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The success of kernel-based learning methods is heavily dependent on the choice of a ker-
nel function and proper setting of its parameters. In this paper, we optimize the Gaussian
kernel for binary-class problems by using centered kernel polarization criterion. This crite-
rion is an extension of kernel polarization and a simplified style of centered kernel align-
ment. Compared with formulated kernel polarization criterion, the proposed criterion
has a defined geometrical significance, and it can locate the global optimal point with less
influence of threshold selection. Furthermore, the approximate criterion function can be
proved to have a determined global minimum point by adopting the Euler–Maclaurin for-
mula under weaker conditions. In addition, taking the preservation of within-class local
structure into account, we present an evaluation criterion named local multiclass centered
kernel polarization in multiclass classification scenario. Comparative experiments are con-
ducted on some benchmark examples with three Gaussian kernel based learning methods
and the results well demonstrate the effectiveness and efficiency of the proposed quality
measures.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Kernel-based learning methods, such as support vector machine (SVM) [27], kernel principal component analysis (KPCA)
[23]. and kernel linear discriminant analysis (KLDA) [19], provide high performance for solving a wide range of different
problems in machine learning community. These methods work by mapping the input data into a high-dimensional feature
space and then build linear algorithms in the feature space to implement nonlinear counterparts in the input space. The key
to the success of kernel methods is the incorporation of the ‘‘kernel trick’’ which computes a kernel function as the inner
product between each pair of points in the feature space without computing their images directly. Thus these kernel meth-
ods combine the advantages of linear and non-linear classifiers in terms of efficient training time, elegant compatibility with
high-dimensional data.

It is reasonable to hope that the mapped classes in the feature space possess a better linear separability compared with
that obtained in the input space for a classification task. However, the classification performance of kernel methods can be
even worse than that of their linear counterparts in the original input space when the kernel functions are not well chosen
[33]. So whether kernel methods behave well largely depends on their adopted kernel functions. It is well known that the
choice of the kernel function is a challenging problem.
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In the literatures, kernel selection is usually tackled by cross validation and leave-one-out method. These two methods
are data-independent, but they both suffer heavy computational complexity. To remedy this problem, in the context of
SVM, some upper bounds on the generalization error have been proposed [6,7,11]. Of these bounds, the radius-margin bound
is most commonly used in practice. However, it still requires the whole learning process for evaluation like cross validation
and leave-one-out method.

In order to obtain a better computation efficiency, many universal data-dependent kernel evaluation measures have been
derived by optimizing the measure of data separation in the feature space. Based on Fisher discrimination criteria, Refs.
[28,31,33] proposed different approaches to optimize the kernel parameters. However, the use of Fisher criteria tends to give
undesired results if samples in some class form several separative clusters, especially for the case of multimodally dis-
tributed data [25]. By using the measure called ‘‘alignment’’, Ref. [9], for the first time proposed a kernel target alignment
criterion to optimize the kernel function. This criterion can measure the similarity between two kernel matrices or the
degree of agreement between a kernel and a given target function. Beginning with kernel target alignment, many measure-
ment criteria have been derived for kernel selection, such as kernel polarization [2], feature space based kernel matrix eval-
uation measure [20] and local kernel polarization [29].

Basically, kernel target alignment is the most commonly used efficient kernel measure criterion. Some researchers found
that the sensitivity of kernel target alignment in case of uneven class distribution will drop drastically [14]. Refs. [8,20]
showed a kernel matrix with a low kernel alignment value may have a very good performance. This means having a very
high kernel target alignment is only a sufficient condition, but not a necessary condition, for kernel function to be a good
one for a given task [20]. Therefore, Ref. [8] proposed a new criterion, centered kernel alignment, to modify kernel tar-
get alignment by adopting the notion of centering in the feature space. In addition to giving a simple concentration bound
for centered kernel alignment, the existence of good predictors for kernel with high alignment both for classification and for
regression has been shown. By this criterion, a steepest ascent approach based on forward stagewise additive method has
been presented for multiple kernel learning. The approach achieves good performance across a variety of real-world data
sets without discretizing the space of base kernels [1]. Multiple kernel clustering based on centered kernel alignment has
also been proposed [18].

Recently Ref. [34] proposed an efficient Gaussian kernel optimization method, which works by maximizing the formu-
lated kernel target alignment (in fact, it is the formulated kernel polarization). The contribution of this work lies in obtaining
a differentiable objective function having a determined minimum point. More remarkably, the approximate analytical solu-
tion of the formulated criterion can be obtained by using the Euler–Maclaurin formula. Furthermore, the optimization has
been solved with high computation efficiency by using a Newton-based algorithm with a unique starting point to locate
the best local minimum compared with the searching procedure in [28]. However, the objective function curve of alignment
value depending on the kernel parameter on some data sets monotonically increases very slowly when the parameter is
greater than the optimal parameter, and then the selected parameter may be dependent on the threshold values of the
search algorithm. Besides, the proof of having a determined global minimum point for approximate formulated criterion
was obtained under strong constraint conditions.

We propose an effective surrogate measure based on kernel polarization, namely, centered kernel polarization. The
approximate criterion function can be proved to have a determined global minimum point for two-class pattern classifica-
tion tasks under weaker constraint conditions than those in [34]. We note that the proposed criterion is similar to the
Hilbert–Schmidt Independence Criterion (HSIC) [13], which is a practical criterion for independence test in the context of
independent component analysis (ICA). In this paper, we mainly tune the Gaussian kernel parameter on the basis of centered
kernel polarization, and study the analytic properties and geometrical significance of the proposed criterion as well. In addi-
tion, based on the works in [29,30], we put forward a new multiclass evaluation criterion named local multiclass centered
kernel polarization by taking the local structure preservation into account.

The rest of this paper is organized as follows. Section 2 gives a short description of some properties of Gaussian kernel and
three criteria, namely, kernel target alignment, kernel polarization and centered kernel alignment. Section 3 discusses the
continuous differentiability of the formulated centered kernel polarization and proves that the approximate criterion func-
tion has a determined global minimum point. In addition, by exploring the relationship among the centered kernel polariza-
tion criterion and two other off the shelf kernel evaluation measures, the geometric meaning of the proposed criterion is
revealed. Section 4 describes the proposed local multiclass evaluation criterion in detail. Experimental results are presented
in Section 5.

In this paper, all analyses are based on Gaussian kernel function. In the following, K denotes a kernel function, capital-case
boldface symbols are used for matrices, < �; � > denotes a dot product, and < �; �>F denotes a Frobenius inner product.
2. Preliminaries

2.1. The Gaussian kernel for classification

Recently, the use of kernel functions in machine learning and data mining community has received considerable atten-
tion. The kinds of kernel K we will be interested in are such that for all samples xi and xj, where xi; xj 2 X � Rm, and X is the
input space:
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Kðxi; xjÞ ¼< UðxiÞ;UðxjÞ >;K : X � X ! R;
where U denotes feature map that maps the points to a high dimensional feature space F , i.e. U : X ! F . In practice, the
kernel K is usually defined directly, thus implicitly defining the map U and the feature space F . Mercer has shown that a
necessary and sufficient condition for a symmetric function Kðxi; xjÞ to be a kernel is that it be positive definite.

The well-known kernels include linear kernel, polynomial kernel, Gaussian kernel and so on. In the following we focus on
an isotropic Gaussian kernel function which is popular and widely used in various applications. The Gaussian kernel is
defined as:
Kðxi; xjÞ ¼ exp � jjxi � xjjj2

r2

 !
;

where r is the width parameter. As previously discussed [31], the determination of a proper r is of crucial importance to the
Gaussian kernel based method’s performance. Different values of r map the data into different feature spaces. As

jjUðxÞjj2 ¼ 1, the Gaussian kernel maps all the input vectors in the feature space with the same length 1. For every pair of
different patterns xi – xj, we have Kðxi; xjÞ 2 ð0;1Þ. When r! 0;Kðxi; xjÞ ! 0 holds, namely all the different training data
points will be mapped to the orthogonal unit vectors in the feature space, therefore all the training patterns can be separated
correctly. However, for any new sample, this classifier may not give right recognition due to ‘‘over-fitting’’ training. On the
other hand, when r! þ1;Kðxi; xjÞ ! 1 and all the training data points are regarded as one point. As the result, the classifier
cannot recognize any new sample due to ‘‘lack of fitting’’ training. Thus, neither too big r nor too small r is suit for a clas-
sification target.

2.2. Review of three kinds of alignment criteria

Based on previous results in [2,8,9], we shall propose a new class separability measure criterion. In this section, we first
present the notions of kernel target alignment, kernel polarization and centered kernel alignment that will be useful in our
quest.

Let D be the distribution according to which training and test points are drawn. Given a finite sample set
X ¼ fx1; x2; . . . ; xng drawn according to D and the corresponding label vector y ¼ ðy1; y2; . . . ; ynÞ

T where
yi 2 fþ1;�1g;1 6 i 6 n. The kernel matrix K 2 Rn�n is defined by Kij ¼ Kðxi; xjÞ and the label matrix is defined by Y ¼ yyT

(an ideal target matrix). Kernel target alignment can measure the similarity of the kernel matrix and the target matrix.
Mathematically, it is defined as [9]:
AðK;YÞ ¼ < K;Y>F

jjKjjF jjYjjF
: ð1Þ
It has been proved that kernel target alignment is sharply concentrated around its expected value, and the error rate using
the kernel with a high empirical alignment can be limited to a certain amount [9]. These theoretical results together with
computational efficiency facilitate the application of kernel target alignment in many learning tasks.

Drown from physics, Ref. [2] proposed the kernel polarization criterion:
PðK;YÞ ¼< K;Y>F ð2Þ
Clearly, kernel polarization criterion is a simplified style of kernel target alignment, as it ignores the denominator of kernel
target alignment.

