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The classical multigranulation rough set (MGRS) theory offers a formal theoretical frame-
work for solving the complex problem under multigranulation environment. However, it is
noticeable that MGRS theory cannot be applied in multi-source information systems with a
covering environment in the real world. To address this issue, we firstly present in this
paper three types of covering based multigranulation rough sets, in which set approxima-
tions are defined by different covering approximation operators. Then, by using two differ-
ent approximation strategies, i.e., seeking common reserving difference and seeking
common rejecting difference, two kinds of covering based multigranulation rough set are
presented, namely, a covering based optimistic multigranulation rough set and a covering
based pessimistic multigranulation rough sets. Finally, we develop some properties and
several uncertainty measures of the covering based multigranulation rough sets. These
results will enrich the MGRS theory and enlarge its application scope.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Rough set theory, proposed by Pawlak [30,31], is a well-established mechanism for dealing with vagueness and uncer-
tainty in data analysis. It is an efficient method employed in many areas: feature selection [6,12,13,15,19,45], knowledge
reduction [17,20–23,35], rule extraction [1,46], uncertainty reasoning [9,33], granular computing [3,16,24,32,50,52], and
others [5,7,8].

Rough set theory is originally constructed on the basis of an indiscernibility relation (or an equivalence relation) or a par-
tition of the universe. However, it is restrictive for many real-world applications. To overcome this limitation, there are two
main methods to generalize the classical rough sets. One method is to extend the equivalence relation to other binary rela-
tions, such as similarity relation, tolerance relation, and dominance relation [14,42,43,47,53]. The other important method is
to replace a partition of the universe with a covering [2,4,11,26,27,34,41,54–60]. In 1983, Zakowski [55] has first employed
the covering of a universe for establishing a covering based generalized rough set. Since then, many researchers have pro-
posed a great number of diversity upper and lower approximation operators and studied them extensively
[2,4,11,26,27,34,41,54,56–60]. For example, Yao [54] investigated approximation operators by using coverings produced
by the predecessor and/or successor neighborhoods of serial or inverse serial binary relations. Zhu et al. [56–60] systemat-
ically studied six types of approximation operators and investigated their properties and relationships of them. Particularly,
Yao [54] studied a unified framework and a more systematic formulation of covering based rough sets from three aspects:
the element, the granule, and the subsystem. In fact, the existing approximation operators have either dual property or non-
u, China.
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dual property. Under the covering application background of rough sets, Chen et al. [4] presented a new covering to construct
the upper and lower approximations of an arbitrary set. Covering based generalized rough sets are important improvements
among these extensions, which can handle more complex practical problems. And they have obtained much attention in
many domains including machine learning and uncertainty reasoning. Actually, in the view of granular computing [52],
either a partition or a covering of the universe can be considered as a granular space.

From the above, we can see that set approximations in the above rough sets are described only by a single binary relation
(a single granulation [52]) or a single covering (or a single covering granulation) on a given universe, which cannot be applied
in some practical multigranulation backgrounds [36,37]. Qian et al. [36] first took multiple binary relations into account and
proposed multigranulation rough sets, in which a target concept was described by multiple binary relations on a universe
according to a user’s different requirements. Up to now, many extensions of MGRS have been proposed. For example, Liu
et al. [28,29] proposed covering fuzzy rough set based multigranulation rough sets. Xu et al. [48] investigated another gen-
eralized version, called variable precision multigranulation rough sets. Yang et al. [51] proposed a multigranulation rough set
based on a fuzzy binary relation. Lin et al. [25] investigated neighborhood-based multigranulation rough sets, which can be
used to deal with data sets with hybrid attributes. She et al. [44] explored topological structures of multigranulation rough
sets, which further enriches the theory of MGRS. It is deserved to mention that Liang et al. [15] proposed an efficient feature
selection algorithm for large-scale data sets from the perspective of multiple granulations, which has shown an important
implication of MGRS theory. Accordingly, MGRS theory has displayed its advantages in knowledge discovery from large-scale
data sets. In fact, in a Pawlak’s approximation space, each object can be classified into a certain concept as shown in Fig. 1.
However, in real-world applications, such as a multi-source covering information system [10] and computing with words,
different subsets of the universe usually overlap, as shown in Fig. 2, in which these basic information granules form a cov-
ering of the objects, rather than a Pawlak’s approximation space. It is difficult for the classical MGRS theory to deal with this
issue. To address this issue, it is necessary to generalize the classical MGRS to covering based multigranulation rough sets for
enriching its application domains.

In this paper, we introduce covering into the multigranulation environment and present covering based optimistic and
pessimistic multigranulation rough sets.

Additionally, lots of researchers suggested some possible applications of the uncertainty measures in the fields of pattern
recognition and image analysis in the literature [9,18,39–41,49]. The concept of entropy was originally introduced by Shan-
non in [40], which is a very useful mechanism for characterizing information content in various modes. It has been applied in
many diverse fields. Furthermore, Shannon entropy and its variants were adopted for rough set theory in the literature
[9,18,39,41,49]. Similarly, in this paper, in order to make wide applications of the covering based multigranulation rough
set theory, we propose several uncertainty measures for covering based multigranulation rough sets, including degree of
rough membership, approximation measure, and rough entropy.

The main objective of this paper is to establish three types of rough sets based on multiple coverings by using different
approximation strategies due to the practical different applied backgrounds. The rest of this paper is organized as follows.
Some basic concepts of classical multigranulation rough sets are briefly reviewed in Section 2. In Section 3, three types of
covering based optimistic and pessimistic multigranulation rough sets are constructed and some of their important proper-
ties are investigated. In Section 4, several uncertainty measures for covering based multigranulation rough sets are pre-
sented, such as degree of rough membership, approximation measure, and rough entropy. We then conclude the paper
with a summary and direction for the further research in the last section.
Fig. 1. A partition on a universe of discourse.



Fig. 2. A covering on a universe of discourse.
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2. Preliminaries

In this section, we review some basic concepts of covering based rough sets and multigranulation rough sets [4,36,55,56].
Throughout this paper, we suppose the universe of discourse U is a finite non-empty set.

2.1. Covering based rough sets

Let U be a finite non-empty set of objects and C a family of subsets of U. If no subset in C is empty and
S
C ¼ U; C is called a

covering of U. Then the ordered pair hU; Ci is called a covering approximation space.

Definition 2.1. [2]. Let ðU; CÞ be a covering approximation space. For x 2 U, the minimal description of x is defined as
MdðxÞ ¼ fK 2 Cjðx 2 KÞ ^ ðx 2 S 2 C ^ S # K ) S ¼ KÞg:
If jMd(x)j = 1, x is called a representative element of K.
Definition 2.2. [56]. Let ðU; CÞ be a a covering approximation space. For x 2 U, the neighborhood of x is defined as
NðxÞ ¼ \fK 2 Cjx 2 Kg:
There are dozens of approximation operators for covering based rough sets to deal with the diversity formed by covering
data. However, in this paper, inspired by Yao’s study [54], we only list three pairs of operators to illustrate the idea of the
forthcoming covering based multigranulation rough sets.
Definition 2.3. [54,56,59]. Let ðU; CÞ be a covering approximation space. For each i 2 f1;2;3g; Ci and Ci called the ith lower
covering approximation operator and the ith upper covering approximation operator on ðU; CÞ are defined as follows:

(1)
C1ðXÞ ¼ [fK 2 CjK # Xg; ðGranule based DefinitionÞ
C1ðXÞ ¼� C1ð� XÞ
¼ fxjx 2 U;8K 2 Cjx 2 K ) K \ A – ;g

.

(2)
C2ðXÞ ¼ fx 2 UjNðxÞ# Xg; ðElement based DefinitionÞ
C2ðXÞ ¼ fx 2 UjNðxÞ \ X – ;g .

(3)
C3ðXÞ ¼ [fK 2 CjK # Xg; ðGranule based DefinitionÞ
C3ðXÞ ¼ [fK 2 CjK \ X – ;g .

