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a b s t r a c t

Principal component analysis (PCA) is a powerful technique for extracting structure from possibly high-
dimensional data sets, while kernel PCA (KPCA) is the application of PCA in a kernel-defined feature
space. For standard PCA and KPCA, if the size of dataset is large, it will need a very large memory to store
kernel matrix and a lot of time to calculate eigenvalues and corresponding eigenvectors. The aim of this
paper is to learn linear and nonlinear principal components by using a few partial data points and deter-
mine which data points can be used. To verify the performance of the proposed approaches, a series of
experiments on artificial datasets and UCI benchmark datasets are accomplished. Simulation results
demonstrate that the proposed approaches can compete with or outperform the standard PCA and KPCA
in generalization ability but with much less memory and time consuming.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Principal component analysis is a powerful technique for
extracting structure from possibly high-dimensional data sets, and
it has received much more attentions in many literatures (Cadima
& Jolliffe, 1995; Croux & Haesbroeck, 2000; Higuchi & Eguchi,
2004; Jolliffe, 1986, 1995; Jolliffe & Uddin, 2003; McCabe, 1984;
Misra et al., 2002; Schökopf, Smolar, & Muller, 1998; Shawe-Taylor
& Cristianini, 2005; Suykens, Van Gestel, Vandewalle, & De Moor,
2003; Tao, Wu, & Wang, 2007; Vines, 2000). From the view point
of mathematics, PCA is an orthogonal transformation of the coordi-
nate system in which the data are described. The new coordinate
values, by which the data are represented, are called principal com-
ponents. It is often the case that a small number of principal compo-
nents are sufficient to account for the main structure embedded in
data. KPCA is the application of PCA in a kernel-defined feature
space.

For standard PCA and KPCA, different data points will play dif-
ferent roles in determining all principal components. In general,
the closer the data points to the mean center, the less important
the data points contributing to PCA due to the norms of their pro-
jections to an arbitrary direction are very small. For a large scale
data set, it needs a very large memory to store kernel matrix and
a lot of time to calculate eigenvalues and corresponding eigenvec-
tors. In our study, we can determine all the principal components
by using a few partial data points. The aim of this paper is to solve

the key problem, i.e., how to choose data points from training data
so as to obtain all the principal components. In the proposed algo-
rithms, we select partial data points from the training dataset un-
der the same threshold with the standard PCA and KPCA, and then
obtain equivalent eigenvalues and eigenvectors with that of PCA
and KPCA. To verify the performance of the proposed approaches,
a series of experiments on artificial datasets and UCI benchmark
datasets are carried out. Simulation results demonstrate that the
proposed approaches can compete with or outperform the stan-
dard PCA and KPCA in generalization ability but with much less
memory and time consuming.

The paper is organized as follows. In Section 2, the standard PCA
and KPCA is described briefly. The approaches and corresponding
algorithms for approximating the PCA and KPCA by using partial
data points are illustrated in Section 3. Simulation experiments
and discussions are presented in Section 4. The last section con-
cludes the proposed works.

2. The standard PCA and kernel PCA

2.1. The standard PCA

PCA takes an initial subset of the principal axes of the training
data and projects the data (both training and testing data) into
the space spanned by the set of eigenvectors. Data are projected
into the subspace spanned by the first k eigenvectors of the covari-
ance matrix of the training set for some k < l. The new coordinates
are known as the principal coordinates with the eigenvectors refer-
ring to the principal axes.
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The primal PCA algorithm performs the following computation:

Input:
� A data set S ¼ fxigl

i¼1, dimension k.
Process:
� l ¼ 1

l

Pl
i¼1xi

� C ¼ 1
l

Pl
i¼1ðxi � lÞðxi � lÞ0

� ½U;
V
� ¼ eigðlCÞ

� ~xi ¼ U0kxi; i ¼ 1; . . . ; l
Output:
� Transformed data eS ¼ f~x1; ~x2; . . . ; ~xlg

2.2. The standard KPCA

KPCA is the application of PCA in a kernel-defined feature space
by the dual representation. We use Uk to denote the subspace
spanned by the first k eigenvectors in the feature space. We can
compute the k-dimensional vector projection of new data into this
subspace as

PUk
ð/ðxÞÞ ¼

Xl

i¼1

aj
ikðxi; xÞ

 !k

j¼1

ð1Þ

where

aj ¼ k�1=2
j v j

is given in terms of the corresponding eigenvector and eigenvalue of
the kernel matrix. Eq. (1) forms the basis of kernel PCA.

