and < X, ψ j, k > are, respectively, the scale and wavelet

oefficients of the discretized curve X at position k for resolution

evel j. These empirical coefficients can be efficiently computed us-

ng the discrete wavelet transform described in the literature [42].

There are many types of wavelet transforms in the literature.

n this paper, we shall adopt the Daubechies wavelet, which is an

rthogonal basis with a compact support.

.4. Time complexity of different representation methods

In this subsection, we analyze the computational complexity of

ach of the above three orthonormal representations. In fact, for

he representation of functional data, it is critical to find the ba-

is coefficients. Suppose that a functional dataset has N functional

amples and each functional sample has p observation points. For

ourier representation, the FFT makes it possible to find all coeffi-

ients extremely efficiently, and its time complexity is O(Np log p).
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Fig. 2. Raw curve and its three fitted curves of the average temperature of Shanghai in 2012.

F

v

e

g

r

i

f

y

t

F

c

c

3

S

t

b

e

r

t

c

h

s

4

4

f

t

o

n

f

c

t

fi

d

r

n

a

i

t

4

s

s

a

s

t

c

R

a

R

S

p

h

P

T

t

F

c

s

c

or wavelet representation, discrete wavelet transform(DWT) pro-

ides p coefficients closely related to the wavelet coefficients of

ach functional curve in O(p) operations [46]. As a consequence,

iven a functional dataset, the time complexity based on wavelet

epresentation is O(Np). For a functional PCA representation, it is

mportant to compute the covariance function in Eq. (15), there-

ore, its time complexity is O(Np2). According to the above anal-

sis, one can see that the time complexity of wavelet representa-

ion is the lowest, that of functional PCA is the highest, and that of

ourier representation is in the middle. Of course, in practice, the

haracteristic of the data itself should be first considered for the

hoice of basis functions.

.5. Intuitionistic description of different orthonormal representations

In this subsection, we employ the average temperature data of

hanghai in 2012 to show its intuitionistic characteristic after or-

honormal representation by using the above three orthonormal

asis (see Fig. 2). In Fig. 2, the blue curve represents the raw av-

rage temperature curve, the black curve is based on Fourier rep-

esentation, the red curve is based on wavelet representation, and

he green curve is based on FPCA representation. From Fig. 2, one

an see that wavelet basis can cope well with rapid changes in be-

avior, functional PCA can better fit the raw curve, and Fourier ba-

is is smooth and stable.

. Classification method and performance index

.1. Classification methods

After the orthonormal representation of functional data, each

unctional sample becomes a point in Euclidean space. Using

he Weka platform, we choose five kinds of classification meth-

ds including LibSVM, RandomForest, logistic regression, K-nearest

eighbor(KNN), and artificial neuron network(ANN) to classify the

unctional data.

LibSVM uses the library LibSVM and calls from Weka for

lassification with Gaussian kernel, based on gamma=1 and

olerance=0.001.

RandomForest implements a forest of RandomTree base classi-

ers with 100 trees, using �log(#inputs + 1)
 inputs and unlimited

epth trees.

Logistic learns a multinomial logistic regression model with a

idge estimator, using ridge in the log-likelihood R = 10−8.
ANN is a multilayer perceptron network with sigmoid hidden

eurons, learning rate 0.3, momentum 0.2, 500 training epochs,

nd #hidden neurons equal (#inputs and #classes)/2.

KNN is a K-nearest neighbor classifier, which tunes K by us-

ng cross-validation with linear neighbor search and Euclidean dis-

ance.

.2. Some classification performance indexes

To test the representation ability of different basis in the clas-

ification of functional data, four classification performance mea-

ures are employed including recall(Rec), precision(Pre), F1 score,

nd accuracy (Acc).

Joachims [25] proposed the precision and the recall of a deci-

ion rule ψ in binary classification problems. Now, we generalize

hem to multi-class classification problems. For multi-class classifi-

ation problems with K classes, given a decision rule ψ , the recall

ec(ψ)i of the ith class is defined to be the probability that an ex-

mple X with label y = i is classified correctly, i.e., ψ(X ) = i:

ec(ψ)i = P(ψ(X ) = i|y = i)

= P(ψ(X ) = i, y = i)
K∑

j=1

P(ψ(X ) = j, y = i)

. (21)

imilarly, the precision Pre(ψ)i of the ith class is defined to be the

robability that an example X classified as ψ(X ) = i does indeed

ave the same label, i.e., y = i:

re(ψ)i = P(y = i|ψ(X ) = i)