From the above, we call CiðXÞ; CiðXÞ
� �

; i ¼ f1;2;3g, single covering based rough sets. The pairs of approximation operators
(1)–(3) can be found in the literatures [54,56,59], respectively.
Definition 2.4. Let U be a universe of discourse, C1 ¼ fK11;K12; . . . ;K1jC1 jg; C2 ¼ fK21;K22; . . . ;K2jC2 jg two different coverings
of U. An intersection operation between C1 and C2 is defined as follows:
C1 \ C2 ¼ fK1i \ K2jjK1i \ K2j – ;;K1i 2 C1;K2j 2 C2;1 6 i 6 jC1j;1 6 j 6 jC2jg:
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where jCij represents the cardinality of Ci. In what follows, we denote ti ¼ jCij for simplicity.
Proposition 2.1. [4]. Let C ¼ fK1;K2; . . . ;Ktg be a covering of U. For every x 2 U, suppose Cx ¼
T
fKijKi 2 C; x 2 Kig. Then

CovðCÞ ¼ fCxjx 2 Ug is a covering of U.
Proposition 2.2. [4]. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U, where Ci ¼ fKi1;Ki2; . . . ;Kiti
g; i ¼ 1;2; . . . ;m. For

X # U, suppose Xx ¼
T
fðKijÞxjðKijÞx 2 CovðCiÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig. Then, Cov(X) = {Xxjx 2 U} is a covering of U.

Throughout this paper, we use (Kij)x to represent a set including x in Cov(X).
Definition 2.5. [4]. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U. For X # U, the lower and upper approximations of X
with respect to Cov(X) are defined as follows:
XðXÞ ¼
[
fXxjXx # Xg;

XðXÞ ¼
[
fXxjXx \ X – ;g:
Here, we use an example to illustrate the above definitions and propositions.
Example 2.1. Let U = {x1,x2,x3,x4,x5} be a universe. C1 ¼ fC11 ¼ fx1; x2; x4; x5g;C12 ¼ fx2; x5g;C13 ¼ fx3; x5gg and C2 ¼ fC21 ¼
fx1; x2; x3g;C22 ¼ fx4; x5g;C23 ¼ fx2; x4gg are two coverings of U. For the covering C1, by Proposition 2.1, we have that
C1x1
¼ C11 ¼ fx1; x2; x4; x5g; C1x2

¼ C11 \ C12 ¼ fx2; x5g; C1x3
¼ C13 ¼ fx3; x5g; C1x4

¼ C11 ¼ fx1; x2; x4; x5g and C1x5
¼

C11 \ C12 \ C13 ¼ fx5g.Obviously, CovðC1Þ ¼ fC1x1
;C1x2

;C1x3
;C1x4

;C1x5
g also forms a covering of U. Similarly, for the covering

C2, we have that C2x1
¼ C22 ¼ fx1; x2; x3g; C2x2 ¼ C21 \ C23 ¼ fx2g; C2x3

¼ C22 ¼ fx1; x2; x3g; C2x4
¼ C22 \ C23 ¼ fx4g, and

C2x5
¼ C22 ¼ fx4; x5g. Obviously, CovðC2Þ ¼ fC2x1

; C2x2
;C2x3

;C2x4
; C2x5

g also forms a covering of U.
By Proposition 2.2, we have that Xx1 ¼ C1x1

\ C2x1
\ C2x3

¼ fx1; x2g; Xx2 ¼ fx2g; Xx3 ¼ fx2g; Xx4 ¼ fx4g, and Xx5 ¼ fx5g.
Obviously, CovðXÞ ¼ fXx1 ;Xx2 ;Xx3 ;Xx4 ;Xx5g also forms a covering of U.

Suppose that X = {x1,x3,x4} # U. According to Definition 2.5, we have that X(X) = {x2,x3} and XðXÞ ¼ fx1; x2; x3; x4g.

2.2. Multigranulation rough sets

According to two different approximation strategies, Qian et al. [36,38] developed two different multigranulation rough
sets (MGRS) including optimistic and pessimistic ones.

Definition 2.6. Let S = (U,AT, f) be a complete information system, A1, A2, . . . , Am # AT, and X # U. The optimistic lower and
upper approximations of X with respect to A1, A2, . . . , Am are denoted by

Pm
i¼1Ai

OX and
Pm

i¼1Ai
OX, respectively, where
Xm

i¼1

Ai
OðXÞ ¼ fx 2 Uj½x�A1

# X _ ½x�A2
# X _ � � � _ ½x�Am

# Xg;

Xm

i¼1

Ai
OðXÞ ¼�

Xm

i¼1

Ai
Oð� XÞ:
Then
Pm

i¼1Ai
OðXÞ;

Pm
i¼1Ai

OðXÞ
� �

is called the classical optimistic MGRS [36].
Let ; be an empty set and �X the complement of X in U. We have the following properties of optimistic multigranulation

rough sets [36].
(1OML)
Pm

i¼1Ai
OðUÞ ¼ U
 (Co-normality)
(1OMH)
Pm

i¼1Ai
OðUÞ ¼ U
 (Co-normality)
(2OML)
Pm

i¼1Ai
Oð;Þ ¼ ;
 (Normality)
(2OMH)
Pm

i¼1Ai
Oð;Þ ¼ ;
 (Normality)
(3OML)
Pm

i¼1Ai
OðXÞ# X
 (Contraction)
(3OMH) X #
Pm

i¼1Ai
OðXÞ � �
 (Extension)
(4OML)
Pm

i¼1Aið
Tn

j¼1XjÞ#
Tn

j¼1
Pn

j¼1AiðXjÞ
 (Implication)
(4OMH)
Pm

i¼1Aið
Sn

j¼1XjÞ �
Sn

j¼1ð
Pn

j¼1AiðXjÞÞ
 (Implication)
(5OML)
Pm

i¼1Aið
Sn

j¼1XjÞ �
Sn

j¼1ð
Pn

j¼1AiðXjÞÞ
 (Implication)

(Implication)
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(5OMH)
Pm

i¼1Aið
Tn

j¼1XjÞ#
Tn

j¼1ð
Pn

j¼1AiðXjÞÞ
(6OML)

Pm
i¼1Ai

Oð
Pm

i¼1Ai
OðXÞÞ ¼

Pm
i¼1Ai

OðXÞ
 (Idempotency)
(6OMH)
Pm

i¼1Ai
Oð
Pm

i¼1Ai
OðXÞÞ ¼

Pm
i¼1AiðXÞ
 (Idempotency)
(7OML)
Pm

i¼1Ai
Oð� XÞÞ ¼�

Pm
i¼1Ai

OðXÞ
 (Duality)
(7OMH)
Pm

i¼1Ai
Oð� XÞ ¼�

Pm
i¼1Ai

OðXÞ
 (Duality)
(8OML) X # Y )
Pm

i¼1Ai
OðXÞ#

Pm
i¼1Ai

OðYÞ
 (Monotone)
(8OMH) X # Y )
Pm

i¼1Ai
OðXÞ#

Pm
i¼1Ai

OðYÞP
 (Monotone)
(9OML) 8K 2 U=Ai; i 2 f1;2; . . . ;mg; m
i¼1Ai

OðKÞ ¼ K
 (Granularity)
(9OMH) 8K 2 U=Ai; i 2 f1;2; . . . ;mg;
Pm

i¼1Ai
OðKÞ ¼ K
 (Granularity)
(10OML)
Pm

i¼1Ai
OðXÞ ¼

Sm
i¼1ðAiðXÞÞ
 (Relation based Addition)
(10OMH)
Pm

i¼1Ai
OðXÞ ¼

Tm
i¼1ðAiðXÞÞ
 (Relation based Multiplication)
In addition, the definition of the classical pessimistic MGRS [38] is defined as follows:
Xm

i¼1

Ai
PðXÞ ¼ fx 2 Uj½x�A1

# X ^ ½x�A2
# X ^ � � � ^ ½x�Am

# Xg;

Xm

i¼1

Ai
PðXÞ ¼�

Xm

i¼1

Ai
Pð� XÞ:
Let ; be an empty set and �X the complement of X in U. The pessimistic multigranulation rough sets have the following
properties [38].
(1PML)
Pm