The KPCA algorithm performs the following computation:

Input:
� A data set S ¼ fxigl

i¼1, dimension k.
Process:
� Kij ¼ kðxi; xjÞ; i; j ¼ 1; . . . ; l

� K ¼ K � 1
l
~j~j0K � 1

l K~j~j0 þ 1
l2
ð~j0K~jÞ~j~j0

� ½V ;
V
� ¼ eigðKÞ

� aj ¼ k�1=2
j v j; j ¼ 1; . . . ; k

� ~x ¼
Pl

i¼1a
j
ikðxi; xÞ

� �k

j¼1Output:
� Transformed data eS ¼ f~x1; ~x2; . . . ; ~xlg

where~j is the all 1s vector.
An alternative characterization of the principal components (or

principal axes) of a dataset will be important for the analysis of
KPCA. We first introduce some additional notations. We use
PUð/ðxÞÞ to denote the orthogonal projection of an embedded point
UðxÞ into the subspace U. The difference

P?U ¼ UðxÞ � PUðUðxÞÞ

is the projection into the orthogonal subspace and it refers to the
residual. We will typically assess the quality of a projection by
the average of the squared norms of the residuals of the training
data

1
l

Xl

i¼1

kP?Uk
2

The next theorem shows that using the space spanned by the first k
principal components of the covariance matrix can minimize this
quantity.

Theorem 1. Given a training set S with covariance matrix C, the
orthogonal projection PUk

ðUðxÞÞ into the subspace Uk spanned by the

first k eigenvectors of C is the k-dimensional orthogonal projection
minimizing the average squared distance between each training point
and its image, in other words, Uk solves the optimization problem

min
U

J?ðUÞ ¼
Xl

i¼1

kP?UðUðxiÞÞk2
2

s:t: dimU ¼ k

ð2Þ

Furthermore, the value of J?ðUÞ at the optimum is given by

J?ðUÞ ¼
XN

i¼kþ1

ki ð3Þ

where k1; . . . ; kN are the eigenvalues of the matrix lC in decreasing
order.

3. Approximations of the standard PCA and KPCA

In standard PCA and KPCA, all data points are used. For a large
scale data set, it needs a very large memory to store kernel matrix
and a lot time to calculate eigenvalues and corresponding eigen-
vectors. For the algorithms of PCA and KPCA, we can see that differ-
ent data points will play different roles. In general, the closer the
data points to the mean center, the less important the data points
contributing to PCA or KPCA because their projections to an arbi-
trary direction are very small. So we can discard those data points
which are close to the mean center and use the rest data points to
approximate the standard PCA and KPCA.

3.1. Approximation of PCA

In this section, we suppose the training dataset S ¼ fxigl
i¼1 are

centered. For standard PCA,

J?ðUkÞ ¼
Xl

i¼1

kP?Uk
ðxiÞk2

2 ¼
Xl

i¼1

kxi � PUk
ðxiÞk2

2

¼
Xl

i¼1

kxik2
2 �

Xl

i¼1

kPUk
ðxiÞk2

2 ¼
XN

i¼1

ki �
Xk

i¼1

ki

where k1; . . . ; kN are the eigenvalues of the matrix lC in decreasing
order.

In the algorithm of standard PCA, the dimension k is not given
in advance. It can be determined according to the following
equation:

J?ðUkÞPN
i¼1ki

6 a

or

Pk
i¼1kiPN
i¼1ki

P 1� a

where a is a threshold, and it is often less than 0.30. 1� a is often
called contribution ratio.

In our proposed approach, we select a subset Sk which contains
m data points. Without loss of generality, we suppose training
dataset S ¼ fxigl

i¼1 is arranged in decreasing order according to
the norms of fxig.