Built upon kernel target alignment, centered kernel alignment leverages the notion of centering in the feature space [8].
Following Cortes et al., we define centered kernel alignment between K and Y by
CAðK;YÞ ¼ < Kc;Yc>F

jjKcjjF jjYcjjF
: ð3Þ
The centered kernel Kc associated to K is defined for all xi; xj 2 X by
Kcðxi; xjÞ ¼< UðxiÞ �U;UðxjÞ �U >
where U ¼ 1
n

Pn
i¼1UðxiÞ. Thus, the centered kernel matrix Kc is defined for all i; j 2 ½1; n� by
½Kc�ij ¼ Kij �
1
n

Xn

i¼1

Kij �
1
n

Xn

j¼1

Kij þ
1
n2

Xn

i;j¼1

Kij:
Note that the conception of the centered kernel matrix described above is exactly the KPCA transform [24]. Cortes et al. also
gave a compact style of Kc as: Kc ¼ HKH, where H is the so called centering matrix defined by H ¼ In�n � eeT

n . In�n denotes the

n� n identity matrix and e ¼ ð1;1; . . . ;1ÞT 2 Rn.
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Centered kernel alignment criterion can be used to measure how well a centered kernel matrix aligns to a centered target
matrix. The difference between the centered alignment of two kernel matrices and the alignment of the corresponding ker-
nel functions can be bounded by a term in Oð1=

ffiffiffi
n
p
Þ [8].

Generally speaking, centered kernel polarization, kernel target alignment and kernel polarization have the same property
that: the alignment value will increase when we keep within-class data pairs close and between-class data pairs apart in the
feature space [8,20,29,34]. The only difference between kernel target alignment and centered kernel alignment, by compar-
ing Eq. (1) with Eq. (3), is the centering operation on kernel matrices. However, this operation is crucial. Without centering
operation, kernel target alignment would suffer from ill-conditioned problems. The main reason for the ill-conditioned prob-
lems is that the elements of kernel matrix may have almost the same values when the origin is far away from the convex hull
of the samples in the feature space [18]. The centering operation cancels mismatches of the mean responses between the two
kernels, and effectively cancels the effects caused by the imbalanced class distribution [1]. Thus the centering operation
makes it possible that centered kernel alignment has better performance than kernel target alignment.

3. The proposed criterion for binary-class classification

3.1. The ‘‘centered kernel polarization’’ criterion

By importing the notion of centering in the feature space, we propose the centered kernel polarization criterion, which is
defined by
PcðK;YÞ ¼< Kc;Yc>F : ð4Þ
The difference between centered kernel polarization and centered kernel alignment, by comparing Eq. (3) with Eq. (4), is the
normalization transformation on kernel matrices. In some sense, centered kernel polarization is like cross-covariance oper-
ator between the random variables Kcðxi; xjÞ and Ycðxi; xjÞ, while centered kernel alignment can be seen as a standard corre-
lation coefficient between them. Seen from Eq. (4), the proposed criterion may lead to an unconstrained optimization
problem. [2] stated that the corresponding feature space geometry can assure the kernel optimization problem is well posed
when adopting a bound kernel. Thus, It is easier that the optimization problem can be implemented with the omission of the
normalization transformation in the centered kernel polarization.

By definition of H, we can have H2 ¼ H. Note that, when U;V are two Gram matrices, < U;V>F ¼
P

ijUijVij ¼ trðUVÞ. Hence
centered kernel polarization criterion can be rewritten as follows:
PcðK;YÞ ¼ TrðKcYcÞ ¼ TrðKYcÞ ¼< K;Yc>F :
Centered kernel polarization has two important properties: the concentration bound of the form
j PcðK;YÞ

n2 � EðKcðKYÞcÞj 6 Oð 1ffiffi
n
p Þ, where KYðxi; xjÞ ¼ yiyj, and the existence of good predictor with high accuracy in the presence

of high alignment. Following [8], it is easy to prove the correctness of the claim above.
The centered label matrix Yc can be written as Yc ¼ HYH. Without loss of generality, let y1 ¼ . . . ¼ ynþ ¼ 1 and

ynþþ1 ¼ . . . ¼ ynþþn� ¼ �1, where nþ examples belong to class þ1;n� examples belong to class �1, respectively, and
nþ þ n� ¼ n. Yc can be expanded and written more explicitly as follows:
Yc ¼
4 n2

�
n2 enþ�nþ �4 nþn�

n2 enþ�n�

�4 nþn�
n2 en��nþ 4 n2

þ
n2 en��n�

0@ 1A; ð5Þ
where el�l denotes the l� l matrix whose elements are all equal to unity. The detailed derivation process about the above
equation can be found in [33].

For Gaussian kernel function, we express PcðK;YÞ by using Eq. (5), then
<K;Yc>F ¼
X

i;j

Kij½Yc�ij

¼ 4
n2

X
yi¼yj¼1;i–j

n2
�exp �jjxi�xjjj2

r2

 !
þ

X
yi¼yj¼�1;i–j

n2
þexp �jjxi�xjjj2

r2

 !
�
X
yi–yj

2nþn�exp �jjxi�xjjj2

r2

 !24 35þ4nþn�
n

: ð6Þ
The optimal r is obtained by maximizing the criterion < K;Yc>F . Observe that when the number of positive samples equals
to the one of negative samples, i.e. nþ ¼ n�, the optimization problem here is identical to that in [34]. Thus, centered kernel
polarization is a general extension of kernel polarization.

For convenience, we transform the maximization problem to a minimization problem. By omitting for clarity the constant
term and the constant coefficient, < K;Yc>F can be simplified as
SðrÞ ¼
X
yi–yj

2nþn�
n2 exp � jjxi � xjjj2

r2

 !
�

X
yi¼yj¼1;i–j

n2
�

n2 exp � jjxi � xjjj2

r2

 !
�

X
yi¼yj¼�1;i–j

n2
þ

n2 exp � jjxi � xjjj2

r2

 !
: ð7Þ
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And SðrÞ is the formulated centered kernel polarization criterion. Thus, we can now consider instead:
ropt ¼ arg min
r

SðrÞ:
Obviously, the formulated criterion SðrÞ is continuously differentiable, the first and the second derivatives of SðrÞ with
respect to r can be derived easily as follow:
@SðrÞ
@r

¼ 2
n2r3

X
yi–yj

2nþn�jjxi � xjjj2exp � jjxi � xjjj2

r2

 !
�

X
yi¼yj¼1;i–j

n2
�jjxi � xjjj2exp � jjxi � xjjj2

r2

 !24
�

X
yi¼yj¼�1;i–j

n2
þjjxi � xjjj2exp � jjxi � xjjj2

r2

 !35;
@2SðrÞ
@r2 ¼ 4

n2r6

X
yi–yj

2nþn�jjxi � xjjj4exp � jjxi � xjjj2

r2

 !
�

X
yi¼yj¼1;i–j

n2
�jjxi � xjjj4exp � jjxi � xjjj2

r2

 !24
�

X
yi¼yj¼�1;i–j

n2
þjjxi � xjjj4exp � jjxi � xjjj2

r2

 !35� 6
n2r4

X
yi–yj

2nþn�jjxi � xjjj2exp � jjxi � xjjj2

r2

 !24
�

X
yi¼yj¼1;i–j

n2
�jjxi � xjjj2exp � jjxi � xjjj2

r2

 !
�

X
yi¼yj¼�1;i–j

n2
þjjxi � xjjj2exp � jjxi � xjjj2

r2

 !35:

Having a determined global minimum point is a thrilling property for a differentiable separability measure. The property

can bring about the decrease of computational cost. Ref. [34] examined the local and global extremal properties of the
approximate formulate kernel polarization. However, on four out of thirteen data sets in [34], the objective function curves
depending on the kernel parameter were found to monotonically increase very slowly when r is greater than ropt . So the
choice of stopping criterion of Algorithm 1 (quasi-Newton algorithm in [34]) has a significant impact on the overall kernel
method performance. When the stopping criteria are not properly set, the good classification performance of kernel methods
cannot be keep. Naturally, we try to find an optimization criterion which has a determined global minimum point with less
influence of threshold selection for most datasets.

We note that [22] has stated that the initially normalization of each kernel is necessary. When comparing two kernels
with widely different norms, the operation can greatly reduce the caused unfair bias. In the following, we will discuss the
analytic properties of the proposed criterion. And we will find the removal of the normalization may cause some instability
on kernel performance, while the operation makes it possible for the target function to have some good characteristics.

3.2. Evaluating the local global extremal properties of SðrÞ

For the sake of convenience, we assume Tij ¼ jjxi � xjjj2, thus, SðrÞ can be expressed as
SðrÞ ¼
X
yi–yj

2nþn�
n2 exp � Tij

r2

� �
�

X
yi¼yj¼1;i–j

n2
�

n2 exp � Tij

r2

� �
�

X
yi¼yj¼�1;i–j

n2
þ

n2 exp � Tij

r2

� �
:

The Euler–Maclaurin formula is a very powerful tool in studying the finite series summation problem [16]. It can be
expressed as following:
Xv

t¼u

f ðtÞ ¼
Z v

u
f ðtÞdt þ f ðuÞ þ f ðvÞ

2
þ
Xþ1
k¼1

B2k

ð2kÞ! ðf
ð2k�1ÞðvÞ � f ð2k�1ÞðuÞÞ; ð8Þ
where f ð2k�1ÞðtÞ; t 2 ½u;v �; k P 1 are functions of bounded variation and B2k are the Bernoulli numbers. Let f ðtÞ ¼ et , we
express the first two items of the last expression on the right, and obtain an approximation expression of Eq. (8):
Xv

t¼u

et �
Z v

u
etdt þ eu þ ev

2
þ 1

12
½ev � eu� ¼ 19

12
ev � 7

12
eu: ð9Þ
We define some auxiliary variables as following: A ¼ maxfTijj; yi ¼ yj ¼ 1; i – jg;B ¼ minfTijj; yi ¼ yj ¼
1; i – jg;C ¼ maxfTijj; yi ¼ yj ¼ �1; i – jg;D ¼ minfTijj; yi ¼ yj ¼ �1; i – jg; E ¼ maxfTijj; yi – yjg; F ¼ minfTijj; yi – yjg. Now,
these variables, A;B;C;D; E and F, generally have the following relationships for separable data sets:
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the values of A; C and E are about 2 orders of magnitude

larger than those of B; D and F; respectively;

the value of maxfA;C; Eg is close to the value of minfA;C; Eg:

8><>: ð10Þ
The relation restrictions shown in (10) will greatly simplify the analysis below. A binary classification data set may satisfy
(10) under the assumption that both the classes are generated from underlying multivariate Normal distributions of com-
mon covariance matrix but different means and each class is expressed by a single cluster. Besides this, if each class is
not expressed by a single cluster and two classes share the similar cluster structure, the data set may also satisfy (10). In
[34], another additional constraint is imposed on separable data sets. The constraint is the minimum distance of
within-class sample pairs must less than that of between-class sample pairs in input space. However, many datasets do
not meet the constraint condition (see Table 2). Compared with the constraint relationships provided in [34], there are less
constraint corresponding to B;D and F here.