i¼1Ai
PðUÞ ¼ U
 (Co-normality)
(1PMH)
Pm

i¼1Ai
PðUÞ ¼ U
 (Co-normality)
(2PML)
Pm

i¼1Ai
Pð;Þ ¼ ;
 (Normality)
(2PMH)
Pm

i¼1Ai
Pð;Þ ¼ ;
 (Normality)
(3PML)
Pm

i¼1Ai
PðXÞ# X
 (Contraction)
(3PMH) X #
Pm

i¼1Ai
PðXÞP T T P
 (Extension)
(4PML) m
i¼1Ai

Pð n
j¼1XjÞ ¼ n

j¼1ð
n
j¼1Ai

PðXjÞÞ
 (Implication)
(4PMH)
Pm

i¼1Ai
Pð
Sn

j¼1XjÞ ¼
Sn

j¼1ð
Pn

j¼1Ai
PðXjÞÞP S S P
 (Implication)
(5PML) m
i¼1Ai

Pð n
j¼1XjÞ � n

j¼1ð
n
j¼1Ai

PðXjÞÞ
 (Coarse Implication)
(5PMH)
Pm

i¼1Ai
Pð
Tn

j¼1XjÞ#
Tn

j¼1ð
Pn

j¼1Ai
PðXjÞÞ
 (Fine Implication)
(6PMH)
Pm

i¼1Ai
Pð
Pm

i¼1Ai
PðXÞÞ ¼

Pm
i¼1Ai

PðXÞ
 (Idempotency)
(7PML)
Pm

i¼1Ai
Pð� XÞÞ ¼�

Pm
i¼1Ai

PðXÞ
 (Duality)
(7PMH)
Pm

i¼1Ai
Pð� XÞ ¼�

Pm
i¼1Ai

PðXÞ
 (Duality)
(8PML) X # Y )
Pm

i¼1Ai
PðXÞ#

Pm
i¼1Ai

PðYÞ
 (Monotone)
(8PMH) X # Y )
Pm

i¼1Ai
PðXÞ#

Pm
i¼1Ai

PðYÞP
 (Monotone)
(9PML) 8K 2 U=Ai; i 2 f1;2; . . . ;mg; m
i¼1Ai

PðKÞ ¼ K
 (Granularity)
(9PMH) 8K 2 U=Ai; i 2 f1;2; . . . ;mg;
Pm

i¼1Ai
PðKÞ ¼ K
 (Granularity)
(10PML)
Pm

i¼1Ai
PðXÞ ¼

Tm
i¼1ðAiðXÞÞ
 (Relation based Addition)
(10PMH)
Pm

i¼1Ai
PðXÞ ¼

Sm
i¼1ðAiðXÞÞ
 (Relation based Multiplication)
3. Covering based multigranulation rough sets

In the previous research work, covering based rough sets are constructed by one single covering (or a single covering
granulation space) of the universe. Even though multiple coverings induced by neighborhood relations have been used in
[25], they are only special ones in covering based multigranulation rough sets. Therefore, in order to enlarge the application
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scope of MGRS and enrich its theory, we introduce multiple coverings into covering based rough sets by the idea of MGRS.
According to the first, the second, and the third pairs of the covering approximation operators in Definition 2.3 in Section 2,
in this section, we correspondingly propose three types of covering based multigranulation rough sets. Furthermore, based
on two different approximation strategies, we also investigate optimistic and pessimistic ones of each proposed covering
based MGRS.

3.1. The first type of covering approximation operators based multigranulation rough sets (Or the first type of CMGRS)

3.1.1. The first type of optimistic CMGRS
Let U be a finite universe of discourse, C1 and C2 two different coverings of U, Kx # U, and x 2 Kx. For any Kx 2 C1, if there

exists Lx 2 C2 such that Kx # Lx, we call that C1 is uniformly finer than C2 (or C2 is uniformly coarser than C1), called a uniform
partial relation between C1 and C2, denoted by C1�cC2. If C1�cC2 and C1 – C2, we say that C1 is strictly finer than C2 (or C2 is
strictly coarser than C1), written as C1�cC2.

Especially, if C1 and C2 are two different partitions of U,Kx is a subset including x. If for any Kx 2 C1, there exists Lx 2 C2

such that Kx # Lx, we call that C1 is finer than C2 (or C2 is coarser than C1), denoted by C1 � C2. If C1 � C2 and C1 – C2, we
say that C1 is strictly finer than C2 (or C2 is strictly coarser than C1), written as C1 � C2. Kx represents a subset including x
throughout this paper.

Theorem 3.1. The partial relation � is a special case of a uniform partial relation �c.
Proof. If C is a partition instead of a covering of U, then it is obvious that the uniform partial relation �c degenerates into the
partial relation �. h
Example 3.1 (Continued from Example 2.1). Suppose C1 ¼ ffx1g; fx2g; fx3; x4g; fx5gg and C2 ¼ ffx1; x2g; fx3; x4; x5gg. Then, we
have that C1 � C2 and C1�cC2.
Definition 3.1. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U with
Ci ¼ fKi1;Ki2; . . . ;Kiti

g , and X # U. An optimistic lower approximation and an optimistic upper approximation of X with

respect to X, denoted by
Pm

i¼1Ci
OðXÞ and

Pm
i¼1Ci

OðXÞ, respectively, are defined by the following
Xm

i¼1

Ci
OðXÞ ¼

[
fKij 2 Cij _ ðKij # XÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð1Þ

Xm

i¼1

Ci
OðXÞ ¼�

Xm

i¼1

Ci
Oð� XÞ: ð2Þ
And the area of uncertainty or boundary region of X relative to X in the covering based multigranulation rough sets is
BnOPm

i¼1
Ci
ðXÞ ¼

Xm

i¼1

Ci
OðXÞ n

Xm

i¼1

Ci
OðXÞ:
Then,
Pm

i¼1Ci
OðXÞ;

Pm
i¼1Ci

OðXÞ
� �

is called the first type of covering based optimistic multigranulation rough sets (or the first
type of optimistic CMGRS, for short). For simplicity, we say ðU; C1; C2; . . . ; CmÞ an optimistic multigranulation covering approx-

imation space, denoted by U;
POCi

� �� �
, i.e. OMCA-Space.
Remark 1. In a special case, when i = 1, the first type of optimistic CMGRS will degenerate into a single covering based rough
set whose lower and upper approximation operations are just (1) of Definition 2.3. In addition, if Ci; i 2 f1;2; . . . ;mg, is a par-

tition on the universe U, then
Pm

i¼1Ci
OðXÞ;

Pm
i¼1Ci

OðXÞ
� �

will degenerate into the original MGRS. According to Yao’s opinion

[54], we say that this pair of approximation operators is defined by the granule.
Theorem 3.2. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U, and X # U. Then,
Xm

i¼1

Ci
OðXÞ ¼ fx 2 Uj ^ ððKijÞx \ X – ;Þ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð3Þ
where Ci ¼ fKi1;Ki2; . . . ;Kiti
g.
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Proof.
Table 1
An eval

U

Attri

x1

x2

x3

x4

x5

x6

x7

x8

x9
x 2
Xm

i¼1

Ci
OðXÞ () x 2�

Xm

i¼1

Ci
Oð� XÞ

() x R
Xm

i¼1

Ci
Oð� XÞ

() ðKijÞx � ð� XÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; ti

() ^ ððKijÞx \ X – ;Þ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; ti:
By Theorem 3.2, we see that though the optimistic multigranulation upper approximation is defined by the complement
of the optimistic multigranulation lower approximation, it can also be constructed by objects with non-empty intersection
with the target concept in terms of each granular structure.

In order to illustrate Definition 3.1, we here continue to use the common example from the literature [4]. h
Example 3.2. Let us consider an evaluation problem of a credit card applicant. Suppose that U = {x1,x2, . . . ,x9} is a set of nine
applicants. E = {education,salary} is a set of two condition attributes. The values of attribute ‘‘education’’ are {best,
better,good}. And the values of attribute ‘‘salary’’ are {high,middle, low}. We make three specialists A, B, C evaluate the attri-
bute values for these applicants. It is possible that their evaluation results to the same attribute values may not be the same
each other. The evaluation results are listed below as Table 1. In Table 1, yi (i = 1, 2, 3) denote the evaluation results given by
specialists A, B, C, respectively, as well as ni (i = 1, 2, 3), where yi means ‘‘yes’’ and ni means ‘‘no’’.
Example 3.3 (Continued from Example 3.1). From Table 1, for the attribute ‘‘education’’, the specialist A gives evaluation
results: the applicants x1, x4, x5, and x7 get ‘‘best’’, denoted by best = {x1,x4,x5,x7}, the applicants x2 and x8 get ‘‘better’’,
denoted by better = {x2,x8}, and the applicants x3, x6, and x9 get ‘‘good’’, denoted by good = {x3,x6,x9}. In brief, we denote that
A : C1 ¼ fbest ¼ fx1; x4; x5; x7g; better ¼ fx2; x8g; good ¼ fx3; x6; x9gg;
Similarly, we get that
B : C2 ¼ fbest ¼ fx1; x2; x4; x5; x7; x8g; better ¼ fx2; x5; x8g; good ¼ fx3; x5; x6; x9gg;
C : C3 ¼ fbest ¼ fx4; x7g; better ¼ fx2; x8g; good ¼ fx1; x3; x5; x6; x9gg:
And for the attribute ‘‘salary’’, we have that
A : C4 ¼ fhigh ¼ fx1; x2; x3g;middle ¼ fx4; x5; x6; x7; x8g; low ¼ fx2; x5; x9gg;
B : C5 ¼ fhigh ¼ fx1; x2; x3g;middle ¼ fx4; x5; x6; x7; x8g; low ¼ fx7; x8; x9gg;
C : C6 ¼ fhigh ¼ fx1; x2; x3g;middle ¼ fx4; x5; x6; x8g; low ¼ fx7; x9gg:
Therefore, C1; C2; C3; C4; C5; C6 are six coverings of U. We choose randomly two coverings C2 ¼ ffx1; x2; x4; x5; x7;

x8g; fx2; x5; x8g; fx3; x5; x6; x9gg and C5 ¼ ffx1; x2; x3g; fx4; x5; x6; x7; x8g; fx7; x8; x9gg from them. For a target concept X = {x1,x2,
x5,x8} # U, by Definition 3.1, one has that C1 þ C2