Denote

J?ðUkÞ ,
Xl

i¼1

kxik2 �
Xm

i¼1

kPUk
xik2

We have the following result.
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Theorem 2. Given a training set S ¼ fxigl
i¼1 and an arbitrary thresh-

old a, there exits a subset Sm which consists at least m 2 N ðm 6 lÞ data
points of S with covariance matrix Cm, and one k-dimensional space Uk

spanned by the first k eigenvectors of Cm, such that

J?ðUkÞPl
i¼1kxik2 6 a

Proof. Given an arbitrary constant c ð0 < c < 1Þ, we can uniquely
determine the least constant m 2 N ðm 6 lÞ according to the fol-
lowing equation:

Pm
i¼1kxik2Pl
i¼1kxik2 P 1� c

Let Cm ¼ 1
m

Pm
i¼1xix0i; b1; b2; . . . ; bN be the eigenvalues of matrix

mCm in decreasing order and Uk be a k-dimensional space spanned
by the first k eigenvectors of mCm.

Thus

XN

i¼1

bi ¼
Xm

i¼1

kxik2 P ð1� cÞ
Xl

i¼1

kxik2

Since PUk
ðxiÞ is an orthogonal projection, it follows Pythagoras’s the-

orem, i.e.,

J?0 ðUkÞ ,
Xm

i¼1

kP?Uk
xik2 ¼

Xm

i¼1

kxik2 �
Xm

i¼1

kPUk
xik2 ¼

XN

i¼1

bi �
Xk

i¼1

bi

Let

J?0 ðUkÞPN
i¼1bi

¼ 1�
Pk

i¼1biPN
i¼1bi

6 c

orPk
i¼1biPN
i¼1bi

P 1� c

Then the least value of k ðk 2 NÞ can be determined.

J?ðUkÞ ¼
Xl

i¼1

kxik2 �
Xm

i¼1

kPUk
xik2 ¼

Xl

i¼1

kxik2 �
Xk

i¼1

bi

6

Xl

i¼1

kxik2 � ð1� cÞ
XN

i¼1

bi ¼
Xl

i¼1

kxik2 � ð1� cÞ2
Xl

i¼1

kxik2

¼ cð2� cÞ
Xl

i¼1

kxik2
< 2c

Xl

i¼1

kxik2

Hence

J?ðUkÞPl
i¼1kxik2 < 2c

In order to obtain

J?ðUkÞPl
i¼1kxik2 < 2c 6 a

it needs

c 6
a
2

This completes the proof. h

In sequence, the proposed approximation algorithm of PCA
(APCA) is summarized as following.

Input:
� A data set S ¼ fxigl

i¼1, threshold a.
Process:
� l ¼ 1

l

Pl
i¼1xi

� S0 , fxi � lgl
i¼1 sorted in decreasing order according to the

norm of xi � l
� Determining the least number m ðm 2 NÞ according to the

following equationPm
i¼1kxi � lk2Pl
i¼1kxi � lk2 P 1� a

2

� Cm ¼ 1
m

Pm
i¼1ðxi � lÞðxi � lÞ0

� ½U;
V
� ¼ eigðmCmÞ

� Determining the least number k ðk 2 NÞ according to the fol-
lowing equationPk
i¼1biPN
i¼1bi

P 1� a
2

where b1;b2; . . . ;bN are the eigenvalues of matrix mCm in
decreasing order.
� ~xi ¼ U0kxi; i ¼ 1; . . . ; l
Output:
� Transformed data eS ¼ f~x1; ~x2; . . . ; ~xlg

3.2. Approximation of KPCA

Consider an embedding map

U : x 2 RN#UðxÞ 2 F # Rn

The choice of the map U aims at converting the nonlinear relations
into linear ones. The map U is used to recode dataset S asbS ¼ fUðxiÞgl

i¼1. The center of the set bS is UbS ¼ 1
l

Pl
i¼1UðxiÞ. With all

points in the feature space we will not have an explicit vector rep-
resentation for these points. Despite this apparent inaccessibility of
the point UbS , we can compute the distance of the image of a point xi

from the center of mass UbS
kUðxÞ �UbSk2 ¼ hUðxiÞ;UðxiÞi þ hUbS ;UbSi � 2hUðxiÞ;UbSi