= P(ψ(X ) = i, y = i)
K∑

j=1

P(ψ(X ) = i, y = j)

. (22)

he F1 score of the ith class is used to reconcile the precision with

he recall, which is formally defined as follows:

1(ψ)i = 2Pre(ψ)iRec(ψ)i

Pre(ψ)i + Rec(ψ)i

. (23)

Based on the recall, the precision, and F1 score of the ith

lass, we can obtain the weighted recall (Rec), the weighted preci-

ion(Pre), and the weighted F1 score(F1), which are called the re-

all, the precision, and F1 score of the decision rule ψ , respectively.
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Fig. 3. Left: sample curves for Tecator data. Each class has 20 sample curves. Right: corresponding sample curves after second order difference.
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1 http://www.cs.ucr.edu/∼eamonn/time_series_data/
Their definitions are as follows:

Rec(ψ) =
K∑

i=1

P(y = i)Rec(ψ)i, (24)

Pre(ψ) =
K∑

i=1

P(y = i)Pre(ψ)i, (25)

and

F1(ψ) =
K∑

i=1

P(y = i)F1(ψ)i, (26)

respectively.

Furthermore, the accuracy Acc(ψ) of a decision rule ψ is de-

fined as follows:

Acc(ψ) = 1

N

N∑
l=1

I(ψ(Xl ) = yl ), (27)

where

I(ψ(Xl ) = yl ) =
{

1, ψ(Xl ) = yl,

0, ψ(Xl ) �= yl .

5. Experimental analysis

5.1. Data description

Tecator data is available at http://lib.stat.cmu.edu/datasets/

tecator. The dataset(see Fig. 3) consists of 215 nearinfrared ab-

sorbance spectra of meat samples, recorded on a Tecator Infratec
ood Analyzer. Each observation consists of a 100-channel ab-

orbance spectrum in the wavelength range of 850–1050 nm. The

oal here is to predict whether the fat percentage is greater than

0% from the spectra. Among the 215 samples, 138 have fat per-

entage less than 20%.

Face data, ECG data, and ItalyPower data are taken from

he UCR Time Series Classification and Clustering website.1 The

ace dataset (see the figure on the left in Fig. 4) consists of 112

urves sampled from 4 groups at 350 instants of time. The ECG

ataset(see the figure on the right in Fig. 4) consists of 200 elec-

rocardiogram from 2 groups of patients sampled at 96 time in-

tants. The ItalyPower dataset (see Fig. 5) consists of 1029 curves

ampled from 2 groups at 24 time instants.

Sdata dataset is a simulated dataset. In this dataset, we make

simulated classification example with three known underly-

ng generation mechanism: g2(t) = cos(1.5πt), g2(t) = sin(1.5πt),

3(t) = sin(πt) t ∈ [0, 1]. Fig. 6 presents underlying generation

urves and three sample curves of each class, where each class

onsists of 200 curves.

Phoneme data was formed by selecting five phonemes for clas-

ification based on digitized speech from the TIMIT database. The

ataset consists of 4509 speech frames with “aa” (695), “ao”(1022),

dcl”(757), “iy” (1163), and “sh” (872). The phonemes are tran-

cribed as follows: “sh” as in “she”, “dcl” as in “dark”, “iy” as the

owel in “she”, “aa” as the vowel in “dark”, and “ao” as the first

owel in “water”. From each speech frame, a log-periodogram of

ength 256 was computed. The data, which is available at http:

/www-stat.stanford.edu/∼tibs/ElemStatLearn/, was used in the

http://lib.stat.cmu.edu/datasets/tecator
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www.cs.ucr.edu/~eamonn/time_series_data/
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Fig. 5. ItalyPower data.
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aper on penalized discriminant analysis (PDA) by Hastie et al.

22]. Fig. 7 shows five examples for each of the five classes.

From Figs. 3 and 4, Tecator dataset, Face dataset, and ECG

ataset have local significant feature differences. From Figs. 5–7,

talyPower dataset, Sdata dataset, and Phoneme dataset have global

eature differences.

.2. Classification performance comparison of different orthonormal

asis

For machine learning of functional data, one needs to first

nd the critical features of functional data based on their low-

imensional orthonormal representations. That is, let ϕ1, ϕ2, . . . , ϕk

e the orthonormal basis in certain k-dimensional subspace, then

can be approximated by X (k) =< X, ϕ > ϕ + < X, ϕ > ϕ +
1 1 2 2
· · + < X, ϕk > ϕk. In addition, k-dimensional coefficient vector

(< X, ϕ1 >, , < X, ϕ2 >, . . . , < X, ϕk >) can be used to represent

unctional sample X. Secondly, a learning algorithm like SVM is

erformed with the ‘reduced’, low-dimensional data [6]. All of the

ollowing classification experiments are carried out according to

he 10-fold cross-validation criterion.