OðXÞ ¼ fx2; x5; x8g [ ; ¼ fx2; x5; x8g and C1 þ C2
OðXÞ ¼ U. Then, by

Definition 2.4, we get a new covering of the universe, i.e., C1 \ C2 ¼ ffx1; x2g; fx2g; fx3g; fx4; x5; x7; x8g; fx5; x8g; fx5; x6g;
uation information system.

A

Education Salary

bute value Best Better Good High Middle Low

A B C A B C A B C A B C A B C A B C

y1 y2 n3 n1 n2 n3 n1 n2 y3 y1 y2 y3 n1 n2 n3 n1 n2 n3

n1 y2 n3 y1 y2 y3 n1 n2 n3 y1 y2 y3 n1 n2 n3 y1 n2 n3

n1 n2 n3 n1 n2 n3 y1 y2 y3 y1 y2 y3 n1 n2 n3 n1 n2 n3

y1 y2 y3 n1 n2 n3 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3

y1 y2 n3 n1 y2 n3 n1 y2 y3 n1 n2 n3 y1 y2 y3 y1 n2 n3

n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3 y1 y2 y3 n1 n2 n3

y1 y2 y3 n1 n2 n3 n1 n2 n3 n1 n2 n3 y1 y2 n3 n1 y2 y3

n1 y2 n3 y1 y2 y3 n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 y2 n3

n1 n2 n3 n1 n2 n3 y1 y2 y3 n1 n2 n3 n1 n2 n3 y1 y2 y3
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fx6; x9g; fx8g; fx9g; fx7; x8gg. Then, C1 \ C2ðXÞ ¼ fx1; x2; x5; x8g; C1 \ C2ðXÞ ¼ fx1; x2; x4; x5; x6; x7; x8g. Hence, we have that

ðC1 þ C2ÞOðXÞ# C1 \ C2ðXÞand ðC1 þ C2ÞOðXÞ � C1 \ C2ðXÞ.
As a result of this example, we see that the optimistic lower approximation of X induced by C1 þ C2 is not more than that

induced by C1 \ C2. Then we have the following propositions.
Proposition 3.1. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U, and X # U. Then

(1)
Pm

i¼1Ci
OðXÞ#

Tm
i¼1CiðXÞ,

(2)
Pm

i¼1Ci
OðXÞ �

Tm
i¼1CiðXÞ.
Proof.

(1) For any x 2
Pm

i¼1Ci
OðXÞ, by Definition 3.1, it follows that there must exist ðKijÞx 2 Ci; i 2 f1;2; . . . ;mg; j ¼ f1;2; . . . ; tig

such that x 2 (Kij)x. Here, we use (Kij)x to denote a set which includes x. By Definition 2.4, we know that Cx # ðKijÞx. Obvi-
ously, if Cx # X; ðKijÞx is not always included in X. Conversely, it holds. Hence,

Pm
i¼1Ci

OðXÞ#
Tm

i¼1CiðXÞ.
(2) For any x 2

Tm
i¼1CiðXÞ, there exists Cx such that x 2 Cx and Cx \ X – ;. But Cx # ðKijÞxðj ¼ 1;2; . . . ; tÞ. Obviously (Kij)x -

\ X – ;, i. e., x 2
Pm

i¼1Ci
OðXÞ. Therefore,

Pm
i¼1Ci

OðXÞ �
Tm

i¼1CiðXÞ. h
Proposition 3.2. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U, and X # U. Then, the following properties hold

(1)
Pm

i¼1Ci
OU ¼

Pm
i¼1Ci

OU ¼ U,

(2)
Pm

i¼1Ci
O; ¼

Pm
i¼1Ci

O; ¼ ;,

(3)
Pm

i¼1Ci
OðXÞ# X #

Pm
i¼1Ci

OðXÞ,

(4)
Pm

i¼1Ci
OðX \ YÞ#

Pm
i¼1Ci

OðXÞ \
Pm

i¼1Ci
OðYÞ,

(5)
Pm

i¼1Ci
OðX [ YÞ �

Pm
i¼1Ci

OðXÞ [
Pm

i¼1Ci
OðYÞ,

(6)
Pm

i¼1Ci
OðX [ YÞ �

Pm
i¼1Ci

OðXÞ [
Pm

i¼1Ci
OðYÞ,

(7)
Pm

i¼1Ci
OðX \ YÞ#

Pm
i¼1Ci

OðXÞ \
Pm

i¼1Ci
OðYÞ,

(8)
Pm

i¼1Ci
OðXÞ ¼

Pm
i¼1Ci

OðXÞ,

(9)
Pm

i¼1Ci
OðXÞ ¼�

Pm
i¼1Ci

Oð� XÞ,

(10)
Pm

i¼1Ci
OðXÞ ¼�

Pm
i¼1Ci

Oð� XÞ,

(11) X # Y )
Pm

i¼1Ci
OðXÞ#

Pm
i¼1Ci

OðYÞ,

(12) X # Y )
Pm

i¼1Ci
OðXÞ#

Pm
i¼1Ci

OðYÞ.
Proof. They can be easily proved by Definition 3.1. h

However,
Pm

i¼1Ci
OðXÞ ¼

Pm
i¼1Ci

OðXÞ may not hold.
For example, let U = {x1,x2,x3,x4} be a universe, C1 ¼ ffx1; x3g; fx1g; fx2g; fx3; x4gg and C2 ¼ ffx2; x3g; fx2g; fx3; x4g; fx1gg

two coverings of U. For X ¼ fx1; x2g; C1 þ C2
OðXÞ ¼ fx1; x2; x3g and C1 þ C2

OðXÞ ¼ fx1; x2; x3; x4g. Hence,Pm
i¼1Ci

OðXÞ–
Pm

i¼1Ci
OðXÞ.

This example shows that a distinction between the classical MGRS and the covering based MGRS.

Theorem 3.3. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and X1 # X2 # � � � # Xn # U. Then

(1)
Pm

i¼1Ci
OðX1Þ#

Pm
i¼1Ci

OðX2Þ# � � � #
Pm

i¼1Ci
OðXnÞ,

(2)
Pm

i¼1Ci
OðX1Þ#

Pm
i¼1Ci

OðX2Þ# � � � #
Pm

i¼1Ci
OðXnÞ.
Proof. They can be easily proved by Definition 3.1. h
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Theorem 3.4. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and X # U. Suppose C1�cC2�c � � � �cCm, then

(1)
Pm

i¼1Ci
OðXÞ ¼ CmðXÞ,

(2)
Pm

i¼1Ci
OðXÞ ¼ CmðXÞ.
Proof.

(1) For any x 2
Pm

i¼1Ci
OðXÞ, we have (Kij)x # X, where i 2 {1,2, . . . ,m} and j = 1,2, . . . , ti. Note that C1�cC2�c � � � �cCm. There

must exist ðKpqÞx 2 Cm such that (Kpq)x # X, where p 2 {1,2, . . . ,m} and q 2 {1,2, . . . , ti}. It follows that x 2 CmX. Hence,Pm
i¼1Ci

OX # CmX. On the other hand, for any x 2 CmX, we have that (Kmj)x # X, where j 2 {1,2, . . . , ti}. Moreover, accord-

ing to C1�cC2�c � � � �cCm, we have x 2 ðK1j1 Þx # ðK2j2 Þx # � � � # ðKmjm Þx # X, where jl 2 {1,2, . . . , ti} and l 2 1, 2, . . . , m. By
Definition 3.1, we have x 2

Pm
i¼1CiðXÞ. Therefore,

Pm
i¼1Ci

OX � CmX. Consequently,
Pm

i¼1Ci
OðXÞ ¼ CmX.