¼ kðxi; xiÞ þ
1

l2

Xl

i;j¼1

kðxi; xjÞ �
2
l

Xl

j¼1

kðxi; xjÞ ð4Þ

Without loss of generality, we suppose training dataset S ¼ fxigl
i¼1 is

sorted in decreasing order according to kUðxÞ �UbSk2, the corre-

sponding center kernel matrix is denoted as bK which is calculated
by

bK ¼ K � 1
l
~j~j0K � 1

l
K~jj0 þ 1

l2 ð
~j0K~jÞ~jj0 ð5Þ

where K is kernel matric, Kij ¼ hUðxiÞ;UðxjÞi ¼ kðxi; xjÞ. For standard
KPCA,

J?ðUkÞ ¼
Xl

i¼1

kP?Uk
ðUðxiÞÞk2

2 ¼
Xl

i¼1

kUðxiÞ � PUk
ðUðxiÞÞk2

2

¼
Xl

i¼1

kUðxiÞk2
2 �

Xl

i¼1

kPUk
ðUðxiÞÞk2

2 ¼
XN

i¼1

ki �
Xk

i¼1

ki

where k1; . . . ; kN are the eigenvalues of the kernel matrix bK in
decreasing order.

In the algorithm of standard KPCA, the dimension k is also not
given in advance. Similarly, it can be determined according to the
following equation:

R. Zhang et al. / Expert Systems with Applications 37 (2010) 6531–6537 6533



Author's personal copy

J?ðUkÞPN
i¼1ki

6 a

orPk
i¼1kiPN
i¼1ki

P 1� a

where a is a threshold, and often less than 0.30.
In the proposed approach, we select a subset Sk which contains

m data points.
Denoting

J?ðUkÞ ,
Xl

i¼1

kUðxiÞk2 �
Xm

i¼1

kPUk
UðxiÞk2

We have the following result.

Theorem 3. Suppose we perform PCA in the feature space, datasetbS ¼ fUðxiÞgl
i¼1. Given an arbitrary threshold a, there exits a subset Sm

which consists at least m 2 N ðm 6 lÞ data points of bS with kernel
matrix Km that is made of the first m rows and first m columns of bK,
and one k-dimensional space Uk spanned by the first k eigenvectors of
Km, such that

J?ðUkÞPl
i¼1kUðxiÞk2 6 a

Proof. Given an arbitrary constant c ð0 < c < 1Þ, we can uniquely
determine the least constant m 2 N ðm 6 lÞ according to the fol-
lowing equation:Pm

i¼1kUðxiÞk2Pl
i¼1kUðxiÞk2 P 1� c

Let b1; b2; . . . ; bm be the eigenvalues of matrix Km in decreasing
order and Uk be a k-dimensional space spanned by the first k eigen-
vectors of Km,where Km is made of the first m rows and first m col-
umns of bK .

Then

XN

i¼1

bi ¼
Xm

i¼1

kUðxiÞk2 P ð1� cÞ
Xl

i¼1

kUðxiÞk2

Since PUk
ðUðxiÞÞ is an orthogonal projection, it follows from Pytha-

goras’s theorem, i.e.,

J?0 ðUkÞ ,
Xm

i¼1

kP?Uk
UðxiÞk2 ¼

Xm

i¼1

kUðxiÞk2 �
Xm

i¼1

kPUk
UðxiÞk2

¼
XN

i¼1

bi �
Xk

i¼1

bi

Let

J?0 ðUkÞPN
i¼1bi

¼ 1�
Pk

i¼1biPN
i¼1bi

6 c

or

Pk
i¼1biPN
i¼1bi

P 1� c

then the least value of k ðk 2 NÞ can be determined.

J?ðUkÞ ¼
Xl

i¼1

kUðxiÞk2 �
Xm

i¼1

kPUk
UðxiÞk2

¼
Xl

i¼1

kUðxiÞk2 �
Xk

i¼1

bi 6
Xl

i¼1

kUðxiÞk2 � ð1� cÞ
XN

i¼1

bi

¼
Xl

i¼1

kUðxiÞk2 � ð1� cÞ2
Xl

i¼1

kUðxiÞk2

¼ cð2� cÞ
Xl

i¼1

kUðxiÞk2
< 2c

Xl

i¼1

kUðxiÞk2

Hence

J?ðUkÞPl
i¼1kUðxiÞk2 < 2c

In order to obtain

J?ðUkÞPl
i¼1kUðxiÞk2 < 2c 6 a

it needs

c 6
a
2

This completes the proof. h

The proposed approximation algorithm of KPCA (AKPCA) is
summarized as follows.