In most applications, it is important to determine a value of k

uch that the actual data can be replaced by the approximation
k
i=1 < X, ϕi > ϕi. For example, in the case of functional principal

omponent basis, a subjective decision for the choice of k can be

ade from a scree plot [28], which shows percentages of variation

f functional samples. As for the Fourier basis and wavelet basis, k

an be selected based on the total mean-squared error [45], which

akes a trade-off between bias and sampling variance. Ramsay

45] pointed out that people find it difficult to attempt to fix model



232 Y. Meng et al. / Knowledge-Based Systems 97 (2016) 224–236

0 50 100 150 200 250

0

5

10

15

20

25

Frequency

Lo
g−

pe
rio

do
gr

am

aa

0 50 100 150 200 250

0

5

10

15

20

25

Frequency

Lo
g−

pe
rio

do
gr

am

ao

0 50 100 150 200 250

0

5

10

15

20

25

Frequency

Lo
g−

pe
rio

do
gr

am

dcl

0 50 100 150 200 250

0

5

10

15

20

25

Frequency

Lo
g−

pe
rio

do
gr

am

iy

0 50 100 150 200 250

0

5

10

15

20

25

Frequency

Lo
g−

pe
rio

do
gr

am

sh

Fig. 7. Sample curves for Phoneme data. Each class has five sample curves.
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dimensionality since there is no one gold standard method for the

variable selection problem. In this paper, we mainly focus on the

classification performance difference of three orthonormal repre-

sentations with the same number of basis and the same classifier.

Therefore, according to the characteristic of functional data set, dif-

ferent number of basis is utilized to represent the functional data

set. The comparisons of their classification performance on the six

data sets are shown in Tables 2–7. In every table, the value of k

indicates the number of basis functions.

From Tables 2–4, it can be seen that the classification perfor-

mance of wavelet representation is statistically better than that of

Fourier representation. It shows that wavelet basis may be better

at capturing local characteristics. This results from the fact that the

wavelet expansion of a function X yields a multiresolution analysis

and thus wavelets provide a systematic sequence of degrees of lo-

cality (see formula (18)). From Tables 5–7, it is evident that the
lassification performance of Fourier representation is statistically

etter than that of wavelet representation, and is more robust with

espect to number of basis. It shows that Fourier basis is appropri-

te for representing periodic functions and stable signals. In fact,

ourier expansion is a linear combination of sine functions and co-

ine functions, and is generally uniformly smooth. From these ta-

les, we argue that functional PCA may be a better representation

ethod especially when one does not have any prior knowledge

or the characteristics of functional data. For complex functional

ata such as Face dataset, ECG dataset, and Phoneme dataset, func-

ional PCA exhibits much better performance than others since it

s data-driven. Besides, we can also see that the classification per-

ormance is very relevant to the number of orthonormal basis.

owever, it should be noted that too many basis functions may

ause an over-fitting problem for the classifier. Through the ex-

eriments, it can be also seen that LibSVM, RandomForest, and
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Table 2

Classification performance induced by different representations on Tecator.

Basis Classifier Fourier FPCA Wavelet Non-or

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

LibSVM 0.967 0.968 0.967 0.967 0.986 0.986 0.986 0.986 0.991 0.991 0.991 0.991 0.828 0.826 0.828 0.825

RandomForest 0.972 0.972 0.972 0.972 0.977 0.977 0.977 0.977 0.991 0.991 0.991 0.991 0.814 0.812 0.814 0.812

k = 4 Logistic 0.972 0.972 0.972 0.972 0.977 0.977 0.977 0.977 0.986 0.986 0.986 0.986 0.809 0.807 0.809 0.805

KNN 0.981 0.981 0.981 0.981 0.967 0.967 0.967 0.967 0.991 0.991 0.991 0.991 0.772 0.776 0.772 0.774

ANN 0.972 0.972 0.972 0.972 0.981 0.981 0.981 0.981 0.995 0.995 0.995 0.995 0.800 0.798 0.800 0.798

LibSVM 0.991 0.991 0.991 0.991 0.977 0.977 0.977 0.977 0.972 0.972 0.972 0.972 0.828 0.826 0.828 0.825