(2) Suppose that ðK1j1 Þx 2 C1; ðK2j2 Þx 2 C2; . . . ; ðKmjm Þx 2 Cm. By Definition 3.1, we have that (Kij)x \ X – ;, where
i 2 {1,2, . . . ,m} and j 2 {1,2, . . . , ti}. Note that C1�cC2�c � � � �cCm. Hence, ðK1j1 Þx � ðK2j2 Þx � � � � � ðKmjm Þx. By Theorem 3.3,Pm

i¼1Ci
OðXÞ ¼ CmðXÞ.
Example 3.4. (Continued from Example 3.2). Let X = {x1,x2,x3,x4}, C1 ¼ ffx1g; fx2g; fx3; x5; x6g; fx6; x7; x8; x9gg; C2 ¼
ffx1; x3g; fx2; x4g; fx3; x4; x5; x6; x7; x8; x9gg be two coverings of U, and C1�cC2. We have that C1ðXÞ ¼ fx1;

x2g; C1ðXÞ ¼ fx1; x2; x3; x5; x6g; C2ðXÞ ¼ fx1; x2; x3; x4g, and C2ðXÞ ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9g. Hence, C1 þ C2
OðXÞ ¼ fx1; x2;

x3; x4g ¼ C2ðXÞ and C1 þ C2
OðXÞ ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9g ¼ C2ðXÞ.

3.1.2. The first type of pessimistic CMGRS

Definition 3.2. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U with
Ci ¼ fKi1;Ki2; . . . ;Kiti

g, and X # U. Then, a pessimistic lower approximation and a pessimistic upper approximation of X with

respect to X are denoted by
Pm

i¼1Ci
PðXÞ and

Pm
i¼1Ci

PðXÞ, respectively, where
Xm

i¼1

Ci
PðXÞ ¼

[
fKij 2 Cij^m

i¼1ðKij # XÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð4Þ

Xm

i¼1

Ci
PðXÞ ¼�

Xm

i¼1

Ci
Pð� XÞ: ð5Þ
And the area of uncertainty or boundary region of X relative to X in covering based multigranulation rough sets is
BnPPm

i¼1
Ci
ðXÞ ¼

Xm

i¼1

Ci
PðXÞ n

Xm

i¼1

Ci
PðXÞ:
Then,
Pm

i¼1Ci
PðXÞ;

Pm
i¼1Ci

PðXÞ
� �

is called the first type of covering based pessimistic multigranulation rough sets (or the first
type of pessimistic CMGRS, for short). We say ðU; C1; C2; . . . ; CmÞ a pessimistic multigranulation covering approximation space,

denoted by U;
PPCi

� �� �
, i.e., PMCA-Space.
Remark 2. In particular, when i = 1, the first type of pessimistic CMGRS will degenerate into a single covering based rough
sets whose lower and upper approximation operations are just (1) of Definition 2.3. In addition, if Ciði 2 f1;2; . . . ;mg) is a

partition on the universe U, then
Pm

i¼1Ci
PðXÞ;

Pm
i¼1Ci

PðXÞ
� �

will degenerate into the original MGRS. According to Yao’s opinion

[54], we say that this pair of approximation operators is defined by the granule.
Theorem 3.5. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U, and X # U. Then,
Xm

i¼1

Ci
PðXÞ ¼ fx 2 Uj _ ððKijÞx \ X – ;Þ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð6Þ
Proof.
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x 2
Xm

i¼1

Ci
PðXÞ () x 2�

Xm

i¼1

Ci
Pð� XÞ

() x R
Xm

i¼1

Ci
Pð� XÞ

() _ ððKijÞx � � XÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; ti

() _ ðKijðxÞ \ X – ;Þ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; ti:
Example 3.5 (Continued from Example 3.1). By Definition 3.2, we have ðC1 þ C2ÞPðXÞ ¼ fx2; x5; x8g \ ; ¼ ; and ðC1 þ C2ÞPðXÞ ¼
C1X [ C2ðXÞ ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9g. By Example 3.2, we have C1 \ C2ðXÞ ¼ fx1; x2; x5; x8g; C1 \ C2ðXÞ ¼
fx1; x2; x4; x5; x6; x7; x8g. Hence, ðC1 þ C2ÞPðXÞ# C1 \ C2ðXÞ and ðC1 þ C2ÞPðXÞ � C1 \ C2ðXÞ.

As a result of this example, we see that the pessimistic lower approximation of X induced by C1 þ C2 is not bigger than
that induced by C1 \ C2. For a more general case, we have the following propositions.
Proposition 3.3. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U, and X # U. Then,
the following properties hold

(1)
Pm

i¼1Ci
PðXÞ#

Tm
i¼1CiðXÞ,

(2)
Pm

i¼1Ci
PðXÞ �

Tm
i¼1CiðXÞ.
Proof.

(1) For any x 2
Pm

i¼1Ci
PðXÞ, by Definition 3.2, it follows that there must exist ðK1j1 Þx 2 C1; ðK2j2 Þx 2 C2; . . . ; ðKmjm Þx 2 Cm. In

fact, x 2 (Kij)x for i 2 {1,2, . . . ,m}, j 2 {1,2, . . . , ti}. Hence, x 2
Tm

i¼1Kiti
ðxÞ. Note that

Tm
i¼1ðKijÞx # Xx for any x 2 U, andTm

i¼1CiX ¼
S
fXxjXx # Xg. As a result, x 2

Tm
i¼1CiX.

(2) For any x 2
Tm

i¼1CiðXÞ, there exists Xx such that x 2Xx and Xx \ X – ;. Note that Xx # (Kij)x, where i 2 {1,2, . . . ,m} and

j 2 {1,2, . . . , ti}. Hence (Kij)x \ X – ;, i. e., x 2
Pm

i¼1Ci
PðXÞ. Therefore,

Pm
i¼1Ci

PðXÞ �
Tm

i¼1CiðXÞ. h
Proposition 3.4. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U, and X, Y # U. Then, the following properties hold

(1)
Pm

i¼1Ci
PU ¼

Pm
i¼1Ci

PU ¼ U,

(2)
Pm

i¼1Ci
P; ¼

Pm
i¼1Ci

P; ¼ ;,

(3)
Pm

i¼1Ci
PðXÞ# X #

Pm
i¼1Ci

PðXÞ,

(4)
Pm

i¼1Ci
PðX [ YÞ ¼

Pm
i¼1Ci

PðXÞ [
Pm

i¼1Ci
pðYÞ,

(5) X # Y )
Pm

i¼1Ci
PðXÞ#

Pm
i¼1Ci

PðYÞ,

(6) X # Y )
Pm

i¼1Ci
PðXÞ#

Pm
i¼1Ci

PðYÞ,

(7)
Pm

i¼1Ci
PðXÞ ¼�

Pm
i¼1Ci

Pð� XÞ,

(8)
Pm

i¼1Ci
PðXÞ ¼�

Pm
i¼1Ci

Pð� XÞ.
Proof. These can be easily proved by Definition 3.2. h

However, some propositions held in the original MGRS cannot hold in the covering based pessimistic multigranulation
rough sets. For example:

(1)
Pm

i¼1Ci
PðX \ YÞ ¼

Pm
i¼1Ci

PðXÞ \
Pm

i¼1Ci
PðYÞ,

(2)
Pm

i¼1Ci
PðXÞ ¼

Pm
i¼1Ci

PðXÞ.
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Now, we use two counter-examples to confirm our assertions.

(1) Continued from Example 3.3, let X ¼ fx1; x2; x5; x8g; Y ¼ fx2; x5; x7; x8; x9g# U; C1 ¼ ffx1g; fx2g; fx3; x5; x6g;
fx6; x7; x8; x9gg and C2 ¼ ffx1; x2; x5g; fx2; x7g; fx3; x4; x5; x6; x7; x8; x9gg two coverings on U. By Definition 3.2, we can
get X \ Y = {x2,x5,x8}. Then C1 þ C2

PðX \ YÞ ¼ ;; C1 þ C2
PðXÞ ¼ fx2; x1g; C1 þ C2

PðYÞ ¼ fx2; x7g, and ðC1 þ C2ÞPðXÞ\
ðC1 þ C2ÞPðYÞ ¼ fx2g. Hence, (1) does not hold, i.e.,

Pm
i¼1Ci

PðX \ YÞ –
Pm

i¼1Ci
PðXÞ \

Pm
i¼1Ci

PðYÞ.
(2) Continued from Example 3.3, let X = {x4}. Now, C1 þ C2

PðXÞ ¼ fx1; x2; x4; x5; x6; x7; x8; x3g and

C1 þ C2
PðXÞ ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9g. Obviously, (2) also does not hold, i.e.,

Pm
i¼1Ci

PðXÞ–
Pm

i¼1Ci
PðXÞ.

