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Abstract

Rough set data analysis is one of the main application techniques arising from rough
set theory. In this paper we introduce a concept of inclusion degree into rough set theory
and establish several important relationships between the inclusion degree and measures
on rough set data analysis. It is shown that the measures on rough set data analysis can
be reduced to the inclusion degree. © 2002 Published by Elsevier Science Inc.
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1. Introduction

Rough set theory, introduced by Pawlak (see [1,2]), is emerging as a pow-
erful tool for reasoning about data. Rough set data analysis is one of the main
application techniques arising from rough set theory (see [3-6]). It provides a
technique for gaining insights into properties of data, dependencies, and sig-
nificance of individual attributes in databases, and has important applications
to artificial intelligence and cognitive sciences, as a tool for dealing with
vagueness and uncertainty of facts, and in classification (see [2,7-11]). In order
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to analyze data effectively, many measures are defined in rough set data
analysis, for example, accuracy measure of rough set, accuracy of approxi-
mation of classification, measure of dependency of attributes, measure of im-
portance of attributes, and accuracy and coverage of decision rule, etc.
Although these measures can be applied to justifying effectiveness of data
analysis, it is unclear what is the main foundation behind these measures and
whether they have any common characteristics.

Answers to these questions will be very helpful for people to understand the
essence of rough set data analysis and to employ rough set data analysis to
solve practical problems effectively. In this paper, a concept of inclusion degree
is introduced into rough set data analysis and several important relationships
between the inclusion degree and measures on rough set data analysis are es-
tablished. It is shown that the measures on rough set data analysis can be
reduced to the inclusion degree.

2. Inclusion degree

An approximate mereological calculus called rough mereology (i.e., theory
of rough inclusions) has been proposed as a formal treatment of the hierarchy
of relations of being a part in a degree (see [12-14]). The degree of inclusion is a
particular case of inclusion in a degree (rough inclusion) basic for rough
mereology. The concept of inclusion degree based on partially ordered relation
was proposed in [15] for approximate reasoning. By a slight adjustment of this
concept, we introduce a definition of inclusion degree into rough set data
analysis.

A partial order on a set L is a binary relation < with the following prop-
erties:

x =< x (reflexive),

x =< yand y < x imply x = y (antisymmetric), and

x <y and y <z imply x < z (transitive).

Definition 1. Let (L, <) be a partially ordered set. If, for any a,b € L, there is a
real number D(b/a) with the following properties:

() 0<D(b/a)< 1,

(2) a = b implies D(b/a) =1,

(3) a = b = ¢ implies D(a/c) < D(a/b), and

(4) a < b implies D(a/c) <D(b/c) for Ve € L,

then D is called an inclusion degree on L.

In Definition 1, (1) is normalization for inclusion degree; (2) states the
property of consistency between inclusion degree and standard inclusion; and
(3) and (4) state the property of monotonicity of inclusion degree.
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Inclusion degree is practically a measure on partially ordered relation, but it
has more important applications than partially ordered relation.

Example 1. Let U be a finite set, F = {X|X C U}, and C is a partially ordered
relation on F. For VX,Y € F, we define

oy = { f x2S

1 ifx =0, M)

where |X| denotes the cardinality of X.

It is easy to see that Dy is an inclusion degree on F. In [12], Dy is regarded as
a particular case of rough inclusions.

Rough inclusions and inclusion degree have some common characteristics
on measure, but rough inclusions is more appropriate for reasoning about
complex structures, inclusion degree is more appropriate for measure on par-
tially ordered relations.

3. Basic concepts of rough sets

Formally, an information system is an ordered quadruple S = (U, 4,7V, f),
where:

U is a non-empty finite set of objects;

A is a non-empty finite set of attributes;

V is the union of attribute domains, i.e., V' = |J ¥, for every a € 4, where V,

denotes the domain of the attribute «;

f:Ux A — Visan information function which associates an unique value

of each attribute with every object belonging to U, i.e., Va € 4 and x € U,

f(x,a) €V,

Each subset of attributes P C 4 determines a binary indiscernibility relation
IND(P) as follows:

IND(P) = {(x,y) e Ux U|Va€P,f(x,a) = f(ya)}
Obviously IND(P) is an equivalence relation on the set U and

IND(P) = (| IND({a}).
acP
The relation IND(P), P C 4, constitutes a partition of U, which we will
denote by U/IND(P). Any element from U/IND(P) will be called an equiv-
alence class. Let [x];ypp denote the equivalence class of the relation IND(P)
containing the element x.
Let P C 4 and X C U. Then P-lower and P-upper approximations of X are
defined respectively as follows:
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Px =| J{¥|y € U/IND(P),Y C X}
and
PY = | J{¥|y € U/IND(P),Y NX # 0}.