RandomForest 0.967 0.968 0.967 0.967 0.981 0.981 0.981 0.981 0.977 0.977 0.977 0.977 0.828 0.826 0.828 0.825

k = 7 Logistic 0.986 0.986 0.986 0.986 0.981 0.981 0.981 0.981 0.986 0.987 0.986 0.986 0.781 0.777 0.781 0.777

KNN 0.986 0.986 0.986 0.986 0.977 0.978 0.977 0.977 0.972 0.972 0.972 0.972 0.828 0.826 0.828 0.827

ANN 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.805 0.804 0.805 0.804

LibSVM 0.991 0.991 0.991 0.991 0.972 0.972 0.972 0.972 1.000 1.000 1.000 1.000 0.953 0.953 0.953 0.953

RandomForest 0.977 0.977 0.977 0.977 0.981 0.981 0.981 0.981 0.977 0.977 0.977 0.977 0.963 0.963 0.963 0.963

k = 13 Logistic 0.972 0.972 0.972 0.972 0.963 0.964 0.963 0.963 0.991 0.991 0.991 0.991 0.944 0.944 0.944 0.944

KNN 0.981 0.981 0.981 0.981 0.953 0.954 0.953 0.953 0.967 0.967 0.967 0.967 0.972 0.972 0.972 0.972

ANN 0.981 0.981 0.981 0.981 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.940 0.940 0.940 0.940

LibSVM 0.977 0.977 0.977 0.977 0.963 0.963 0.963 0.963 0.972 0.972 0.972 0.972 0.977 0.977 0.977 0.977

RandomForest 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.967 0.968 0.967 0.967

k = 25 Logistic 0.953 0.953 0.953 0.953 0.949 0.950 0.949 0.949 0.981 0.981 0.981 0.981 0.953 0.953 0.953 0.953

KNN 0.986 0.986 0.986 0.986 0.935 0.941 0.935 0.933 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972

ANN 0.967 0.968 0.967 0.967 0.962 0.963 0.963 0.963 0.986 0.986 0.986 0.986 0.958 0.958 0.958 0.958

Table 3

Classification performance induced by different representations on face.

Basis Classifier Fourier FPCA Wavelet Non-or

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

LibSVM 0.696 0.715 0.696 0.692 0.848 0.853 0.848 0.847 0.723 0.729 0.723 0.715 0.241 0.150 0.241 0.185

RandomForest 0.750 0.754 0.750 0.744 0.821 0.826 0.821 0.823 0.732 0.732 0.732 0.729 0.313 0.305 0.313 0.304

k = 6 Logistic 0.714 0.722 0.714 0.714 0.839 0.838 0.839 0.838 0.670 0.664 0.670 0.666 0.304 0.259 0.304 0.279

KNN 0.705 0.704 0.705 0.703 0.830 0.837 0.830 0.832 0.670 0.672 0.670 0.669 0.268 0.256 0.268 0.260

ANN 0.732 0.731 0.732 0.728 0.804 0.802 0.804 0.803 0.696 0.699 0.696 0.695 0.205 0.211 0.205 0.207

LibSVM 0.768 0.770 0.768 0.761 0.929 0.933 0.929 0.930 0.857 0.865 0.857 0.859 0.304 0.232 0.304 0.247

RandomForest 0.813 0.820 0.813 0.814 0.893 0.896 0.893 0.894 0.839 0.842 0.839 0.837 0.313 0.314 0.313 0.308

k = 11 Logistic 0.813 0.817 0.813 0.814 0.884 0.886 0.884 0.885 0.911 0.916 0.911 0.912 0.295 0.289 0.295 0.290

KNN 0.786 0.796 0.786 0.789 0.920 0.923 0.920 0.920 0.804 0.807 0.804 0.801 0.279 0.283 0.277 0.275

ANN 0.839 0.842 0.839 0.840 0.911 0.912 0.911 0.911 0.920 0.924 0.920 0.920 0.277 0.278 0.277 0.277

LibSVM 0.875 0.878 0.875 0.875 0.920 0.927 0.920 0.920 0.938 0.940 0.938 0.937 0.402 0.396 0.402 0.372

RandomForest 0.866 0.871 0.866 0.866 0.902 0.902 0.902 0.902 0.911 0.916 0.911 0.912 0.509 0.505 0.509 0.505

k = 22 Logistic 0.920 0.925 0.920 0.921 0.938 0.939 0.938 0.937 0.929 0.934 0.929 0.927 0.375 0.382 0.375 0.378