Also, these counter-examples show a distinction between the classical MGRS and the covering based MGRS.

Theorem 3.6. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and X1 # X2 # � � � # Xn # U. Then

(1)
Pm

i¼1Ci
PðX1Þ#

Pm
i¼1Ci

PðX2Þ# � � � #
Pm

i¼1Ci
PðXnÞ,

(2)
Pm

i¼1Ci
PðX1Þ#

Pm
i¼1Ci

PðX2Þ# � � � #
Pm

i¼1Ci
PðXnÞ.
Proof. These can be proved by Definition 3.2. h

Theorem 3.7. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and X # U. If C1�cC2�c � � � �cCm, then

(1)
Pm

i¼1Ci
PðXÞ ¼ CmðXÞ,

(2)
Pm

i¼1Ci
PðXÞ ¼ CmðXÞ.
Proof. (1) For any x 2
Pm

i¼1Ci
PðXÞ, we have (Kij)x # X. For i = 1, 2, . . . , m, it follows x 2 CmðXÞ. For any x 2 CmðXÞ, we have (Kmj)-

x # X. By C1�cC2�c � � � �cCm, we have that ðK1j1 Þx # ðK2j2 Þx # � � � # ðKmjm Þx # X. According to Definition 3.4, we obtain
x 2

Pm
i¼1CiðXÞ. Hence,

Pm
i¼1Ci

PðXÞ ¼ CmðXÞ. Similarly, (2) can be proved. h

Finally, it is necessary to discuss the relationship between the above two different covering based multigranulation rough
sets.

Theorem 3.8. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and X # U. The optimistic and pessimistic covering based

multigranulation rough sets are denoted by (
Pm

i¼1Ci
OðXÞ;

Pm
i¼1Ci

OðXÞ) and (
Pm

i¼1Ci
PðXÞ;

Pm
i¼1Ci

PðXÞ), respectively. Then, the

following properties hold

(1)
Pm

i¼1Ci
OðXÞ �

Pm
i¼1Ci

PðXÞ,

(2)
Pm

i¼1Ci
OðXÞ#

Pm
i¼1Ci

PðXÞ.
Proof. They can be proved by Theorems 3.1 and 3.5. h

Example 3.6. (Continued from Example 3.2). From Example 3.2, we have six coverings of U. Let X = {x1,x2,x5,x8,x9} # U. By

Definition 3.1, we have that
P6

i¼1Ci
OðXÞ ¼ fx2; x5; x8; x9g and

P6
i¼1Ci

PðXÞ ¼ ffx2; x8g \ fx2; x5; x9gg ¼ fx2g. Hence,
P6

i¼1Ci
OðXÞ �

P6
i¼1Ci

PX. Similarly,
P6

i¼1Ci
OðXÞ ¼ fx1; x2; x3; x5; x6; x8; x9g and

P6
i¼1Ci

PðXÞ ¼ U. Hence,
P6

i¼1Ci
OðXÞ#

P6
i¼1Ci

PðXÞ.

3.2. The second type of covering approximation operators based multigranulation rough sets (Or the second type of CMGRS)

3.2.1. The second type of optimistic CMGRS

Definition 3.3. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U with
Ci ¼ fNi1ðx1Þ;Ni2ðx2Þ; . . . ;Niti

ðxjUjÞg, and X # U. An optimistic lower approximation and an optimistic upper approximation of

X with respect to X, denoted by
Pm

i¼1Ci
OðXÞ and

Pm
i¼1Ci

OðXÞ, are defined as
Xm

i¼1

Ci
OðXÞ ¼ fx 2 Uj _ ðNijðxÞ# XÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð7Þ

Xm

i¼1

Ci
OðXÞ ¼ fx 2 Uj ^ ðNijðxÞ \ X – ;Þ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð8Þ
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where NðxÞ ¼ \fK 2 Cjx 2 Kg.
And the area of uncertainty or boundary region of X relative to X in covering based multigranulation rough sets is
BnOPm

i¼1
Ci
ðXÞ ¼

Xm

i¼1

Ci
OðXÞ n

Xm

i¼1

Ci
OðXÞ:
Then,
Pm

i¼1Ci
OðXÞ;

Pm
i¼1Ci

OðXÞ
� �

is called the second type of covering based optimistic multigranulation rough sets (or the

second type of optimistic CMGRS, for short).
In particular, when i = 1, the second type of optimistic CMGRS will degenerate into the second type of covering approx-

imation operators listed in Section 2. Additionally, if Ci; i 2 f1;2; . . . ;mg is a partition on the universe U, thenPm
i¼1Ci

OðXÞ;
Pm

i¼1Ci
OðXÞ

� �
will degenerate into the original MGRS. According to Yao’s opinion [54], we say that this pair of

approximation operators is defined by the element based definition.

3.2.2. The second type of pessimistic CMGRS

Definition 3.4. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U with
Ci ¼ fNi1ðx1Þ;Ni2ðx2Þ; . . . ;Niti

ðxjUjÞg, and X # U. Then, a pessimistic lower approximation and a pessimistic upper approx-

imation of X with respect to X are denoted by
Pm

i¼1Ci
PðXÞ and

Pm
i¼1Ci

PðXÞ, respectively, where
Xm

i¼1

Ci
PðXÞ ¼ fx 2 Uj^m

i¼1ðNijðxÞ# XÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð9Þ

Xm

i¼1

Ci
PðXÞ ¼ fx 2 Uj _ ðNijðxÞ \ X – ;Þg: ð10Þ
And the area of uncertainty or boundary region of X relative to X in covering based multigranulation rough sets is
BnPPm

i¼1
Ci
ðXÞ ¼

Xm

i¼1

Ci
PðXÞ n

Xm

i¼1

Ci
PðXÞ:
Then,
Pm

i¼1Ci
PðXÞ;

Pm
i¼1Ci

PðXÞ
� �

is called the second type of covering based pessimistic multigranulation rough sets (or the

second type of pessimistic CMGRS, for short).
In a special case, when i = 1, the second type of pessimistic CMGRS will degenerate into the second type of covering

approximation operators listed in this paper. Additionally, if Ci; i 2 f1;2; . . . ;mg is a partition on the universe U, then
Pm

i¼1Ci
OðXÞ;

Pm
i¼1Ci

OðXÞ
� �

will degenerate into the original MGRS. Here, the properties of the second type of optimistic and

pessimistic CMGRS are omitted.

3.3. The third type of covering approximation operators based multigranulation rough sets (or the third type of CMGRS)

3.3.1. The third type of optimistic CMGRS

Definition 3.5. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U with
Ci ¼ fKi1;Ki2; . . . ;Kiti

g, and X # U. An optimistic lower approximation and an optimistic upper approximation of X with
respect to X, denoted by

Pm
i¼1Ci

OðXÞ and
Pm

i¼1Ci
OðXÞ, are defined as
Xm

i¼1

Ci
OðXÞ ¼

[
fKij 2 Cij _ ðKij # XÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð11Þ

Xm

i¼1

Ci
OðXÞ ¼ fx 2 Uj ^ ððKijÞx \ X – ;Þ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; tig; ð12Þ
where ti ¼ jCij.
And the area of uncertainty or boundary region of X relative to X in covering based multigranulation rough sets is
BnOPm

i¼1
Ci
ðXÞ ¼

Xm

i¼1

Ci
OðXÞ n

Xm

i¼1

Ci
OðXÞ:
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Then,
Pm

i¼1Ci
OðXÞ;

Pm
i¼1Ci

OðXÞ
� �

is called the third type of covering based optimistic multigranulation rough sets (or the third

type of optimistic CMGRS, for short). In a special case, when i = 1, the third type of optimistic CMGRS will degenerate into the

third type of covering approximation operators listed in this paper. Additionally, if Ci; i 2 f1;2; . . . ;mg is a partition on the

universe U, then
Pm

i¼1Ci
OðXÞ;

Pm
i¼1Ci

OðXÞ
� �

will degenerate into the original MGRS.