Input:
� A data set S ¼ fxigl

i¼1, kernel function kðx; yÞ, threshold a.
Process:
� Sorting S in decreasing order according to kUðxiÞ �UbSk2.
� Computing bK according to formula (5)
� Determining the least number m ðm 2 NÞ according to the

following equationPm
i¼1
bK iiPl

i¼1
bK ii

P 1� a
2

� Km , K1:m�1:m

� ½V ;
V
� ¼ eigðKmÞ

� Determining the least number k ðk 2 NÞ according to the fol-
lowing equationPk
i¼1biPN
i¼1bi

P 1� a
2

where b1;b2; . . . ; bm are the eigenvalues of matrix Km in decreas-
ing order.
� aj ¼ b�1=2

j v j; j ¼ 1; . . . ; k
� ~x ¼

Pl
i¼1a

j
ikðxi; xÞ

� �k

j¼1Output:

� Transformed data eS ¼ f~x1; ~x2; . . . ; ~xlg

4. Experiments and discussions

To verify the proposed APCA and AKPCA, four tests are provided.
The first and second tests are used to compare the number of used
data and CUP time between the APCA, AKPCA and the standard
PCA, KPCA on one artificial and six UCI benchmark datasets based
on the same threshold a. To further testify the performance and
learning effectiveness of the APCA and AKPCA, in the third and
forth tests, some comparison experiments are also implemented
on UCI data sets for classification problems. All experiments are
carried out by using Matlab 7.0, and on 2.0 GHz Intel(R) Pen-
tium(R) D CPU machine with 1KMB RAM.
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Test 1: In this test, we apply the standard PCA and the proposed
APCA to obtain principal components, respectively. Based on the
same threshold, the number of used data and the CPU time are ver-
ified on one synthetic dataset and six datasets from the UCI bench-
mark repository which is listed in Table 1. The synthetic data are
generated from a normal distribution with mean zero and standard
deviation one. The comparison results are listed in Tables 2–4. In
these tables, the symbol rate1 represents the ratio of the number
of used data in APCA to that of in PCA, and rate2 represents the ra-
tio of the CPU time of PCA to that of APCA, a represents the thresh-
old stated above.

From Tables 2–4, it can be seen that the more the number of
used data, the more the CPU time by PCA. The CPU time of PCA
is 20 times longer than that of APCA in maximum. The used data
points by APCA is more smaller than that by the standard PCA. Par-
ticularly, we only use 25–50% thyroid data points with a from 0.3
to 0.1. The first two columns of thyroid data points are shown in
Fig. 1. From Fig. 1, it can be observed that a small circle around
the mean center contains a lot of thyroid data which means that
the more number of data points around the mean center, the more
effective and practical the proposed approach.

Test 2: Similar to Test 1, we apply the standard KPCA and the
proposed AKPCA to obtain principal components, respectively.
Based on the same threshold a, the number of used data and the
CPU time are verified on six data sets from the UCI benchmark
repository listed in Table 5. In the following tables, the symbol
rate1 represents the ratio of the number of used data in AKPCA
to that in KPCA and rate2 represents the ratio of the CPU time in
KPCA to that in AKPCA. The comparison results are listed in Tables
6–8.

From Tables 6–8, we can see that similar to Test 1, the more the
number of used data, the more the CPU time by the KPCA. The
mean CPU time of the KPCA is about two times longer than that
of the AKPCA. Therefore, the proposed AKPCA is effective and prac-
tical, and it can save lots of CPU time.

Test 3: In this test, we apply the standard KPCA and the pro-
posed AKPCA to classification problems on low dimension datasets.
The accuracy of classification is verified on six data sets from the

Table 2
The comparison results between the standard PCA and APCA with a ¼ 0:3.

Dataset No. of used data rate1(%) CPU time rate2

Synthetic data PCA 10000 0.0559 23.6
APCA 7966 79.7 0.0024

Ringnorm PCA 7000 0.0056 17.6
APCA 4153 59.3 3.1926e�4

Twonorm PCA 7000 0.0048 15.5
APCA 5330 76.1 3.1213e�4

Waveform PCA 4600 0.0035 11.8
APCA 3422 74.4 3.009e�4

Image PCA 1300 9.9283e�4 4.6
APCA 745 57.3 2.1783e�4

German PCA 700 7.9604e�4 2.6
APCA 501 71.6 3.9449e�5

Thyroid PCA 140 6.8324e�5 1.3
APCA 34 24.3 5.4405e�5

Table 3
The comparison results between the standard PCA and APCA with a ¼ 0:2.