The set BNp(X) = PX — PX will be called the P-boundary of X. The set PX
is the set of all elements of U, which can be with classified certainty as elements
of X with respect to the values of attributes from P; and the set PX consists of
those elements of U which can be possibly defined as elements of X with respect
to the values of attributes from P. Finally, BNp(X) is the set of elements which
can be classified neither in X nor in U — X on the basis of the values of at-
tributes from P.

4. Relationships between inclusion degree and measures on rough set data
analysis

4.1. Accuracy measure of rough set and degree of rough belonging can be reduced
to inclusion degree

Let S = (U,A4,V,f) be an information system, P C 4, and X C U. The ac-
curacy measure of rough set X with respect to P is defined as

_1Bx|
() = 2. 2
where X # (.

It is easy to show that

_ |PX N PX]|

o (X) = = = Dol [PX).

The degree of rough belonging of x € X about X with respect to P is defined
as

B ’Xﬂ [x]IND(P)

Hy () 3)

’[X]IND(P)‘
It follows obviously that
i () = Do (X /Wl )

Hence, ap(X) and pf(x) can be reduced to inclusion degree.
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4.2. Accuracy of approximation of classification and quality of approximation of
classification can be reduced to inclusion degree

Let S = (U,A4,V,f) be an information system, and P C 4. Let ¥ = {¥}, V5,
..., Y, } be a classification, or partition, of U. The origin of this classification is
independent from attributes contained in P. Subsets Y, i=1,2,...,n, are
classes of classification Y. By P-lower and P-upper approximations of Y in S
we mean sets PY = {PY;,PY,,...,PY,} and PY = {PY,,PY,...,PY,}, respec-
tively. The coefficient

2 i1 |PY
dp(Y) = S =7, (4)
> i1 |PY|
is called the accuracy of approximation of classification Y by the set of attri-
butes P, or in short, accuracy of classification. It expresses the possible correct
decisions when the classified objects possess the set of attributes P.
The coefficient

i |PY]

(5)
is called the quality of approximation of classification Y by the set of attributes
P, or in short, quality of classification. It expresses the percentage of objects
which can be correctly classified into class Y employing the set of attributes P.

Let Y={N,%,...,Y,} be a classification, or partition, of U. Let
F={F,B,... . FYECY, i=12,...,n}, X={X,X,,....X,} €F and
Z={2,2,,...,2,} €F.

A partially ordered relation < on F is defined as follows:

X=<Zifandonlyif X;CZ, i=1,2,...,n
For VX,Z € F, define
(U ) 0 (U 2)]
Ui Z|

It can be easily shown that D, is inclusion degree on F.
Since dp(Y) = D;(PY/PY) and 7,(Y) = D, (PY/Y), dp(Y) and yp(Y) can be
reduced to inclusion degree.

D(X/Z) =

(6)

4.3. Measure of dependency of attributes and measure of importance of attributes
can be reduced to inclusion degree

An information system S = (U,4, V, f) can be seen as a decision table as-
suming that A = CUD and CND =, where C is called the set of condition
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attributes, and D is called the set of decision attributes. Let P C C and Q C D.
The measure of dependency between P and Q is defined as

(P, 0) = OO, ™)
U
where POSp(Q) = |J{PY|Y € U/IND(Q)}.
Let F denote the set of all partitions on U, X = {X},X,...,X,} € F and
Z={2,2,,...,Z,} € F. A partially ordered relation < on F is defined as
follows:

X X Zif and only if, for VX; € X, there exists Z; € Z such that X; C Z,.
For VX, Z € F, define

Dy(Z/X) = ’UZfez gngZin) . (8)

We prove in the following that D, is inclusion degree on F.

(1) Obviously, 0< D, (Z/X) < 1.

Q) LetX ={X1,X%,,...,.X,} €EF,Z={2,2,,...,Z,} € Fand X < Z. Then
we have m < n and there exists a partition E = {E|, E,,...,E,} of {1,2,...,n}
such that

z=Jx, j=12,...m

i€E;

Hence
U(Ux)-yz-v
Zi€Z \XicZ; Zi€z

Thus

U]
Dy(Z/X)=—=1.
U]

(3) Let X = {Xl,Xz,...,Xn} ek, 7= {Zl,Zz,...,Zm} clF, Y= {Yl,Y2,...,
Y} €F and X XZ <Y. Then we have /<m and there exists a partition
E={E,E,,...,E/} of {1,2,...,m} such that

v,=Jz, j=12...1

i€k,
We show in the following that

U(ur)cu(uz) g

Xiex \ YCX; XieX \ ZCX;
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LetX; € X, ¥;, € Y and ¥, € X;. From Z X Y, it follows that Y, = ., Z. For

Vi, € E;,, we have Z; C Y, and Z;, C X;, hence,
z.cJl Uz
X;ex \ ZiCXx;
ie.,

mcU(Uz)
Xiex \ zCX;

This completes the proof of (9).
From (9), we have

Dy(X/Y)<Dy(X/Z).