3.3.2. The third type of pessimistic CMGRS

Definition 3.6. Let (U,X) be a covering approximation space, X ¼ fC1; C2; . . . ; Cmg a family of coverings of U with

Ci ¼ fKi1;Ki2; . . . ;Kiti
g, and X # U. Then, a pessimistic lower approximation and a pessimistic upper approximation of X with

respect to X are denoted by
Pm

i¼1Ci
PðXÞ and

Pm
i¼1Ci

PðXÞ, respectively, where
Table 2
The pro

MCA

U;
P�

U;
P�

U;
P�
Xm

i¼1

Ci
PðXÞ ¼

[
fKij 2 Cij^m

i¼1ðKij # XÞ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; ti; x 2 Ug; ð13Þ

Xm

i¼1

Ci
PðXÞ ¼ fx 2 Uj _ ððKijÞx \ X – ;Þ; i 2 f1;2; . . . ;mg; j ¼ 1;2; . . . ; ti; x 2 Ug: ð14Þ
And the area of uncertainty or boundary region of X relative to X in covering based multigranulation rough sets is
BnPPm

i¼1
Ci
ðXÞ ¼

Xm

i¼1

Ci
PðXÞ n

Xm

i¼1

Ci
PðXÞ:
Then,
Pm

i¼1Ci
PðXÞ;

Pm
i¼1Ci

PðXÞ
� �

is called as the third type of covering based pessimistic multigranulation rough sets (or the

third type of pessimistic CMGRS, for short).
In a special case, when i = 1, the third type of pessimistic CMGRS will degenerate into the third type of covering approx-

imation operators listed in Section 2. Additionally, if Ciði 2 f1;2; . . . ;mg) is a partition of the universe U, thenPm
i¼1Ci

OðXÞ;
Pm

i¼1Ci
OðXÞ

� �
will degenerate into the original MGRS. Here, the properties of the third type of optimistic and pes-

simistic CMGRSs are omitted.
Corresponding to the properties of MGRS listed in Section 2.2, the proposed covering based optimistic multigranulation

rough sets can be summarized in Table 2.
In Table 2, ðU;

POCiÞ represents the ith (i 2 {1,2,3}) type of covering based optimistic multigranulation approximation
space. Similarly, the proposed covering based pessimistic multigranulation rough sets can also be summarized in Table 3.

In Table 3, U;
PPCi

� �
represents the ith (i 2 {1,2,3}) type of covering based pessimistic multigranulation approximation

space.

Remark 3. In this section, we have proposed three types of covering based optimistic and pessimistic multigranulation
rough sets and discussed some relationships between the CMGRS and the original MGRS. Several results held in the original
MGRS model but cannot hold in all the three CMGRSs. It can be known from the above discussions that (1) the original MGRS
is a special case of the CMGRS and the latter degenerates into the former when each covering is a partition on the universe
perties of three types of covering based optimistic multigranulation rough sets.

-space U;
POCi

� �
Satisfied Not satisfied

OC1

�
(1OML), (2OML), (3OML), (4OML), (5OML) (6OMH)

(6OML), (7OML), (8OML), (9OML), (10OML)
(1OMH), (2OMH), (3OMH), (4OMH), (5OMH)
(7OMH), (8OMH), (9OMH), (10OMH)

OC2

�
(1OML), (2OML), (3OML), (4OML), (5OML) (6OMH)

(6OML), (7OML), (8OML), (9OML), (10OML)
(1OMH), (2OMH), (3OMH), (4OMH), (5OMH)
(7OMH), (8OMH), (9OMH), (10OMH)

OC3

�
(1OML), (2OML), (3OML), (4OML), (5OML) (7OML)

(6OML), (8OML), (9OML), (10OML) (6OMH)
(1OMH), (2OMH), (3OMH), (4OMH) (7OMH)
(5OMH), (8OMH), (9OMH), (10OMH)



Table 3
The properties of three types of covering based pessimistic multigranulation rough sets.

MCA-space U;
PPCi

� �
Satisfied Not satisfied

U;
PPC1

� �
(1PML), (2PML), (3PML), (5PML) (4PML)

(7PML), (8PML), (9PML), (10PML) (4PMH)
(1PMH), (2PMH), (3PMH), (5PMH) (6PMH)
(7PMH), (8PMH), (9PMH), (10PMH)

U;
PPC2

� �
(1PML), (2PML), (3PML), (5PML) (4PML)

(7PML), (8PML), (9PML), (10PML) (4PMH)
(1PMH), (2PMH), (3PMH), (5PMH) (6PMH)
(7PMH), (8PMH), (9PMH), (10PMH)

U;
PPC3

� �
(1PML), (2PML), (3PML), (5PML) (4PML)

(8PML), (9PML), (10PML), (1PMH) (7PML)
(2PMH), (3PMH), (5PMH) (4PMH), (9PMH)
(8PMH), (10PMH) (6PMH), (7PMH)
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and (2) compared with the original MGRS, the CMGRS theory has its advantage in the application scope since it is applicable
to the covering environment, which is beneficial to the application of the idea of multigranulation for knowledge
representation, rule acquisition and feature selection from a multi-source covering information system.
4. Uncertainty measures of covering based multigranulation rough sets

Multigranulation rough set (MGRS) theory is a relatively mathematical tool for solving complex problems in the multiple
granulations or distributed circumstances through determining their vagueness and uncertainty. However, the existing
uncertainty measures of a single covering granulation based rough sets [9,18,39–41,49] are no longer suitable for covering
based multigranulation rough sets. In this section, we will introduce some measures to characterize the vagueness and
uncertainty of these new rough set models. Thus, these new rough set theories will contribute a lot to the applications in
the fields of pattern recognition, image processing, and fuzzy reasoning. We notice that in the literature [30], Pawlak has
given a definition of the rough membership as follows.

Definition 4.1. Let S = (U,AT) be an information system. For A # AT, X # U, the rough membership of x in X is defined by
lA
XðxÞ ¼

j½x�A \ Xj
j½x�Aj

;

where [x]A represents an equivalence class induced by an attribute set A. However, it is not be suitable to evaluate the uncer-
tainty of a covering based rough sets. So the new definition of rough membership of x in X is needed.
Definition 4.2. Let S = (U,AT) be an information system, C a covering of the universe U, where C ¼ fK1;K2; . . . ;Ktg and X # U.
The maximal and minimal covering based rough memberships of x in K, denoted by lCXðxÞ; gCXðxÞ, are defined by
lCXðxÞ ¼ max
jðKiÞx \ Xj
jKix j

;

gCXðxÞ ¼ min
jðKiÞx \ Xj
jðKiÞxj

;

where ðKiÞx 2 C and x 2 ðKiÞx.
Proposition 4.1. Let S = (U,AT) be an information system, C a covering of the universe U, where C ¼ fK1;K2; . . . ;Ktg and X # U.
Then, the following properties hold

(1) lCXðxÞ ¼ 1() 9ðKiÞx 2 C ^ ðKiÞx # X,
(2) 0 < lCXðxÞ 6 1() 9ðKiÞx 2 C ^ ðKiÞx \ X – /,
(3) gCXðxÞ ¼ 1() 8ðKiÞx 2 C ^ ðKiÞx # X,
(4) 0 < gCXðxÞ 6 1() 9ðKiÞx 2 C ^ ðKiÞx # X.
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Proof. They can be easily proved by Definition 4.2. h
Example 4.1 (Continued from Example 3.2). Let C1 ¼ ffx1; x2; x4; x5g; fx2; x5g; fx3; x5gg be a covering of U, and X = {x1,x3,x5}

# U. By Definition 4.2, we have that lC1
X ðx1Þ ¼ max jfx1 ;x2 ;x4 ;x5g\Xj

jfx1 ;x2 ;x4 ;x5gj

n o
¼ 1

2 ;l
C1
X ðx2Þ ¼ max jfx1 ;x2 ;x4 ;x5g\Xj

jfx1 ;x2 ;x4 ;x5gj
; jfx2 ;x5g\Xj
jfx1 ;x2 ;x4 ;x5gj

n o
¼

max 1
2 ;

1
2

� �
¼ 1

2 ; lC1
X ðx3Þ ¼ 1; lC1

X ðx4Þ ¼ 1
2, and lC1

X ðx5Þ ¼ max 1
2 ;