Dataset No. of used data rate1(%) CPU time rate2

Synthetic data PCA 10,000 0.0299 12.4
APCA 8586 85.9 0.0024

Ringnorm PCA 7000 0.0049 15.8
APCA 4886 69.8 3.081e�4

Twonorm PCA 7000 0.0052 17.4
APCA 5806 82.9 3.0043e�4

Waveform PCA 4600 0.0038 12.5
APCA 3755 81.6 3.002e�4

Image PCA 1300 9.05e�4 4.6
APCA 872 67.1 1.9855e�4

German PCA 700 7.5438e�4 2.3
APCA 557 79.6 3.2539e�4

Thyroid PCA 140 6.7172e�5 1.1
APCA 49 35 5.9112e�5

Table 4
The comparison results between the standard PCA and APCA with a ¼ 0:1.

Dataset No. of used data rate1(%) CPU time rate2

Synthetic data PCA 10,000 0.0299 12.3
APCA 9245 92.5 0.0024

Ringnorm PCA 7000 0.0050 16.8
APCA 5772 82.5 2.9603e�4

Twonorm PCA 7000 0.005 16.7
APCA 6335 90.5 2.975e�4

Waveform PCA 4600 0.0040 13.6
APCA 4126 89.7 2.9149e�4

Image PCA 1300 0.001 5.0
APCA 1028 79.1 2.0075e�4

German PCA 700 7.5094e�4 2.5
APCA 619 88.4 3.0656e�5

Thyroid PCA 140 6.7813e�5 1.3
APCA 76 54.3 5.3954e�5

Table 1
One synthetic and six benchmark datasets from UCI benchmark repository used in
Test 1.

Dataset No. of attributes No. of data

Synthetic data 50 10,000
Ringnorm 20 7000
Twonorm 20 7000
Waveform 21 4600
Image 18 1300
German 20 700
Thyroid 5 140

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Fig. 1. The first two columns of thyroid dataset.
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UCI benchmark repository listed in Table 5. Gaussian kernel

kðx; yÞ ¼ e
�kx�yk2

2r2 is used with r ¼ 0:5. For the sake of simplicity,
we select parameter C ¼ 10;100;1000, respectively. In the follow-
ing tables, the accuracy represents mean classification result. The
comparison results are listed in Table 9.

From Table 9, it can be seen that with different threshold a, the
AKPCA behaves very well both for classification performance and
training time. When the threshold a ¼ 0:1, the experiment results
on four datasets (banana, German, flare-solar and thyroid) by the
AKPCA exceed that by the classical KPCA . Only on two datasets
(breast-cancer and diabetics), the performance of the AKPCA is
inferior to that of the KPCA. When the threshold a ¼ 0:2, compar-
ing with the classical KPCA, the numbers of datasets with superior
and slight inferior performance by the AKPCA are respective three
(banana, German and thyroid) and three (breast-cancer, diabetics
and flare-solar). When the threshold a ¼ 0:3, comparing with the
classical KPCA, the numbers of datasets with superior and slight
inferior performance by the AKPCA are the same three, (banana,
breast-cancer and German) and three (diabetics flare-solar and
thyroid).

Test 4: Similar to Test 3, we apply the standard PCA and the pro-
posed APCA to classification problems. The performance of the
APCA is verified on six datasets from the UCI benchmark repository
listed in Table 10. The comparison results are listed in Table 11.

From Table 11, it can be seen that with different threshold a, the
APCA also behaves very well for classification performance and
training time. When the threshold a ¼ 0:1, the experiment results
on one dataset (image) by the APCA exceed that by the classical
PCA, and on four datasets (thyroid, German, waveform and two-
norm), the performance of the APCA is equal to that of the PCA.
Only on ringnorm, the performance of the APCA is nearly equal
to that of the PCA. When the threshold a ¼ 0:2, comparing with
the classical PCA, the numbers of datasets with superior and
slightly inferior performance by the APCA are respective two (thy-
roid and image) and four (German, waveform, twonorm and rin-
gnorm). When the threshold a ¼ 0:3, comparing with the
classical PCA, the numbers of datasets with superior, equivalent
and slight inferior performance by the APCA are respective one

Table 5
The benchmark data sets from UCI benchmark repository.