KNN 0.866 0.869 0.866 0.864 0.920 0.920 0.920 0.919 0.902 0.905 0.902 0.900 0.384 0.396 0.384 0.386

ANN 0.946 0.955 0.946 0.948 0.964 0.967 0.964 0.965 0.955 0.958 0.955 0.955 0.393 0.403 0.393 0.397

LibSVM 0.902 0.903 0.902 0.900 0.884 0.904 0.884 0.886 0.884 0.890 0.884 0.885 0.598 0.610 0.598 0.594

RandomForest 0.884 0.888 0.884 0.885 0.911 0.916 0.911 0.911 0.938 0.941 0.938 0.938 0.652 0.664 0.652 0.656

k = 44 Logistic 0.848 0.860 0.848 0.850 0.893 0.897 0.893 0.892 0.946 0.947 0.946 0.946 0.491 0.496 0.491 0.491

KNN 0.830 0.843 0.830 0.830 0.884 0.885 0.884 0.883 0.902 0.903 0.902 0.902 0.491 0.539 0.491 0.500

ANN 0.911 0.917 0.911 0.911 0.929 0.933 0.929 0.928 0.964 0.966 0.964 0.964 0.625 0.625 0.625 0.622

Table 4

Classification performance induced by different representations on ECG.

Basis Classifier Fourier FPCA Wavelet Non-or

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

LibSVM 0.765 0.760 0.765 0.762 0.760 0.757 0.760 0.758 0.750 0.744 0.750 0.729 0.790 0.787 0.790 0.788

RandomForest 0.775 0.771 0.775 0.773 0.790 0.789 0.790 0.789 0.660 0.660 0.660 0.660 0.770 0.763 0.770 0.762

k = 3 Logistic 0.790 0.786 0.790 0.786 0.785 0.784 0.785 0.785 0.740 0.730 0.740 0.724 0.770 0.772 0.770 0.771

KNN 0.775 0.775 0.775 0.757 0.795 0.793 0.795 0.794 0.740 0.733 0.740 0.716 0.800 0.796 0.800 0.793

ANN 0.755 0.750 0.755 0.751 0.790 0.800 0.790 0.793 0.740 0.732 0.740 0.718 0.805 0.801 0.805 0.798

LibSVM 0.775 0.771 0.775 0.773 0.855 0.853 0.855 0.853 0.780 0.775 0.780 0.770 0.790 0.789 0.790 0.789

RandomForest 0.790 0.786 0.790 0.786 0.830 0.829 0.830 0.829 0.815 0.812 0.815 0.813 0.795 0.790 0.795 0.789

k = 6 Logistic 0.765 0.760 0.765 0.762 0.835 0.833 0.835 0.833 0.765 0.758 0.765 0.755 0.775 0.778 0.775 0.776

KNN 0.775 0.775 0.775 0.757 0.905 0.905 0.905 0.905 0.850 0.849 0.850 0.849 0.795 0.790 0.795 0.789

ANN 0.755 0.750 0.755 0.751 0.865 0.863 0.865 0.864 0.815 0.812 0.815 0.813 0.785 0.783 0.785 0.784

LibSVM 0.850 0.848 0.850 0.848 0.885 0.884 0.885 0.884 0.865 0.864 0.865 0.862 0.805 0.802 0.805 0.803

RandomForest 0.860 0.859 0.860 0.859 0.845 0.843 0.845 0.843 0.875 0.876 0.875 0.875 0.815 0.816 0.815 0.815

k = 12 Logistic 0.795 0.791 0.795 0.792 0.800 0.797 0.800 0.798 0.805 0.804 0.805 0.805 0.790 0.787 0.790 0.788

KNN 0.875 0.874 0.875 0.874 0.895 0.894 0.895 0.893 0.875 0.874 0.875 0.874 0.805 0.801 0.805 0.800

ANN 0.825 0.826 0.825 0.825 0.860 0.859 0.860 0.859 0.870 0.871 0.870 0.870 0.770 0.770 0.770 0.770

LibSVM 0.850 0.849 0.850 0.849 0.890 0.889 0.890 0.889 0.855 0.853 0.855 0.853 0.815 0.812 0.815 0.813

RandomForest 0.830 0.838 0.830 0.818 0.870 0.869 0.870 0.868 0.845 0.843 0.845 0.843 0.795 0.796 0.795 0.795

k = 24 Logistic 0.835 0.833 0.835 0.834 0.850 0.849 0.850 0.849 0.810 0.810 0.810 0.810 0.835 0.833 0.835 0.835

KNN 0.880 0.881 0.880 0.880 0.875 0.874 0.875 0.873 0.885 0.885 0.885 0.885 0.845 0.843 0.845 0.843

ANN 0.850 0.849 0.850 0.849 0.865 0.865 0.865 0.865 0.860 0.860 0.860 0.860 0.815 0.811 0.815 0.811
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Table 5

Classification performance induced by different representations on ItalyPower.