The approximation of SðrÞ can be written as
SðrÞ ¼ 2nþn�
n2

X�F=r2

�E=r2

et � n2
�

n2

X�B=r2

�A=r2

et � n2
þ

n2

X�D=r2

�C=r2

et

� 1
12n2 38nþn�e�

F
r2 � 19n2

�e�
B
r2 � 19n2

þe�
D
r2 þ 7n2

�e�
A
r2 þ 7n2

þe�
C
r2 � 14nþn�e�

E
r2

h i
:

For ease of discussion, let
bSðrÞ ¼ 1
12n2 38nþn�e�

F
r2 � 19n2

�e�
B
r2 � 19n2

þe�
D
r2 þ 7n2

�e�
A
r2 þ 7n2

þe�
C
r2 � 14nþn�e�

E
r2

h i
: ð11Þ
bSðrÞ is the approximate centered kernel polarization criterion function. Hence, the derivative of bSðrÞ with respect to r is
@bSðrÞ
@r

¼ 1
6n2r3 38nþn�Fe�

F
r2 � 19n2

�Be�
B
r2 � 19n2

þDe�
D
r2 þ 7n2

�Ae�
A
r2 þ 7n2

þCe�
C
r2 � 14nþn�Ee�

E
r2

h i
:

To minimize bSðrÞ, we consider @bSðrÞ
@r ¼ 0. Too large r reduces the kernel to a constant function, making it impossible to

learn any non-trivial classifier. Then we only take the following equation in consideration:
1
n2 38nþn�Fe�

F
r2 � 19n2

�Be�
B
r2 � 19n2

þDe�
D
r2 þ 7n2

�Ae�
A
r2 þ 7n2

þCe�
C
r2 � 14nþn�Ee�

E
r2

h i
¼ 0:
According to the values of B;D and F, there are six cases to consider:
B P D P F;B P F P D;D P B P F;D P F P B; F P D P B; F P B P D. Without loss of generality, we give a detail proof of
the first case: B P D P F. The equation above can be formulated as
1
n2 38nþn�F � 19n2

�Be
F�B
r2 � 19n2

þDe
F�D
r2 þ 7n2

�Ae
F�A
r2 þ 7n2

þCe
F�C
r2 � 14nþn�Ee

F�E
r2

h i
¼ 0:
It can be further expressed as
38 nþn�F
n2 � 19 n2

�Bþn2
þD

n2 e
F�B
r2

þ7 n2
�Aþn2

þC�2nþn�E
n2 e

F�A
r2

þ19 n2
þD
n2 e

F�B
r2 � e

F�D
r2

� �
�7 n2

þC
n2 e

F�A
r2 � e

F�C
r2

� �
þ 14 nþn�E

n2 e
F�A
r2 � e

F�E
r2

� �
¼ 0:

ð12Þ
Since A;B;C;D; E, and F satisfy (10), the following results can easily be observed: the values
n2
þC
n2 e

F�A
r2 � e

F�C
r2

� �
; nþn�E

n2 e
F�A
r2 � e

F�E
r2

� �
, and n2

�Aþn2
þC�2nþn�E

n2 e
F�A
r2 are all close to 0. Concisely, let
d1 ,
n2
þC
n2 e

F�A
r2 � e

F�C
r2

� �
;

d2 ,
nþn�E

n2 e
F�A
r2 � e

F�E
r2

� �
;

d3 ,
n2
�Aþn2

þC�2nþn�E
n2 e

F�A
r2 :
Taken the assumption B P D P F in consideration, je
F�B
r2 � e

F�D
r2 j is a small variable less than 1. Now let g , n2

þD
n2 e

F�B
r2 � e

F�D
r2

� �
.

With the notation of D, the variable g is a small number close to 0. Plugging these four auxiliary variables d1; d2; d3, and g into
Eq. (12), then
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38nþn�F
n2 � 19ðn2

�Bþ n2
þDÞ

n2 e
F�B
r2 þ 7d3 þ 19g� 7d1 þ 14d2 ¼ 0:
For clarity, let e ¼ 7d3 þ 19g� 7d1 þ 14d2, and we have
r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F � B

ln 38nþn�Fþn2e
19ðn2

�Bþn2
þDÞ

vuut :
The local extremal points of bSðrÞ are r ¼ 0;þ1, and r0. In the following, we compare the three values of bSðrÞ with
r ¼ 0;þ1, and r0. According to (10), the following equations can easily be obtained based on Eq. (11):
lim
r!þ1

bSðrÞ ¼ � ðnþ�n�Þ2
n2 ;

lim
r!0þ

bSðrÞ ¼ 0:
Without loss of generality, let A ¼ minðA; C; EÞ. In view of the assumed condition B P D P F; bSðr0Þ can be approximate to
the next inequations:
bSðr0Þ < 1

12n2 �19ðnþ � n�Þ2e�
F

r2 þ 7ðnþ � n�Þ2e�
A
r2

h i
¼ 1

12n2 7ðnþ � n�Þ2ðe�
A
r2 � e�

F
r2 Þ � 12ðnþ � n�Þ2e�

F
r2

h i
< � ðnþ�n�Þ2

n2 ;
where the last inequality is easily hold by the inequalities e�
A
r2 < e�

F
r2 and e�

F
r2 < 1.

In case of D P B P F, we will have the same result. Based on the analyses above, we obtain the next theorem.

Theorem 1. Suppose that (10) holds. r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F�B

ln38nþn�Fþn2e
19ðn2�Bþn2

þDÞ

s
is the determined global minimum point of bSðrÞ in the case of

minfB;DgP F.
Using a similar calculation we can obtain the determined global minimum points of the objective functions corresponding to

other four cases: minfD; FgP B and minfB; FgP D. Here we only list the results, and the derivation processes are not shown in
this section due to space limitation.

Theorem 2. Suppose that (10) holds. r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B�F

ln 19n2�B�n2e
38nþn�F�19n2

þD

r
resp:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�F

ln
19n2
þD�n2e

38nþn�F�19n2�B

s0B@
1CA is the determined global minimum point of bSðrÞ

in the case of minfD; FgP B (resp. minfB; FgP D), where e ¼ 7 n2
�A
n2 e

B�A
r2 þ 7 n2

þC
n2 e

B�C
r2 � 14 nþn�E

n2 e
B�E
r2 � 19 n2

þD
n2 e

B�D
r2 � e

B�F
r2

� �
resp: 7 n2

�A
n2 e

D�A
r2 þ 7 n2

þC
n2 e

D�C
r2 � 14 nþn�E

n2 e
D�E
r2 þ 19 n2

�B
n2 ðe

D�F
r2 � e

D�B
r2 Þ

� �
.

3.3. Connections with two other kernel criteria

Based on the kernel target alignment [9], a modified kernel target alignment criterion was proposed for uneven data by
substituting the target matrix Y with Yu [14]. Yu denotes the modified target matrix and Yu ¼ yuyT

u , where

yu ¼ ð½yu�1; ½yu�2; . . . ; ½yu�nÞ
T and
½yu�i ¼
1

nþ
; yi ¼ 1;

� 1
n�
; yi ¼ �1:

(

The numerator of the modified kernel target alignment criterion can be calculated as
< K;Yu>F ¼
X

i;j

Kij½Yu�ij ¼
X

yi¼yj¼1

1
n2
þ

exp � jjxi � xjjj2

r2

 !
þ

X
yi¼yj¼�1

1
n2
�

exp � jjxi � xjjj2

r2

 !
�
X
yi–yj

2
nþn�

exp � jjxi � xjjj2

r2

 !
:

The inter-cluster distance in the feature space also was used as an index to choose proper kernel parameters [32].
Experiment results showed that d4F , an index denotes the distance between two class means in the feature space, can indi-
cate the class separation robustly. The d4F can be written as
d4FðXþ;X�Þ ¼ dðx̂þ; x̂�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi¼yj¼1exp � jjxi�xj jj2

r2

� �
n2
þ

þ
P

yi¼yj¼�1exp � jjxi�xj jj2

r2

� �
n2
�

�
2
P

yi–yj
exp � jjxi�xj jj2

r2

� �
nþn�

vuut
;
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where x̂þ and x̂� are the class means of the mapped positive class Xþ and the mapped negative class X�. Compared with Eq.
(6), we have
< K;Yu>F ¼ d2
4FðXþ;X�Þ ¼

n2

4n2
þn2
�
< K;Yc>F :
Based on above discussion, centered kernel polarization is similar to the criterion proposed in [14], but without the nor-
malization. Furthermore, the optimization problem that maximizing the empirical estimate of centered kernel polarization is
totally equivalent to the maximization with the measure d4F introduced in [32] although the derivation approaches this cri-
terion in a completely different way. In other words, the proposed alignment maximization problem, from a geometrical
point of view, can be regarded as the maximization of the distance between the class mean locations. We note that Ref.
[32] chose the index d4F as optimization criterion only based on the testing performances in experiments. The discussion
on the local and global extremal properties of objective function in Section 3.2 exactly makes up for the theory deficiency
of [32].