@) Let X = {X\,.%,.... X,} €F, Z={Z,,Z,...,Z,} € F and X < Z. For
VY ={N,N,...,Y;} € F, we have

U(ux>gu<un>. (10

X;ex \ YiCx; 7€z \ i<z

In fact,let X; € X, ¥, € Y and ¥;, C X;. From X =< Z, it follows that there exists
Z;, € Z such that X; C Z; . Hence, ¥;, C Z;, i.e.,

%EU(UO- W

7€z \ YiCz;
This implies (10).
From (10), we have
Dy(X/Y) < Dy(Z/Y).
Hence, D, is inclusion degree on F.
Since y(P, Q) = D,((U/IND(Q))/(U/IND(P))), y(P,Q) can be reduced to

inclusion degree, i.e., degree of partition U/IND(Q) includes partition
U/IND(P).

Remark. Let P — Q denote functional dependency between P and Q. Then
P — Q if and only if D,((U/IND(Q))/(U/IND(P))) = 1.

In rough set data analysis, the measure of importance of condition attributes
C' C C with respect to decision attributes D is defined as follows:
')/(C,D)—”/(C—CI,D) (11)

In particular, when C' = {c}, y(C,D) —y(C — {c},D) is the measure of
importance of attribute ¢ C C with respect to D.
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Since
2(C, D) = (C — C', D) = Dy((U/IND(D))/(U/IND(C))
— D3((U/IND(D))/(U/IND(C — C))),
7(C,D) — y(C — C', D) can be reduced to computation of inclusion degree.

4.4. Measure of the relative degree of misclassification can be reduced to inclusion
degree

Let X and Y be non-empty subsets of a finite universe U. The measure
¢(X,Y) of the relative degree of misclassification of the set X with respect to set
Y (see [16]) defined as

_ oy
(X, Y) = {1 i X >0,
0 if |X|=0.
It can be easily shown that
¢(X,Y) =1=Do(Y/X) = Do((U = Y)/X).

(12)

This means that ¢(X,Y) can be reduced to inclusion degree.

Remark. Let 0< 8 < 0.5. Then ¢(X,Y) < p if and only if Dy(Y/X) =1 — .
Thus, the variable precision rough set model (see [16]) can be expressed by
inclusion degree as follows.

Let X C U and R be an equivalence relation on U. The f-lower approxi-
mation of the set X is defined as

RyX = J{E € U/IND(R)|Do(X/E) > 1 - B},
and the f-upper approximation of the set X is defined as
RpX = | J{E € U/IND(R)|Do(X /E) > B}.
Consequently, the f-boundary region of X is given by
BNRyY = | J{E € U/IND(R)|B < Do(X/E) < 1 - B}.

The f-negative region of X is defined as a complement of the f-upper ap-
proximation, i.e.,

NEGR,X = | J{E € U/IND(R)|Dy(X /E) < B}.

4.5. Accuracy and coverage of decision rule can be reduced to inclusion degree

Let S = (U,A,V,f) be a decision table with 4 =CUD and CND =,
where C is the set of condition attributes and D is the set of decision attributes.
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Let U/IND(C) = {X,X3,...,X,} and U/IND(D) = {1}, Y»,..., Y, } denote
the partitions on U induced respectively by the equivalence relations IND(C)
and IND(D). Expression Desc(X;) — Desp(Y;) is called the (C, D)-decision rule
in S, where Des¢(X;) and Desp(Y;) are unique descriptions of the classes X; and
Y, respectively (i =1,2,...,n; j=1,2,...,m). The set of decision rules {r;}
for each class ¥; (j=1,2,...,m) can be defined as

{r;} = {Desc(X;) — Desp(Y))|Y;,NX; #0, i =1,2,...,n}.

A decision rule r;; is deterministic iff ¥; N X; = X;, and r;; is non-deterministic
otherwise.

The accuracy and coverage of decision rule r; (see [17]) are defined re-
spectively as

Y NX;
(1) = 0Ky =

Y} N Xl
|Xi| '

Yl

(13)

It is notable that ay,(Y;) measures the degree of sufficiency of a proposition,
Desc(X;) — Desp(Y;), and that xy,(¥;) measures the degree of its necessity. It
can be easily shown that

o, (Y;) = Do(Y;/X:),  wex, (V) = Do(Xi/ Y;).

This means that oy, (Y;) and xy,(Y;) can be reduced to inclusion degree.

5. Conclusions

Rough set data analysis is one of the main application techniques arising
from rough set theory. In this paper, the concept of inclusion degree has been
introduced, several important relationships between inclusion degree and
measures on rough set data analysis are established, and we have shown that
the measures on rough set data analysis can be reduced to inclusion degree.
These results will be very helpful for people to understand the essence of rough
set data analysis, and can be regarded as the main foundation of measures
which are defined for rough set data analysis. The introduction of inclusion
degree will play a significant role in further research on rough set data analysis.
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