Basis Classifier Fourier FPCA Wavelet Non-or

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

LibSVM 0.961 0.961 0.961 0.961 0.967 0.967 0.967 0.967 0.824 0.829 0.824 0.823 0.716 0.726 0.716 0.713

RandomForest 0.950 0.951 0.950 0.950 0.964 0.964 0.964 0.964 0.764 0.764 0.764 0.764 0.721 0.724 0.721 0.720

k = 3 Logistic 0.958 0.958 0.958 0.958 0.968 0.968 0.968 0.968 0.824 0.826 0.824 0.824 0.704 0.705 0.704 0.703

KNN 0.960 0.960 0.960 0.960 0.962 0.962 0.962 0.962 0.836 0.839 0.836 0.835 0.725 0.753 0.725 0.717

ANN 0.960 0.960 0.960 0.960 0.964 0.964 0.964 0.964 0.825 0.839 0.825 0.823 0.713 0.734 0.713 0.707

LibSVM 0.961 0.961 0.961 0.961 0.971 0.971 0.971 0.971 0.958 0.958 0.958 0.958 0.948 0.950 0.948 0.948

RandomForest 0.957 0.957 0.957 0.957 0.965 0.965 0.965 0.965 0.954 0.954 0.954 0.954 0.942 0.943 0.942 0.942

k = 6 Logistic 0.951 0.952 0.951 0.951 0.969 0.969 0.969 0.969 0.949 0.949 0.949 0.949 0.946 0.947 0.946 0.946

KNN 0.955 0.955 0.955 0.955 0.954 0.956 0.954 0.954 0.944 0.944 0.944 0.944 0.939 0.942 0.939 0.939

ANN 0.964 0.964 0.964 0.964 0.966 0.966 0.966 0.966 0.954 0.954 0.954 0.954 0.942 0.942 0.942 0.942

LibSVM 0.966 0.966 0.966 0.966 0.975 0.975 0.975 0.975 0.968 0.968 0.968 0.968 0.953 0.954 0.953 0.953

RandomForest 0.960 0.960 0.960 0.960 0.968 0.968 0.968 0.968 0.966 0.966 0.966 0.966 0.945 0.945 0.945 0.945

k = 12 Logistic 0.960 0.960 0.960 0.960 0.967 0.967 0.967 0.967 0.970 0.970 0.970 0.970 0.942 0.942 0.942 0.942

KNN 0.954 0.954 0.954 0.954 0.971 0.971 0.971 0.971 0.961 0.961 0.961 0.961 0.938 0.946 0.938 0.938

ANN 0.961 0.961 0.961 0.961 0.960 0.960 0.960 0.960 0.968 0.969 0.969 0.969 0.938 0.938 0.938 0.938

LibSVM 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.974 0.972 0.972 0.972 0.972 0.955 0.956 0.955 0.955

RandomForest 0.972 0.972 0.972 0.972 0.966 0.966 0.966 0.966 0.972 0.972 0.972 0.972 0.946 0.946 0.946 0.946

k = 24 Logistic 0.972 0.972 0.972 0.972 0.969 0.969 0.969 0.969 0.973 0.973 0.973 0.973 0.942 0.942 0.942 0.942

KNN 0.972 0.972 0.972 0.972 0.964 0.964 0.964 0.964 0.969 0.969 0.969 0.969 0.937 0.940 0.937 0.937

ANN 0.961 0.961 0.961 0.961 0.969 0.969 0.969 0.969 0.967 0.967 0.967 0.967 0.944 0.944 0.944 0.944

Table 6

Classification performance induced by different representations on Sdata.

Basis Classifier Fourier FPCA Wavelet Non-or

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

LibSVM 0.995 0.995 0.995 0.995 0.997 0.997 0.997 0.997 0.975 0.975 0.975 0.975 0.978 0.978 0.978 0.978

RandomForest 0.993 0.993 0.993 0.993 0.988 0.988 0.988 0.988 0.968 0.968 0.968 0.968 0.980 0.980 0.980 0.980

k = 4 Logistic 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.987 0.970 0.970 0.970 0.970 0.977 0.977 0.977 0.977

KNN 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.993 0.963 0.963 0.963 0.963 0.972 0.972 0.972 0.972

ANN 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.992 0.977 0.977 0.977 0.977 0.975 0.975 0.975 0.975