4. The ‘‘local multiclass centered kernel polarization’’ criterion

The multiclass classification problems are usually divided into binary classification sub-problems. And several methods,
such as one-versus-rest method [21] and one-versus-one method [15], have been proposed. For SVM, Ref. [21] proposed that
one-versus-rest method and one-versus-one method usually have no significant difference in classification accuracy when
the underlying binary classifiers are well tuned. As one-versus-rest method has lower computation cost and conceptual sim-
plicity, our discussion here are based on one-versus-rest method.

Given a problem with L classes, one-versus-rest method constructs L binary classifiers, in which each classifier is trained
to separate one class from the other classes. One always optimizes kernel parameter by using the sum function of corre-
sponding index values or alignment values of all pairs of classes [32]. Recently, the multiclass kernel polarization criterion
for Gaussian kernel function was proposed [30]. The criterion can be measured as
PmðK;YmÞ ¼< K;Ym>F ð13Þ
where
ðYmÞij ¼
1; yi ¼ yj ¼ 1;2; . . . ; L;

�1; yi – yj;

(

and L denotes the class numbers.

Multiclass kernel polarization discards the restriction of binary classification, and it can encode the multiclass informa-
tion and directly address the multiclass problems simultaneously. Detailed description of multiclass kernel polarization can
be found in [30]. Compared with previous methods, multiclass kernel polarization has better computation efficiency. The
optimal parameter can be obtained by maximizing PmðK;YmÞ, i.e.
ropt ¼ arg max
r

PmðK;YmÞ:
Clearly, kernel polarization can be seen as a special case of multiclass kernel polarization when all samples belong to two
classes.

We note that the optimal alignment happens when Kij ¼ 1; yi ¼ yj ¼ 1;2; . . . ; L, which implies that all examples of the
same class are mapped into the same point in the feature space. In other words, within-class structure penalizes the align-
ment value. Similar problems can be seen in kernel target alignment and kernel polarization [20,29]. For binary-class clas-
sification problems, Refs. [20,29] have put forward different schemes to remedy this problem for kernel target alignment and
kernel polarization, respectively. To the best of our knowledge, there was no previous work to remedy this problem for mul-
ticlass classification problems.

In this section, we present a feasible multiclass evaluation criterion, which combines the advantages of previous criteria.
Let Ylm be an aggregation target matrix, i.e., the n� n matrix with the element ðYlmÞij being the aggregation degree between xi

and xj,
ðYlmÞij ¼
expð�tjjxi � xjjj2Þ; yi ¼ yj ¼ 1;2; . . . ; L;

�1; yi – yj;

(
ð14Þ
where t 2 R and t 2 ð0;þ1Þ. The new measure criterion, namely local multiclass centered kernel polarization, is defined as
follows:
LcðK;YlmÞ ¼< Kc; ðYlmÞc>F : ð15Þ
And the optimal parameter is obtained by
ropt ¼ arg max
r

LcðK;YlmÞ



Table 1
The specification of selected data sets.

Data set Number of features Number of samples Number of classes

Sonar 60 208 2
Heart 13 270 2
Liverdisorder 6 345 2
Ionosphere 34 351 2
Wdbc 30 569 2
Australian 14 690 2
Ringnorm 20 1000 2
Twonorm 20 1000 2
German 24 1000 2
Splice 60 1000 2
Yeast 8 1136 2
A1a 123 1605 2
Mushrooms 112 2031 2
W1a 300 2477 2
Phoneme 5 5404 2
Iris 4 150 3
Wine 13 178 3
Glass 9 214 6
Vowel 10 990 11
Satimage 36 2000 6
IJK 16 2241 3
Segment 19 2310 7
Waveform 21 6000 3
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Compared with multiclass kernel polarization (Eq. (12)), the target values for within-class pairs in Eq. (13) are weighted by
the aggregation degree. This means that all samples of the same class are not forced to map into the same point any more.
The farther away the pairs in the same class are, the smaller target values are and the less influences on the value of this
measure are. The principle of this method is same as that of local kernel polarization [29]. Local kernel polarization adopts
an affinity matrix weighting the kernel values for within-class pairs, while the new presented criterion adopts an aggrega-
tion matrix weighting the target values for the consistency of text.

Identical to local kernel polarization, far-apart points in the same class are not made close as the multiclass kernel polar-
ization does. Thus the local structure of the data of the same class tends to be preserved. At the same time, points in different
classes are also made apart. We note that it adds a hyperparameter t which must be tuned. For convenience, in the following
experiments, the value of t is fixed, i:e:; t ¼ 1

2.

5. Experimental results

5.1. Experimental setup

In experiments, we selected 23 popular data sets in which 15 data sets for the binary-class classification and others for
the multiclass classification [5,10,12]. The specifications of these data sets are listed in Table 1. All the benchmark examples
considered in Table 1 are small databases ranging from 150 to 6000, in feature number from 4 to 300, and in class number
from 2 to 11. The Yeast dataset is took as the same as [29], and it is a binary classification dataset between ‘CYT’ and ‘NUC &
Table 2
The variables A� F for fifteen data sets.

Data set A B C D E F Satisfy (10)?

Sonar 10.8569 0.0392 12.4571 0.0532 11.5366 0.2573 Yes
Heart 82.5611 0.0717 98.9115 0.0609 96.9528 1.2065 Yes
Liverdisorder 4.3783e+04 12.25 8.5878e+04 12.000 8.7305e+04 6.0000 Yes
Ionosphere 59.8720 0.0100 95.0000 0.0382 73.9753 0.2178 Yes
Wdbc 1.8927e+07 153.2981 1.7832e+06 14.5616 2.2459e+07 119.2926 Yes
Australian 1.0000e+10 6.8081 3.4803e+07 0.3906 1.0002e+10 6.3397 Yes
Ringnorm 114.6558 6.4984 476.7291 21.1897 310.7860 17.1179 No
Twonorm 114.9259 5.9452 134.0748 6.6845 171.0332 7.7641 No
German 2.7609e+04 1.0000 3.4262e+04 5.0000 3.5004e+04 6.0000 Yes
Splice 303.0000 49.0000 278.0000 1.0000 300.0000 52.0000 No
Yeast 1.5245 0.0001 1.4411 0.0002 1.8918 0.0003 Yes
A1a 26.0000 1.0000 28.0000 2.0000 28.0000 2.0000 No
Mushrooms 36.0000 2.0000 34.0000 2.0000 36.0000 4.0000 No
W1a 55.0000 1.0000 126.0000 1.0000 112.0000 1.0000 No
Phoneme 27.6965 1.0000e-06 38.1036 1.0000e-06 34.8110 5.3700e-04 Yes
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Fig. 1. SðrÞ on different r values on fifteen datasets for bivariate classification.
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MIT’. The IJK dataset is a subset problem of the letter data set corresponding to the classes I, J and K. For each data set, we
partition it into a training set and a test set by stratified sampling: 50% of the data set serves as training set and the left 50% as
test set. For multiclass problem, the original training data are normalized to have zero mean and unit variance.

We denote centered kernel polarization, kernel polarization, centered kernel alignment and cross validation method, as
‘CKP’, ‘KP’, ‘CKA’, and ‘CV’, respectively.

The purpose of these experiments is mainly to provide empirical proof for the following two hypotheses: (H1) For
binary-class classification problems, the formulated centered kernel polarization criterion has a determined global minimum
point. And this criterion can lead competitive performance compared with KP, CKA and CV method on test accuracy, Cohen’s
kappa statistic [4] and time efficiency. (H2) For multiclass classification problems, the proposed multiclass criterion is a uni-
versal one for Gaussian kernel selection.

Three Gaussian kernel based method, kernel direct discriminant analysis (KDDA), generalized discriminant analysis
(GDA) and SVM, are applied to each data set. KDDA and GDA are two popular kernel-based feature extraction algorithms.



Table 3
Comparison of KDDA + KNN using the optimized r obtained by KP, CKP, CKA and CV.