1
2 ;1

� �
¼ 1. Similarly, we have that gC1

X ðx1Þ ¼ 1
2,

gC1
X ðx2Þ ¼ 1

2 ;g
C1
X ðx3Þ ¼ 1; gC1

X ðx4Þ ¼ 1
2, and gC1

X ðx5Þ ¼ min 1
2 ;

1
2 ;1

� �
¼ 1

2.
Definition 4.3. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and X # U. The maximal and minimal degree of rough
membership of x in X, denoted by lX

X ðxÞ and gX
X ðxÞ are defined by
lX
X ðxÞ ¼

1
m

Xm

i¼1

lCi
X ðxÞ;

gX
X ðxÞ ¼

1
m

Xm

i¼1

gCi
X ðxÞ:
Proposition 4.2. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and X # U. Then, we have that

(1) 0 < lX
X ðxÞ 6 1,

(2) 0 < gX
X ðxÞ 6 1.
Proof. They can be proved by Definition 4.3. h
Example 4.2 (Continued from Example 3.1). Let X ¼ fC1; C2g be a family of coverings of U, where C1 ¼ ffx1; x2; x4; x5g;
fx2; x5g; fx3; x5gg and C2 ¼ ffx1; x2; x3g; fx4; x5g; fx2; x4gg. For X = {x1,x3,x5} # U, by Definition 4.2, we have that lC2

X ðx1Þ ¼
2
3 ; lC2

X ðx2Þ ¼ 2
3 ; lC2

X ðx3Þ ¼ 2
3 ; lC2

X ðx4Þ ¼ 1
2, and lC2

X ðx5Þ ¼ 0. Similarly, we have that gC2
X ðx1Þ ¼ 2

3 ; gC2
X ðx2Þ ¼ 0; gC2

X ðx3Þ ¼ 2
3 ;

gC2
X ðx4Þ ¼ 0, and gC2

X ðx5Þ ¼ 0. According to the results obtained from Example 4.1 and Definition 4.3, we get that
lX
X ðx1Þ ¼

lC1
X ðx1Þ þ lC2

X ðx1Þ
2

¼ 1
2
� 1

2
þ 2

3

� 	
¼ 7

12
;

lX
X ðx2Þ ¼

lC1
X ðx2Þ þ lC2

X ðx2Þ
2

¼ 1
2
� 1

2
þ 2

3

� 	
¼ 7

12
;

lX
X ðx3Þ ¼

lC1
X ðx3Þ þ lC2

X ðx3Þ
2

¼ 1
2
� 1þ 2

3

� 	
¼ 5

6
;

lX
X ðx4Þ ¼

lC1
X ðx4Þ þ lC2

X ðx4Þ
2

¼ 1
2
� 1

2
þ 1

2

� 	
¼ 1

2
;

lX
X ðx5Þ ¼

lC1
X ðx5Þ þ lC2

X ðx5Þ
2

¼ 1
2
� 1

2
þ 0

� 	
¼ 1

4
:

Similarly
gX
X ðx1Þ ¼

gC1
X ðx1Þ þ gC2

X ðx1Þ
2

¼ 1
2
� 1

2
þ 2

3

� 	
¼ 7

12
;

gX
X ðx2Þ ¼

gC1
X ðx2Þ þ gC2

X ðx2Þ
2

¼ 1
2
� 1

2
þ 0

� 	
¼ 1

4
;

gX
X ðx3Þ ¼

gC1
X ðx3Þ þ gC2

X ðx3Þ
2

¼ 1
2
� 1þ 2

3

� 	
¼ 5

6
;

gX
X ðx4Þ ¼

gC1
X ðx4Þ þ gC2

X ðx4Þ
2

¼ 1
2
� 1

2
þ 0

� 	
¼ 1

4
;

gX
X ðx5Þ ¼

gC1
X ðx5Þ þ gC2

X ðx5Þ
2

¼ 1
2
� 1

2
þ 0

� 	
¼ 1

4
:
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Definition 4.4. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U. An optimistic approximation measure of X by X is
defined as
aO
XðXÞ ¼

j
Pm

i¼1Ci
OXj

j
Pm

i¼1Ci
OXj

;

where X – ; and jXj denotes the cardinality of a set X. Similarly, a pessimistic approximation measure of X by X is defined as
aP
XðXÞ ¼

j
Pm

i¼1Ci
PXj

j
Pm

i¼1Ci
PXj

:

Theorem 4.1. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and X0 # X. Then aO
XðXÞP aO

X0 ðXÞP aCi
ðXÞ and

aP
XðXÞ 6 aP

X0 ðXÞ 6 aCi
ðXÞ, (i 6 m).
Proof. They can be proved by Definition 4.4. h

In the optimistic covering based multigranulation rough sets, the approximation measure of X by X is not smaller than
that induced by a subset of X. The approximation measure of X by X0 is also not smaller than that induced by a single cov-
ering granulation. Whereas, in the pessimistic version, the result is just the converse.

Definition 4.5. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U and Ci ¼ fKi1;Ki2; . . . ;Kiti
g. The rough entropy of X is

defined by the following
EðXÞ ¼ 1
m

Xm

i¼1

EðCiÞ;
where EðCiÞ ¼
Pti

j¼1
jKij j

ti
log2jKijj; i 2 f1;2; . . . ;mg (see [18]).
Example 4.3 (Continued from Example 3.1). Let X ¼ fC1; C2g be a family of coverings of U, where C1 ¼ ffx1; x2; x4; x5g;
fx2; x5g; fx3; x5gg; C2 ¼ ffx1; x2; x3g; fx4; x5g; fx2; x4gg. By Definition 4.5, we have that EðC1Þ ¼

P3
j¼1
jK1j j

3 log2jK1jj ¼
1
3 ð4log24þ 2log22þ 2log22Þ ¼ 8

3 and EðC2Þ ¼
P3

j¼1
jK2j j

3 log2jK2jj ¼ 1
3 ð3log23þ 2log23þ 2log22Þ ¼ 2

3þ 5
3 log23. Hence,

EðXÞ ¼ 5
3þ 5

6 log23.
Theorem 4.2. Let X ¼ fC1; C2; . . . ; Cmg be a family of coverings of U. If C1�cC2�c � � � �cCm, then EðC1Þ 6 EðXÞ 6 EðCmÞ.
Proof. It can be proved by Definition 4.5. h
Example 4.4 (Continued from Example 2.1). Let X ¼ fC1; C2g be a family of coverings of U, where C1 ¼ ffx1g;
fx2g; fx3; x4g; fx4; x5gg, C2 ¼ ffx1; x2g; fx3; x4g; fx2; x3; x4; x5gg and C1�cC2. By Definition 4.5, we have that EðC1Þ ¼

P4
j¼1
jK1j j

4

log2jK1jj ¼ 1
4 ð1log21þ 1log21þ 2log22þ 2log22Þ ¼ 1

2 and EðC2Þ ¼
P3

j¼1
jK2j j

3 log2jK2jj ¼ 1
3 ð2log22þ 2log22þ 2log24Þ ¼ 4

3. Hence,

EðXÞ ¼ 1
2

1
2þ 4

3

� �
¼ 11

12. Therefore, EðC1Þ 6 EðXÞ 6 EðC2Þ.
Remark 4. In this section, we have systematically investigated the united measurement formations. Some examples have
been employed to illustrate the application of these measures by the first type of CMGRS. Similarly, the proposed uncertainty
measures can offer a method to characterize some other types of approximate abilities of the covering based multigranula-
tion models, such as approximate precision, the rough membership, and the maximal and minimal degree of rough mem-
bership. Under the framework of covering based multiple granulations, these uncertainty measures may become a
theoretical basis of granule reduction, granulation space reduction, and rule evaluation for a target information system with
the covering background.
5. Conclusion and discussion

The main contribution of this paper is that three types of optimistic and pessimistic covering based multigranulation
rough sets have been proposed which can be used to do data analysis characterized by the covering environment. Under
the framework of covering based multigranulation rough sets, we have investigated some of their important properties
and compared their properties with those of the classical MGRS. In addition, we have introduced several important uncer-
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tainty measures, such as degree of rough membership, approximation measure, and rough entropy. These results can enrich
the MGRS theory and enlarge its application scope to some extent.

Further research includes how to reduce redundant granules and how to reduce redundant granular space in the process
of rough data analysis under the multigranulation environment. Another important issue in the future is to investigate appli-
cations of this new rough set theory for knowledge representation, rule acquisition, feature selection in knowledge
discovery.
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