LibSVM 0.993 0.993 0.993 0.993 0.995 0.995 0.995 0.995 0.990 0.990 0.990 0.990 0.975 0.975 0.975 0.975

RandomForest 0.993 0.993 0.993 0.993 0.992 0.992 0.992 0.992 0.982 0.982 0.982 0.982 0.977 0.977 0.977 0.977

k = 7 Logistic 0.988 0.988 0.988 0.988 0.985 0.985 0.985 0.985 0.982 0.982 0.982 0.982 0.975 0.975 0.975 0.975

KNN 0.993 0.993 0.993 0.993 0.990 0.990 0.990 0.990 0.965 0.965 0.965 0.965 0.942 0.942 0.942 0.942

ANN 0.990 0.990 0.990 0.990 0.988 0.988 0.988 0.988 0.977 0.977 0.977 0.977 0.967 0.967 0.967 0.967

LibSVM 0.992 0.992 0.992 0.992 0.995 0.995 0.995 0.995 0.990 0.990 0.990 0.990 0.968 0.968 0.968 0.968

RandomForest 0.993 0.993 0.993 0.993 0.990 0.990 0.990 0.990 0.987 0.987 0.987 0.987 0.980 0.980 0.980 0.980

k = 13 Logistic 0.995 0.995 0.995 0.995 0.987 0.987 0.987 0.987 0.977 0.977 0.977 0.977 0.968 0.968 0.968 0.968

KNN 0.983 0.983 0.983 0.983 0.963 0.966 0.963 0.963 0.973 0.973 0.973 0.973 0.910 0.911 0.910 0.910

ANN 0.993 0.993 0.993 0.993 0.995 0.995 0.995 0.995 0.987 0.987 0.987 0.987 0.980 0.980 0.980 0.980

LibSVM 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.995 0.995 0.995 0.995 0.963 0.963 0.963 0.963

RandomForest 0.993 0.993 0.993 0.993 0.987 0.987 0.987 0.987 0.982 0.982 0.982 0.982 0.977 0.977 0.977 0.977

k = 26 Logistic 0.980 0.980 0.980 0.980 0.985 0.985 0.985 0.985 0.982 0.982 0.982 0.982 0.938 0.940 0.938 0.939

KNN 0.950 0.950 0.950 0.950 0.907 0.907 0.907 0.907 0.967 0.970 0.967 0.967 0.893 0.895 0.893 0.893

ANN 0.988 0.988 0.988 0.988 0.992 0.992 0.992 0.992 0.980 0.980 0.980 0.980 0.953 0.953 0.953 0.953

Table 7

Classification performance induced by different representations on Phoneme.

Basis Classifier Fourier FPCA Wavelet Non-or

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

LibSVM 0.846 0.846 0.846 0.844 0.836 0.833 0.836 0.832 0.690 0.676 0.690 0.653 0.577 0.548 0.577 0.538

RandomForest 0.833 0.833 0.833 0.832 0.818 0.816 0.818 0.817 0.653 0.649 0.653 0.650 0.543 0.531 0.543 0.535

k = 4 Logistic 0.843 0.843 0.843 0.842 0.836 0.834 0.836 0.834 0.682 0.658 0.682 0.637 0.576 0.532 0.576 0.538

KNN 0.840 0.843 0.840 0.838 0.831 0.829 0.831 0.826 0.690 0.685 0.690 0.674 0.575 0.561 0.575 0.560

ANN 0.840 0.843 0.840 0.838 0.836 0.835 0.836 0.835 0.682 0.671 0.682 0.656 0.569 0.541 0.569 0.535

LibSVM 0.891 0.890 0.891 0.889 0.896 0.895 0.896 0.895 0.815 0.815 0.815 0.813 0.584 0.568 0.583 0.552

RandomForest 0.879 0.878 0.879 0.877 0.882 0.881 0.882 0.881 0.813 0.814 0.813 0.812 0.570 0.553 0.570 0.556

k = 8 Logistic 0.890 0.890 0.890 0.889 0.893 0.892 0.893 0.892 0.801 0.801 0.801 0.800 0.580 0.562 0.580 0.549

KNN 0.839 0.839 0.839 0.839 0.888 0.889 0.888 0.886 0.802 0.811 0.802 0.800 0.570 0.565 0.570 0.539

ANN 0.886 0.886 0.886 0.886 0.889 0.889 0.889 0.888 0.812 0.815 0.812 0.811 0.574 0.558 0.574 0.549

LibSVM 0.912 0.912 0.912 0.911 0.913 0.912 0.913 0.912 0.907 0.907 0.907 0.907 0.633 0.628 0.633 0.628