Data set Accuracy (%)

KP CKP CKA CV

Sonar 75.58 ± 0.0724 76.35 ± 0.0947 82.60 ± 0.0629 83.94 ± 0.0542
Heart 77.04 ± 0.0296 76.56 ± 0.0242 76.67 ± 0.0297 80.59 ± 0.0253
Liverdisorder 56.82 ± 0.0321 59.19 ± 0.0392 58.50 ± 0.0551 63.12 ± 0.0234
Ionosphere 80.97 ± 0.0385 85.29 ± 0.0242 85.80 ± 0.0253 86.93 ± 0.0328
Wdbc 86.42 ± 0.0119 86.04 ± 0.0133 85.89 ± 0.0201 82.07 ± 0.0808
Australian 58.32 ± 0.0294 58.09 ± 0.0353 57.85 ± 0.0251 61.60 ± 0.0341
Ringnorm 97.64 ± 0.0069 97.68 ± 0.0059 97.59 ± 0.0058 97.84 ± 0.0067
Twonorm 95.96 ± 0.0080 95.94 ± 0.0068 96.14 ± 0.0073 96.64 ± 0.0055
German 59.14 ± 0.0169 67.00 ± 0.0204 63.50 ± 0.0427 70.24 ± 0.0131
Splice 76.20 ± 0.0253 74.40 ± 0.0425 72.93 ± 0.0335 75.47 ± 0.0298
Yeast 58.10 ± 0.0213 59.05 ± 0.0094 58.54 ± 0.0217 65.94 ± 0.0121
A1a 74.72 ± 0.0132 75.47 ± 0.0067 74.76 ± 0.0125 78.01 ± 0.0104
Mushrooms 92.88 ± 0.0110 93.15 ± 0.0106 91.39 ± 0.0063 99.89 ± 0.0021
W1a 89.19 ± 0.0180 89.58 ± 0.0140 89.44 ± 0.0137 90.11 ± 0.0121
Phoneme 70.54 ± 0.0063 72.63 ± 0.0117 71.94 ± 0.0072 80.66 ± 0.0043
W-T-L 2-13-0 – 3-11-1 0-3-12

Kappa (%)

Sonar 51.19 ± 0.1424 52.73 ± 0.1883 65.37 ± 0.1239 67.87 ± 0.1091
Heart 53.27 ± 0.0567 52.34 ± 0.4244 52.20 ± 0.0625 60.40 ± 0.0509
Liverdisorder 11.69 ± 0.0616 16.40 ± 0.0698 14.11 ± 0.0816 20.63 ± 0.0598
Ionosphere 58.63 ± 0.0782 68.23 ± 0.0545 68.99 ± 0.0541 71.33 ± 0.0783
Wdbc 70.53 ± 0.260 69.81 ± 0.0287 69.50 ± 0.0437 58.59 ± 0.2044
Australian 15.32 ± 0.0591 15.18 ± 0.0734 14.68 ± 0.0505 23.05 ± 0.0882
Ringnorm 95.27 ± 0.0117 95.36 ± 0.0139 95.15 ± 0.0119 95.68 ± 0.0135
Twonorm 91.91 ± 0.0161 91.87 ± 0.0136 92.27 ± 0.0147 93.27 ± 0.0109
German 4.95 ±0.0463 7.38 ± 0.018 2.67 ± 0.0311 1.44 ± 0.0045
Splice 52.49 ± 0.0495 48.92 ± 0.0792 46.08 ± 0.0642 51.08 ± 0.0587
Yeast 13.87 ± 0.0401 15.29 ± 0.0173 14.40 ± 0.0494 22.78 ± 0.0421
A1a 31.60 ± 0.0315 32.94 ± 0.0174 31.56 ± 0.0290 30.20 ± 0.0562
Mushrooms 85.52 ± 0.0226 86.27 ± 0.0214 82.75 ± 0.0125 99.78 ± 0.0042
W1a 72.07 ± 0.0618 77.75 ± 0.0271 77.16 ± 0.0284 67.82 ± 0.0434
Phoneme 28.86 ± 0.0134 34.26 ± 0.0270 32.55 ± 0.0147 50.22 ± 0.0440
W-T-L 2-12-1 – 3-11-1 2-9-4

Training time (s)

Sonar 0.3086 ± 0.0508 0.2827 ± 0.0087 0.3514 ± 0.0568 5.2321 ± 0.1247
Heart 0.4042 ± 0.0134 0.4222 ± 0.0189 0.6527 ± 0.2050 8.0488 ± 0.1881
Liverdisorder 2.2038 ± 0.1179 1.0303 ± 0.0636 1.4290 ± 0.0703 20.3363 ± 0.0598
Ionosphere 0.7314 ± 0.0373 0.8835 ± 0.0214 0.9497 ± 0.0284 16.4965 ± 0.4424
Wdbc 2.9051 ± 0.3840 3.3507 ± 0.3199 4.8683 ± 0.3922 39.7987 ± 0.2883
Australian 6.5856 ± 0.4119 5.1851 ± 0.6938 7.2073 ± 1.6030 52.5616 ± 0.6351
Ringnorm 7.1405 ± 0.3056 8.0671 ± 0.2768 9.7672 ± 0.1526 129.0443 ± 1.7096
Twonorm 5.6451 ± 0.1829 6.4238 ± 0.2274 9.9196 ± 0.4202 129.0104 ± 0.5327
German 24.3285 ± 6.5150 8.2415 ± 1.2194 16.6576 ± 6.7238 130.6449 ± 0.1917
Splice 9.7992 ± 0.5823 7.7126 ± 0.3486 8.7010 ± 0.4616 139.3011 ± 0.1349
Yeast 29.8939 ± 1.5521 9.8473 ± 0.1724 11.7641 ± 0.6443 110.6901 ± 1.0258
A1a 83.6737 ± 2.3772 19.3573 ± 0.7923 75.8727 ± 2.2965 341.9878 ± 3.2165
Mushrooms 26.6821 ± 0.0226 30.3166 ± 1.0439 116.2290 ± 4.7105 601.6218 ± 3.2430
W1a 612.6792 ± 24.2753 134.4480 ± 15.7834 321.9465 ± 11.8732 1047.9342 ± 4.7235
Phoneme 982.2161 ± 20.8242 257.9333 ± 8.6783 521.2031 ± 11.3165 2450.5577 ± 3.6971
W-T-L 9-5-1 – 12-3-0 15-0-0
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They can be viewed as the implementation of the well-known LDA method in the kernel feature space. Detailed descriptions
of KDDA and GDA can be found in [3,17]. In experiments KDDA and GDA are followed by a K-Nearest Neighbor (K-NN) clas-
sifier [26] to perform the recognition. The parameter K in K-NN is set as 1 and the regularization parameter C in SVM is set
with the values f2�3;2�2; . . . ;22;23g. For cross validation method, we use the 10-fold cross validation to find the best r
within the given set f2�5;2�4; . . . ;24;25g. The recognition performance is evaluated by the best classification accuracy rate
and the Cohens kappa meter obtained by average 10 randomly independent performances.

One particular line search algorithm is adopted here. First comes the bracketing phase by advance-retreat method with
the starting point r0 ¼ d0, which denotes the average pairwise Euclidean distance between the training samples. Default step
h ¼ 1 and Lstop ¼ 1:0e� 6. The approximate solution to the objective function is subsequently found by using fminbnd func-
tion of Matlab.



Table 4
Comparison of GDA + KNN using the optimized r obtained by KP, CKP, CKA and CV.

Data set Accuracy (%)

KP CKP CKA CV

Sonar 87.98 ± 0.0321 87.98 ± 0.0351 88.17 ± 0.0475 89.81 ± 0.0348
Heart 75.55 ± 0.0382 75.93 ± 0.0352 74.37 ± 0.0363 80.59 ± 0.0214
Liverdisorder 60.52 ± 0.0443 61.33 ± 0.0273 61.85 ± 0.0288 63.93 ± 0.0233
Ionosphere 90.40 ± 0.0262 91.93 ± 0.0167 93.16 ± 0.0114 93.18 ± 0.0114
Wdbc 90.07 ± 0.0199 89.89 ± 0.0132 90.49 ± 0.0157 91.93 ± 0.0118
Australian 60.55 ± 0.0239 64.03 ± 0.0236 60.43 ± 0.0354 66.24 ± 0.0234
Ringnorm 95.88 ± 0.0104 95.86 ± 0.0108 96.62 ± 0.0086 97.36 ± 0.0052
Twonorm 94.26 ± 0.0082 94.22 ± 0.0094 93.88 ± 0.0064 96.40 ± 0.0056
German 68.18 ± 0.0207 69.70 ± 0.0154 67.96 ± 0.0097 71.30 ± 0.0111
Splice 78.60 ± 0.2540 78.93 ± 0.0236 78.47 ± 0.0272 78.93 ± 0.0209
Yeast 59.36 ± 0.0128 62.08 ± 0.0128 61.39 ± 0.0149 65.55 ± 0.0148
A1a 78.56 ± 0.0137 78.75 ± 0.0165 77.95 ± 0.0151 80.37 ± 0.0124
Mushrooms 99.92 ± 0.0016 99.92 ± 0.0016 99.92 ± 0.0016 99.92 ± 0.0016
W1a 96.08 ± 0.0220 96.35 ± 0.0236 96.12 ± 0.0239 96.88 ± 0.0217
Phoneme 71.33 ± 0.0069 79.88 ± 0.0072 79.14 ± 0.0060 86.31 ± 0.0065
W-T-L 2-13-0 – 3-11-1 0-3-12

Kappa (%)

Sonar 75.95 ± 0.0629 75.95 ± 0.0691 76.33 ± 0.0935 79.57 ± 0.0689
Heart 50.59 ± 0.0759 51.37 ± 0.0701 48.05 ± 0.0667 60.55 ± 0.0467
Liverdisorder 19.16 ± 0.0943 21.04 ± 0.0606 17.62 ± 0.0588 25.53 ± 0.0598
Ionosphere 78.71 ± 0.0578 82.65 ± 0.0342 81.49 ± 0.0541 85.40 ± 0.0255
Wdbc 78.54 ± 0.436 78.20 ± 0.0301 79.34 ± 0.0355 82.60 ± 0.2256
Australian 20.52 ± 0.0506 27.33 ± 0.0481 19.86 ± 0.0710 32.45 ± 0.0452
Ringnorm 91.77 ± 0.0207 91.73 ± 0.0216 93.24 ± 0.0171 97.72 ± 0.0105
Twonorm 88.50 ± 0.0164 88.42 ± 0.0187 87.75 ± 0.0147 92.79 ± 0.0112
German 24.12 ± 0.0457 27.56 ± 0.0381 16.48 ± 0.0947 17.72 ± 0.1567
Splice 57.24 ± 0.0504 57.95 ± 0.0466 56.98 ± 0.0548 57.87 ± 0.0422
Yeast 16.40 ± 0.0286 21.60 ± 0.0283 20.38 ± 0.0306 22.49 ± 0.0443
A1a 47.31 ± 0.0331 48.22 ± 0.0296 47.41 ± 0.0429 49.43 ±0.0356
Mushrooms 99.84 ± 0.0033 99.84 ± 0.0033 99.84 ± 0.0033 99.84 ± 0.0033
W1a 38.29 ± 0.1575 46.17 ± 0.0489 26.99 ± 0.2561 47.23 ± 0.1718
Phoneme 30.95 ± 0.0162 51.44 ± 0.0196 49.79 ± 0.0135 66.67 ± 0.0157
W-T-L 3-12-0 – 3-11-1 0-8-7