Dataset No. of attributes No. of training data No. of test data

Banana 2 400 4900
Breast_cancer 9 200 77
Diabetics 8 468 300
Thyroid 5 140 75
German 20 700 300
Flare_solar 9 666 400

Table 6
The comparison results between the standard KPCA and AKPCA with a ¼ 0:3.

Dataset No. of used data rate1(%) CPU time rate2

Banana KPCA 400 1.5631 1.8
AKPCA 335 83.8 0.8834

Breast_cancer KPCA 200 0.1141 1.5
AKPCA 170 85 0.0782

Diabetics KPCA 468 1.9233 1.7
AKPCA 398 85 1.1601

German KPCA 700 4.5532 1.7
AKPCA 595 85 2.6242

Flare_solar KPCA 666 3.6529 2.3
AKPCA 526 79 1.6049

Thyroid KPCA 140 0.072 2.1
AKPCA 114 81.4 0.0342

Table 7
The comparison results between the standard KPCA and AKPCA with a ¼ 0:2.

Dataset No. of used data rate1(%) CPU time rate2

Banana KPCA 400 1.5086 1.5
AKPCA 356 89 1.0092

Breast_cancer KPCA 200 0.1139 1.4
AKPCA 180 90 0.0809

Diabetics KPCA 468 1.9228 1.4
AKPCA 421 90 1.4271

German KPCA 700 4.5508 1.4
AKPCA 630 90 3.2757

Flare_solar KPCA 666 3.6527 1.8
AKPCA 573 86 2.0876

Thyroid KPCA 140 0.072 1.6
AKPCA 122 87.1 0.0439

Table 8
The comparison results between the standard KPCA and AKPCA with a ¼ 0:1.

Dataset No. of used data rate1(%) CPU time rate2

Banana KPCA 400 1.4896 1.3
AKPCA 378 94.5 1.194

Breast_cancer KPCA 200 0.1138 1.2
AKPCA 193 95 0.0988

Diabetics KPCA 468 1.9216 1.2
AKPCA 445 95.1 1.64

German KPCA 700 4.5486 1.2
AKPCA 665 95 3.6978

Flare_solar KPCA 666 3.6178 1.3
AKPCA 620 93.1 2.7886

Thyroid KPCA 140 0.1315 2.6
AKPCA 131 93.6 0.0511

Table 9
The comparison results on mean accuracy between the standard KPCA and AKPCA.

Dataset a ¼ 0:1 a ¼ 0:2 a ¼ 0:3

Banana KPCA 0.8594 0.8583 0.8602
AKPCA 0.8694 0.8759 0.8775

Breast_cancer KPCA 0.6883 0.6883 0.6753
AKPCA 0.3117 0.6710 0.6796

Diabetics KPCA 0.67 0.67 0.6711
AKPCA 0.49 0.6167 0.5956

German KPCA 0.7211 0.28 0.5755
AKPCA 0.7233 0.7233 0.7233

Flare_solar KPCA 0.6475 0.6583 0.6617
AKPCA 0.6550 0.6525 0.6592

Thyroid KPCA 0.7867 0.7467 0.9733
AKPCA 0.92 0.9467 0.9467

Table 10
The benchmark data sets from UCI benchmark repository used in Test 4.

Dataset No. of attributes No. of training data No. of test data

Thyroid 5 140 75
German 20 700 300
Image 18 1300 1010
Waveform 21 400 4600
Twonorm 20 400 7000
Ringnorm 20 400 7000
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(image), two (thyroid and German) and three (waveform, twonorm
and ringnorm).

All the experiment results support that the proposed APCA and
AKPCA could compete with or outperform the standard PCA and
KPCA in generalization performance but with much less memory
and time consuming.

5. Conclusion

The contribution of this paper is that we learn linear PCA with
partial data points, and extend this method to KPCA. Moreover,
based on the given threshold, we could determine which data
points can be used and so the store memory and time consumption
can be saved greatly.

To validate the performance of the proposed method, four tests
are carried out. The results of Test 1 and Test 2 show that the stan-
dard PCA and KPCA need more data and CPU time than the pro-
posed APCA and AKPCA with the same threshold. Test 3 and Test
4 illustrate that the proposed APCA and AKPCA can compete with
or outperform the standard PCA and KPCA in generalization ability,
but they only need much less memory and time consuming. There-
fore, the proposed methods are very efficient and practical.
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