RandomForest 0.895 0.895 0.895 0.894 0.896 0.895 0.896 0.894 0.901 0.901 0.901 0.900 0.630 0.622 0.630 0.622

k = 16 Logistic 0.907 0.906 0.907 0.906 0.908 0.907 0.908 0.907 0.902 0.901 0.902 0.901 0.625 0.618 0.625 0.619

KNN 0.900 0.900 0.900 0.900 0.892 0.897 0.892 0.886 0.887 0.890 0.887 0.884 0.618 0.623 0.618 0.617

ANN 0.890 0.889 0.890 0.889 0.896 0.895 0.896 0.895 0.890 0.889 0.890 0.890 0.614 0.613 0.614 0.611

LibSVM 0.914 0.914 0.914 0.913 0.918 0.917 0.918 0.917 0.914 0.913 0.914 0.913 0.703 0.699 0.703 0.700

RandomForest 0.899 0.899 0.899 0.897 0.893 0.893 0.893 0.892 0.912 0.912 0.912 0.911 0.696 0.691 0.696 0.685

k = 32 Logistic 0.903 0.903 0.903 0.903 0.909 0.909 0.909 0.909 0.902 0.902 0.902 0.902 0.694 0.689 0.694 0.690

KNN 0.903 0.907 0.903 0.901 0.872 0.886 0.872 0.862 0.885 0.889 0.885 0.881 0.691 0.701 0.691 0.687

ANN 0.891 0.890 0.891 0.890 0.891 0.891 0.891 0.891 0.898 0.897 0.898 0.897 0.651 0.650 0.651 0.649
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rtificial neuron network(ANN) show much better classification

erformance.

.3. Classification performance comparison between orthogonal basis

nd non-orthogonal basis

In this subsection, we compare the classification per-

ormance of classifiers induced by orthogonal representa-

ion and non-orthogonal representation. Now, Fourier basis

1, sin(t), cos(t), . . . , sin(kt), cos(kt), . . .} is used to represent func-

ional samples. If the measure T of I is not 2π , then the above

asis is not orthogonal basis. The classification performance for

on-orthogonal representation (just Non-or) can be seen from

ables 2–7.

First, we can see that the classification performance of clas-

ifiers induced by orthogonal representation is statistically bet-

er than that induced by non-orthogonal representation on

very data set. Second, since Fourier basis is appropriate to rep-

esent functional data with periodic characteristic, the difference

etween two kinds of representations is not too large for the Sdata

ata set. However, the classification performance of classifiers in-

uced by orthogonal representation is still better than that of non-

rthogonal representation. Third, for functional data with local dif-

erence characteristics including Tecator dataset and Face dataset,

here are obvious difference between the classifiers induced by or-

hogonal representation and those induced by non-orthogonal rep-

esentation for classification performance.

. Conclusions

The main motivations of this study were to answer three im-

ortant problems: (1)Why can a functional sample be seen as a

oint in the corresponding Euclidean space after certain orthonor-

al representation? (2)How to select orthonormal basis for a given

unctional data type? (3) For orthogonal representation and non-

rthogonal representation, which one is better under finite basis

unctions with the same number of basis?

For the first problem, in this paper, we have given a theorem

or illustrating the reasonability of representing a functional sam-

le as a point in the corresponding Euclidean space, which is iso-

orphic to the low-dimensional representation space for the func-

ional sample. In this case, the distance between two functional

amples becomes the Euclidean distance between two points in

he classification process, and thus, based on this representation,

ome machine learning algorithms can be utilized to classify a

unctional data set.

For the second problem, we have performed a series of compar-

son analysis in-between Fourier basis, functional principal compo-

ent basis and wavelet basis. Experiment results show that the se-

ection of orthonormal basis may depend on the characteristics of

unctional data themselves, which is helpful for obtaining a clas-

ifier of functional data with better generalization ability. Fourier

asis may be suitable for stable functional data (especially peri-

dic data), wavelet basis may be appropriate for functional data

ith local characteristic, and data driven functional principal com-

onent basis could be the preferred choice when prior information

bout the characteristics of functional data is not known. In partic-

lar, the eigenequation of FPCA is obtained by means of variational

heory.

For the third problem, experimental results have also shown

hat orthogonal representation may be much better than non-

rthogonal representation from the viewpoint of classification per-

ormance, because orthogonal representation may include more

nformation under finite basis functions with same number of

asis.
To summarize, the research results would be very helpful for

uiding researchers to reasonably use orthonormal representation

ethods for machine learning of functional data.
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