Training time (s)

Sonar 0.3240 ± 0.0788 0.2810 ± 0.0099 0.3445 ± 0.0421 3.4088 ± 0.0726
Heart 0.4019 ± 0.0142 0.4062 ± 0.0156 0.6706 ± 0.2805 6.3427 ± 0.1151
Liverdisorder 2.3794 ± 1.3249 1.0200 ± 0.0577 1.4660 ± 0.0696 10.8155 ± 0.2700
Ionosphere 0.7348 ± 0.0640 0.8767 ± 0.0225 0.9450 ± 0.0322 9.7742 ± 0.3106
Wdbc 2.9490 ± 0.4003 3.3387 ± 0.3040 5.0233 ± 0.3910 38.2645 ± 1.3036
Australian 7.0546 ± 0.3014 5.3624 ± 0.8108 7.6061 ± 1.7542 48.1913 ± 3.4289
Ringnorm 7.6908 ± 0.1917 8.4821 ± 0.1922 10.3493 ± 0.1672 123.8194 ± 3.9560
Twonorm 5.7686 ± 0.1360 6.4664 ± 0.2195 9.8936 ± 0.4141 117.7365 ± 0.6655
German 25.9599 ± 7.7235 8.0211 ± 1.2957 17.1543 ± 7.2221 125.3052 ± 6.3187
Splice 28.8380 ± 3.6742 27.7168 ± 3.0496 32.6939 ± 3.0717 130.8596 ± 4.2892
Yeast 28.5955 ± 0.9887 8.8009 ± 0.1577 10.7370 ± 0.5659 72.0570 ± 0.4623
A1a 82.2572 ± 1.3668 19.5349 ± 0.6760 75.8738 ± 3.4381 410.5585 ± 3.8702
Mushrooms 26.4290 ± 0.9476 29.5990 ± 1.0690 118.5738 ± 2.6458 740.9735 ± 18.7118
W1a 618.7053 ± 23.6417 138.0171 ± 15.6908 325.0727 ± 15.2622 1391.0913 ± 26.4485
Phoneme 1051.2190 ± 30.9665 405.8839 ± 11.6355 496.6071 ± 11.1552 4156.6233 ± 45.4712
W-T-L 8-4-3 – 12-3-0 15-0-0
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All the compared calculations are carried out by using Matlab (V2008, the Mathworks, Inc.) and the SVM toolbox devel-
oped by Gunn from http://www.isis.ecs.soton.ac.uk/isystems/kernel/. All experiments are conducted on a PC with 2.93 GHz
CPU and 2G RAM.

5.2. Comparisons for binary-class problems

Table 2 shows the variables A;B;C;D; E and F in Section 3.2 of the fifteen binary-class data sets. And Table 2 also shows
that these variables on 9 out of 15 datasets satisfy the relationships shown in (10). Fig. 1 depicts SðrÞ on different r of the
fifteen datasets. It is clear from Fig. 1 that SðrÞ has the determined global minimum point for all fifteen data sets. We note
that the objective function on every data set monotonically increases quickly when the value of r is greater than the optimal
value.

http://www.isis.ecs.soton.ac.uk/isystems/kernel/


Table 5
Comparison of SVM using the optimized r obtained by KP, CKP, CKA and CV.

Data set Accuracy (%)

KP CKP CKA CV

Sonar 88.27 ± 0.0323 88.46 ± 0.0327 88.85 ± 0.0321 89.91 ± 0.0327
Heart 85.41 ± 0.0197 85.19 ± 0.0218 82.30 ± 0.0870 86.18 ± 0.0627
Liverdisorder 59.54 ± 0.0736 68.38 ± 0.0237 63.93 ± 0.0275 69.56 ± 0.0162
Ionosphere 90.00 ± 0.0178 90.23 ± 0.0153 89.89 ± 0.0131 91.18 ± 0.0294
Wdbc 93.65 ± 0.0118 93.68 ± 0.0105 92.84 ± 0.0118 94.29 ± 0.0131
Australian 70.17 ± 0.0227 69.80 ± 0.0246 70.06 ± 0.0251 67.24 ± 0.0159
Ringnorm 96.54 ± 0.0068 96.56 ± 0.0065 96.64 ± 0.0066 96.11 ± 0.0081
Twonorm 96.90 ± 0.0044 96.92 ± 0.0043 97.06 ± 0.0042 97.38 ± 0.0034
German 70.08 ± 0.0213 75.46 ± 0.0167 71.08 ± 0.0305 75.40 ± 0.0718
Splice 82.18 ± 0.1183 85.88 ± 0.0083 85.86 ± 0.0079 85.54 ± 0.0116
Yeast 59.28 ± 0.0133 67.36 ± 0.0107 67.41 ± 0.0147 68.89 ± 0.0459
A1a 78.55 ± 0.0072 82.82 ± 0.0075 79.55 ± 0.0072 82.48 ± 0.0858
Mushrooms 99.92 ± 0.0016 99.92 ± 0.0016 99.92 ± 0.0016 99.92 ± 0.0016
W1a 97.13 ± 0.0038 97.88 ±0.0039 97.49 ± 0.0057 97.70 ± 0.0261
Phoneme 70.24 ± 0.1223 85.31 ± 0.4222 82.09 ± 0.3254 88.16 ± 0.0252
W-T-L 6-9-0 – 6-8-1 0-4-11

Kappa (%)

Sonar 76.48 ± 0.0641 76.85 ± 0.0649 77.58 ± 0.0639 79.82 ± 0.0217
Heart 69.75 ± 0.0451 69.30 ± 0.0479 62.07 ± 0.2201 71.21 ± 0.0684
Liverdisorder 11.23 ± 0.1809 34.74 ± 0.0424 25.67 ± 0.0554 26.67 ± 0.0372
Ionosphere 77.40 ± 0.0398 77.91 ± 0.0342 77.07 ± 0.0294 78.62 ± 0.0257
Wdbc 85.97 ± 0.0251 86.03 ± 0.0223 84.13 ± 0.0270 86.60 ± 0.0270
Australian 38.45 ± 0.0501 36.85 ± 0.0545 37.67 ± 0.0577 38.27 ± 0.0415
Ringnorm 93.08 ± 0.0135 93.12 ± 0.0130 93.28 ± 0.0133 93.22 ± 0.0127
Twonorm 93.79 ± 0.0089 93.83 ± 0.0086 94.11 ± 0.0084 94.24 ± 0.0431
German 21.64 ± 0.0487 35.51 ± 0.0528 27.91 ± 0.1328 32.89 ± 0.0337
Splice 64.68 ± 0.2279 71.79 ± 0.0165 71.76 ± 0.0155 70.89 ± 0.0165
Yeast 21.45 ± 0.0123 31.96 ± 0.0191 31.95 ± 0.0259 32.12 ± 0.0204
A1a 56.66 ± 0.0752 72.82 ± 0.0175 69.44 ± 0.0672 76.45 ± 0.0158
Mushrooms 99.84 ± 0.0033 99.84 ± 0.0033 99.84 ± 0.0033 99.84 ± 0.0033
W1a 77.16 ± 0.0035 85.43 ± 0.0039 79.49 ± 0.0045 88.90 ± 0.0061
Phoneme 72.52 ± 0.4571 81.61 ± 0.1991 80.52 ± 0.0739 86.16 ± 0.0382
W-T-L 7-8-0 – 3-11-1 0-6-9

Training time (s)

Sonar 0.5030 ± 0.1130 0.5710 ± 0.1811 0.3926 ± 0.1433 29.7634 ± 0.1645
Heart 0.6101 ± 0.0139 0.6159 ± 0.0230 1.0997 ± 0.3746 46.8753 ± 0.9234
Liverdisorder 2.9291 ± 0.9388 1.6098 ± 0.1358 1.7327 ± 0.0070 64.8736 ± 1.0567
Ionosphere 1.2020 ± 0.1174 1.2129 ± 0.0378 0.9001 ± 0.6232 84.9854 ± 2.9077
Wdbc 8.4472 ± 1.2597 9.3869 ± 1.4757 11.8714 ± 1.3829 163.5435 ± 3.6543
Australian 17.0070 ± 2.8063 16.3856 ± 0.9510 17.9830 ± 0.9842 248.7530 ± 4.7996
Ringnorm 9.8213 ± 0.3204 10.7194 ± 0.2995 12.4638 ± 0.3672 676.2098 ± 8.5660
Twonorm 8.1341 ± 0.2399 8.8409 ± 0.2095 17.4327 ± 0.1241 567.7665 ± 3.6543
German 31.2003 ± 4.0011 26.9586 ± 4.1780 27.7083 ± 3.5367 652.6702 ± 6.3186
Splice 12.4352 ± 1.0405 11.4572 ± 0.8385 13.6532 ± 1.2923 772.8125 ± 11.5496
Yeast 32.7664 ± 1.0457 18.2827 ± 3.5188 42.2034 ± 1.4669 1278.5952 ± 14.7876
A1a 90.2697 ± 2.3220 28.0686 ± 1.0399 89.3656 ± 1.4047 1743.7843 ± 23.8002
Mushrooms 45.7491 ± 1.2988 48.8908 ± 1.3310 137.8919 ± 0.1291 3756.6428 ± 35.7118
W1a 605.0344 ± 17.8913 155.8632 ± 12.7367 331.8414 ± 16.2334 1590.8452 ± 28.8695
Phoneme 3782.3433 ± 300.2365 1293.2213 ± 33.8734 2446.6113 ± 399.1243 12523.7352 ± 112.5732
W-T-L 7-5-3 – 11-3-1 15-0-0
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The formulated approximate criterion functions of ‘CKP’ and ‘KP’ have been proved to have a determined global minimum
point. Thus, when the approximate criterion function is a sufficient approximation of the criterion function, without repeat-
ing the searching procedure with different starting points we can locate the best local minimum. For ‘CKP’ and ‘KP’, the run
time is the sum of the time for looking for ropt and the recognition time spent on classification corresponding to the selected
ropt . For the criterion ‘CKA’, we repeat the optimization procedure three times with different starting points
d0=50; d0; d0 � 50, The final r is thus the one with the largest alignment value. The run time of CKA is the time for looking
for the ‘best’ r from different start points and the recognition time spent on classification corresponding to the selected
parameter.

The average classification accuracies with standard deviations, the average kappa statistic with standard deviations, and
the mean running time with standard deviations over 10 trials of KDDA + KNN, GDA + KNN and SVM using the optimal r
obtained by KP, CKP, CKA and CV are summarized in Tables 3–5, respectively. The bold font denotes the best two recognition
performance and the best time efficiency across the methods compared. On each data set, the test accuracy, Cohen’s kappa
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statistics and the elapsed time are compared by using the paired t test according to the resampling scheme used. The sig-
nificance level, a, is taken as 0.05 for all statistical tests. Win-tie-loss (W-T-L) summarizations based on t-test are attached
at the bottoms of Tables 3–5. A win or a loss means that CKP is better or worse than other criterion on a data set. A tie means
that both criteria have the same performance.

From Tables 3–5, we found the cross validation method always gives the best accuracy and the highest kappa in most
cases, but it costs the most time, almost 10 times more than the other three criteria.

According to the prediction accuracy in Tables 3,4, we note that CKP obtains the best or next best accuracy on 9 out of 15
datasets. KP and CKA fall behind, giving better performance on no more than 6 out of 15 datasets in Tables 3,4. Meanwhile,
CKP provides the best or next best accuracy on 10 out of 15 datasets in Table 5. KP and CKA present better performance on 3
datasets and 7 datasets in terms of test accuracy in Table 5, respectively. From Tables 3,4, CKP gives a comparable perfor-
mance to KP and CKA on all but the Twonorm data set, and CKP is significantly better than KP and CKA on 2 and 3 out of
15 datasets, respectively. Table 5 shows that CKP is statistically significantly more accurate than the other two criteria on
6 datasets. There is no significant difference between CKP and KP on at least 8 out 15 datasets as well as CKA.

In terms of the Cohen’s kappa statistic, the similar results as those in testing accuracy can be found in Tables 3 and 4. From
Table 5, we note that CKP obtains the best or next best performance on 10 out of 15 datasets. CKP is more accurate (statis-
tically significantly) than KP and CKA on 7 and 3 datasets, respectively. On most of the rest of the datasets, CKP obtains kappa
comparable to KP as well as CKA.

For the training time, the KP criterion gives the shortest training time on 6 datasets in Tables 3–5. In these three tables,
CKA only wins out on the Sonar dataset in Table 5. CKP gains the shortest running time on 9, 9 and 8 datasets in Tables 3–5,
respectively. The W-T-L summarization shows that CKP has an obvious advantage compared with KP on 9 datasets, 8 data-
sets and 7 datasets in Tables 3–5, respectively. It implies a lot of time locating the optimal parameter may be saved since the
proposed objective function curve has a trough. And on at least eleven datasets, CKP gives a comparable performance to KP as
well as CKA in Tables 3–5, and part of the reasons may be the omission of the calculation of the denominator of CKA.

In a nutshell, CKP is a robust and efficient indication of the goodness of the Gaussian kernel compared with KP and CKA for
binary-class problems.

5.3. Comparisons for multiclass problems

We compare the average accuracy, Cohen’s kappa statistic and the time efficiency of the multiclass kernel polarization,
the local centered multiclass kernel polarization and the multiclass centered kernel alignment. The Multiclass centered
Table 6
Comparison of KDDA + KNN using the optimized r obtained by MKP, LMCKP, MCKA and CV.

Data set Accuracy (%)

MKP LMCKP MCKA CV

Iris 94.00 ± 0.0398 93.33 ± 0.0251 92.67 ± 0.0261 95.20 ± 0.0128
Wine 96.07 ± 0.0152 96.29 ± 0.0167 95.51 ± 0.0129 97.08 ± 0.0095
Glass 43.08 ± 0.0390 59.91 ± 0.0647 62.58 ± 0.0388 65.51 ± 0.0290
Vowel 72.44 ± 0.0282 88.79 ± 0.0196 87.96 ± 0.0218 93.48 ± 0.0991
Satimage 83.29 ± 0.0099 83.76 ± 0.0081 83.74 ± 0.0058 84.78 ± 0.0032
IJK 92.52 ± 0.0109 93.08 ± 0.0088 81.41 ± 0.0191 95.62 ± 0.0062
Segment 92.70 ± 0.0068 94.03 ± 0.0069 95.33 ± 0.0083 96.75 ± 0.0052
Waveform 85.41 ± 0.0052 85.26 ± 0.0049 84.80 ± 0.0040 86.21 ± 0.0039
W-T-L 4-4-0 – 2-5-1 0-1-7

Kappa (%)

Iris 90.99 ± 0.0598 90.00 ± 0.0376 89.00 ± 0.0389 92.79 ± 0.0192
Wine 93.99 ± 0.0234 94.34 ± 0.0258 93.15 ± 0.0194 95.53 ± 0.0148
Glass 28.16 ± 0.0345 45.15 ± 0.0886 48.97 ± 0.0463 52.84 ± 0.0403
Vowel 70.42 ± 0.0301 87.98 ± 0.0209 87.09 ± 0.0233 93.00 ± 0.0107
Satimage 79.44 ± 0.0124 80.02 ± 0.0097 80.01 ± 0.0072 81.29 ± 0.0037
IJK 88.77 ± 0.0163 89.61 ± 0.0131 72.11 ± 0.0285 93.43 ± 0.0093
Segment 91.48 ± 0.0079 93.03 ± 0.0081 94.55 ± 0.0097 96.20 ± 0.0060
Waveform 78.11 ± 0.0078 77.89 ± 0.0073 77.19 ± 0.0060 79.32 ± 0.0059
W-T-L 4-4-0 – 2-5-1 0-1-7

Training time (s)

Iris 0.1468 ± 0.0138 0.1329 ± 0.0108 0.1687 ± 0.0251 3.6969 ± 0.3420
Wine 0.2631 ± 0.0336 0.1697 ± 0.0195 0.2250 ± 0.0140 4.7448 ± 0.2455
Glass 0.4177 ± 0.0304 0.2656 ± 0.0149 0.3443 ± 0.0238 6.7508 ± 0.3545
Vowel 8.2948 ± 0.3131 5.8637 ± 0.4464 9.5296 ± 0.3620 105.9906 ± 0.6406
Satimage 34.5680 ± 1.0524 25.6267 ± 0.9466 46.4461 ± 0.3009 379.7771 ± 1.3004
IJK 42.5332 ± 0.1432 31.2267 ± 0.6550 52.0300 ± 3.1791 534.2616 ± 1.3926
Segment 47.0254 ± 1.3095 35.1885 ± 1.3435 66.8769 ± 2.0267 578.8990 ± 1.1585
Waveform 334.7509 ± 2.4818 381.0420 ± 11.1378 591.9844 ± 18.7130 1781.3229 ± 3.9356
W-T-L 6-1-1 – 8-0-0 8-0-0



Table 7
Comparison of GDA + KNN using the optimized r obtained by MKP, LMCKP, MCKA and CV.

Data set Accuracy (%)

MKP LMCKP MCKA CV

Iris 93.87 ± 0.0210 94.00 ± 0.0211 94.26 ± 0.0244 96.40 ± 0.0167
Wine 97.76 ± 0.0191 97.64 ± 0.0134 97.19 ± 0.0199 99.10 ± 0.0116
Glass 63.46 ± 0.0544 64.30 ± 0.0510 60.93 ± 0.0486 68.60 ± 0.0402
Vowel 73.29 ± 0.0105 90.08 ± 0.0190 88.16 ± 0.0198 93.29 ± 0.0105
Satimage 83.38 ± 0.0096 87.20 ± 0.0087 85.86 ± 0.0067 87.42 ± 0.0089
IJK 91.81 ± 0.0055 97.65 ± 0.0030 96.99 ± 0.0066 97.83 ± 0.0044
Segment 96.71 ± 0.0043 95.85 ± 0.0070 96.24 ± 0.0035 97.22 ± 0.0026
Waveform 84.65 ± 0.0055 85.95 ± 0.0039 84.73 ± 0.0053 86.67 ± 0.0036
W-T-L 3-4-1 – 3-5-0 0-2-6

Kappa (%)

Iris 90.78 ± 0.0314 90.98 ± 0.0315 91.38 ± 0.0364 94.58 ± 0.0251
Wine 96.58 ± 0.0291 96.41 ± 0.0203 95.73 ± 0.0304 98.63 ± 0.0177
Glass 50.27 ± 0.0759 50.72 ± 0.0689 43.80 ± 0.0829 56.89 ± 0.0510
Vowel 70.81 ± 0.0113 89.36 ± 0.0203 87.33 ± 0.0212 92.81 ± 0.0113
Satimage 79.57 ± 0.0116 84.26 ± 0.0107 82.63 ± 0.0082 84.51 ± 0.0109
IJK 87.71 ± 0.0082 96.47 ± 0.0045 95.49 ± 0.0099 96.75 ± 0.0065
Segment 96.16 ± 0.0049 95.16 ± 0.0082 95.62 ± 0.0041 96.76 ± 0.0030
Waveform 84.65 ± 0.0055 85.95 ± 0.0039 84.73 ± 0.0053 86.67 ± 0.0036
W-T-L 3-4-1 – 3-5-0 0-2-6

Training time (s)

Iris 0.1713 ± 0.0056 0.1905 ± 0.0109 0.3839 ± 0.0346 1.7028 ± 0.0939
Wine 0.3758 ± 0.0654 0.2855 ± 0.0097 0.5558 ± 0.0243 2.3430 ± 0.0409
Glass 0.3714 ± 0.0439 0.3067 ± 0.0214 0.3091 ± 0.0256 3.5148 ± 0.1955
Vowel 8.2494 ± 0.2636 7.5083 ± 0.1406 9.5156 ± 0.3847 84.5411 ± 5.0346
Satimage 35.2815 ± 1.1129 34.3526 ± 0.2059 45.8101 ± 0.3554 455.0871 ± 23.3761
IJK 42.8871 ± 0.2815 48.4904 ± 1.5779 51.1759 ± 3.2792 629.4805 ± 18.6996
Segment 46.2836 ± 1.3052 42.5259 ± 0.6966 64.0953 ± 2.120 723.9044 ± 49.6376
Waveform 415.4985 ± 14.5660 550.6463 ± 35.6439 623.0710 ± 32.1195 3243.3522 ± 19.3611
W-T-L 3-3-2 – 6-2-0 8-0-0
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kernel alignment is the multiclass extension of centered kernel alignment, without considering the local structure of

within-class samples. It is defined by CAmðK;YÞ ¼ <Kc ;½Ym �c>F
jjKc jjF jj½Ym �c jjF

. The definition of Ym can be seen in Eq. (12). In this section,

MKP, LMKP, MCKA and CV denote the multiclass kernel polarization, the local multiclass kernel polarization, the multiclass
centered kernel alignment and cross validation, respectively. The same algorithm is used to search the optimal parameter as
described in Section 5.1. The starting points of MKP, LMCKP and MCKA are set in the same way as those of KP, CKP, and CKA
in Section 5.2. The average performance results, in terms of the classification accuracy, Cohen’s kappa and time efficiency,
over 10 trials are summarized in Tables 6–8. The W-T-L summarizations based on t-test are attached at the bottoms of
Tables 6–8. For all statistical tests, the significance level is taken as 0.05, which is as same as the default value of
Section 5.2. A win or a loss means that MKP is better or worse than other criterion on a data set. A tie means that both criteria
have the same performance.

Seen from Tables 6–8, the CV method always yields both the best accuracy and the best kappa in most cases with expen-
sive computational cost compared with the other three criteria. The result is similar to that obtained in binary-class classi-
fication scenario.

From Tables 6–8, we observe that LMCKP obtains the best or next best test accuracy and kappa statistic on at least 4 data-
sets. Meanwhile, the MKP criterion obtains the best or next best accuracy on no more than 3 datasets in Tables 6–8. Except
for the kappa statistic in Table 8, MCKA provides the best or next best accuracy on no more than 3 datasets in Tables 6–8.
Table 6 shows that LMCKP is statistically significantly more accurate than MKP and MCKA on 4 and 2 datasets about test
accuracy and kappa statistic, respectively. Table 7 shows that LMCKP is statistically significantly more accurate than MKP
and MCKA on 3 out 8 datasets in terms of test accuracy and kappa statistic. And LMCKP works poorly on 1 dataset in
Tables 6 and 7, respectively. In Table 8, LMCKP has a poorer performance compared with MKP on 1 dataset, and a better clas-
sification performance compared with MCKA on 2 dataset. Besides this, there is no significant difference between LMCKP and
MKP as well as MCKA. Therefore the proposed criterion LMCKP can compete with MKP and MCKA in terms of correct recog-
nition rate and Kappa. On most datasets, the difference of the accuracy of these three criteria is less than three per cent.
However, for the Glass data set and the Vowel data set in Tables 6, it is obvious that MKP works poorly while LMCKP works
considerably well: LMCKP outperforms MKP by more than ten per cent. And for the IJK dataset in Table 6, LMCKP outper-
forms MCKA by more than ten per cent too.

Seen form Tables 6–8, choosing the optimal parameter r by measure criteria can save the recognition time with an
acceptable test accuracy cost as expected. In Table 6, LMCKP has an obvious advantage over MKP and MCKA on 6 and 8



Table 8
Comparison of SVM using the optimized r obtained by MKP, LMCKP, MCKA and CV

Data set Accuracy (%)

MKP LMCKP MCKA CV

Iris 96.13 ± 0.0098 95.99 ± 0.0126 96.00 ± 0.0177 94.53 ± 0.0222
Wine 96.18 ± 0.0213 96.63 ± 0.0159 94.72 ± 0.0225 97.19 ± 0.0143
Glass 65.70 ± 0.0335 67.38 ± 0.0312 67.29 ± 0.0394 67.42 ± 0.0298
Vowel 95.41 ± 0.0110 96.02 ± 0.0106 96.04 ± 0.0096 95.88 ± 0.0103
Satimage 89.70 ± 0.0063 89.09 ± 0.0102 88.93 ± 0.0106 89.30 ± 0.0098
IJK 97.87 ± 0.0044 97.92 ± 0.0049 97.88 ± 0.0044 97.94 ± 0.0039
Segment 96.74 ± 0.0036 96.74 ± 0.0037 96.68 ± 0.0039 96.50 ± 0.0033
Waveform 87.60 ± 0.0077 87.94 ± 0.0080 87.98 ± 0.0019 87.79 ± 0.0037
W-T-L 0-7-1 – 2-6-0 0-5-3

Kappa (%)

Iris 94.18 ± 0.0149 93.98 ± 0.0190 93.98 ± 0.0286 91.79 ± 0.0332
Wine 94.14 ± 0.0327 94.83 ± 0.0244 91.90 ± 0.0341 95.71 ± 0.0221
Glass 51.94 ± 0.0518 54.04 ± 0.0467 53.81 ± 0.0563 51.63 ± 0.0381
Vowel 94.95 ± 0.0120 95.62 ± 0.0117 95.62 ± 0.0106 95.46 ± 0.0113
Satimage 87.33 ± 0.0075 86.59 ± 0.0124 86.39 ± 0.0128 86.84 ± 0.0119
IJK 96.80 ± 0.0065 96.88 ± 0.0073 96.81 ± 0.0066 96.60 ± 0.0058
Segment 96.18 ± 0.0042 96.19 ± 0.0044 96.12 ± 0.0046 95.92 ± 0.0039
Waveform 81.40 ± 0.0069 81.91 ± 0.0075 81.98 ± 0.0074 83.68 ± 0.0066
W-T-L 0-7-1 – 2-6-0 0-5-3

Training time (s)

Iris 0.4157 ± 0.0127 0.4235 ± 0.0069 0.4410 ± 0.0185 8.6320 ± 0.0851
Wine 0.5497 ± 0.0240 0.5065 ± 0.0145 0.5224 ± 0.0254 10.6354 ± 0.0563
Glass 1.3536 ± 0.0521 1.2722 ± 0.0243 1.9833 ± 0.0151 2.2846 ± 0.0941
Vowel 67.7033 ± 0.802 66.0308 ± 0.3900 68.6372 ± 0.8532 1721.6003 ± 0.5664
Satimage 132.9432 ± 7.1129 134.3526 ± 8.9201 155.8101 ± 0.3554 2455.0871 ± 13.3761
IJK 92.8871 ± 0.2815 98.4904 ± 1.5779 151.1339 ± 12.2792 1729.6605 ± 17.3422
Segment 179.8733 ± 11.2001 292.5359 ± 9.6766 335.8269 ± 12.3120 9825.9044 ± 42.4466
Waveform 276.4825 ± 8.5945 461.8040 ± 2.4190 572.3492 ± 17.8516 16538.5017 ± 93.8646
W-T-L 2-4-2 – 7-1-0 8-0-0
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datasets out of 8 datasets, respectively. In Tables 7,8, LMCKP wins out MCKA on more than 6 datasets. And the differences
between LMCKP and MKP is little in Tables 7, 8.

In one-versus-one setting, experimental results show that the proposed criterion can also perform well and the results are
similar to those obtained in one-versus-rest setting. The experimental results are not shown in this paper due to space lim-
itations. Therefore, LMCKP criterion is a better and robust indication of the Gaussian kernel compared with MKP criterion
and MCKA criterion for multiclass problems.

6. Conclusion

Centered kernel polarization is put forward to determine kernel parameter for Gaussian kernel based methods. For
binary-class classification problems the proposed criterion is differentiable, which means a series of efficient line search
methods can be used to locate the optimal parameter. Compared with kernel polarization, the proposed criterion has an
intuitive geometric meaning, and it can locate the optimal parameter with less dependence on the threshold of algorithm.
The approximate objective function can be proved to have a determined global minimum point under some weaker con-
straint conditions. In addition, we present a new multiclass evaluation measure to encode the multiclass information and
preserve the local structure of within-class data simultaneously. Experiment results show that two proposed criteria can
achieve good overall classification performance and efficient training time.

In this paper, we focus on optimizing the isotropic Gaussian kernel function since it is a successfully used kernel function
in various applications. Based on the good analytic properties of exponential function, a closed-form approximate solution to
the objective function is proposed by adopting the Euler–Maclaurin formula. Because of this, the analysis method is only
applicable for some particular kernels, such as the Gaussian kernel and the exponential radial basis function. How to evaluate
the local or global extremal properties of the formulated centered kernel polarization to other kernels, such as linear kernel,
polynomial kernel and wavelet kernel, is beyond our reach at present. Further investigation is needed to determine the appli-
cability of the introduced criteria for other kernel functions. In addition, we will study the extensions and the applications of
the proposed criteria in multiple kernel learning and feature selection for some larger data in our future work.
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