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The K-Means-Type Algorithms Versus Imbalanced
Data Distributions

Jiye Liang, Liang Bai, Chuangyin Dang, Senior Member, IEEE, and Fuyuan Cao

Abstract—K-means is a partitional clustering technique that is
well-known and widely used for its low computational cost. The
representative algorithms include the hard k-means and the fuzzy
k-means. However, the performance of these algorithms tends to be
affected by skewed data distributions, i.e., imbalanced data. They
often produce clusters of relatively uniform sizes, even if input data
have varied cluster sizes, which is called the “uniform effect.” In
this paper, we analyze the causes of this effect and illustrate that
it probably occurs more in the fuzzy k-means clustering process
than the hard k-means clustering process. As the fuzzy index m
increases, the “uniform effect” becomes evident. To prevent the
effect of the “uniform effect,” we propose a multicenter clustering
algorithm in which multicenters are used to represent each cluster,
instead of one single center. The proposed algorithm consists of the
three subalgorithms: the fast global fuzzy k-means, Best M-Plot,
and grouping multicenter algorithms. They will be, respectively,
used to address the three important problems: 1) How are the
reliable cluster centers from a dataset obtained? 2) How are the
number of clusters which these obtained cluster centers represent
determined? 3) How is it judged as to which cluster centers repre-
sent the same clusters? The experimental studies on both synthetic
and real datasets illustrate the effectiveness of the proposed clus-
tering algorithm in clustering balanced and imbalanced data.

Index Terms—Imbalanced data, multirepresentatives, the
k-means-type clustering algorithms, the number of clusters, the
production of cluster centers.

I. INTRODUCTION

C LUSTER analysis is an important branch in statistical
multivariate analysis and unsupervised machine learning
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which has extensive applications in various domains, including
financial fraud, medical diagnosis, image processing, informa-
tion retrieval, and bioinformatics. The goal of clustering is to
group a set of objects into clusters so that objects in the same
cluster have high similarity but are very dissimilar with objects
in other clusters. Many types of clustering techniques have been
developed in the literature (see, e.g., [1] and references therein).
Among them, k-means is one of the most computationally ef-
ficient clustering techniques, which begins with an initial set
of cluster centers and iteratively refines this set so as to de-
crease the sum of squared errors. The representative algorithms
include the hard k-means [2] and the fuzzy k-means [3], [4].
The hard k-means algorithm classifies each object of the dataset
just to one cluster. However, in many real situations, issues such
as limited spatial resolution, poor contrast, overlapping intensi-
ties, noise, and intensity inhomogeneities reduce its effective-
ness. In the fuzzy k-means algorithm, each object is allowed
to have memberships in all clusters rather than having a dis-
tinct membership in one single cluster. Compared with the hard
clustering algorithm, the fuzzy clustering algorithm has robust
characteristics for ambiguity and can retain much more infor-
mation, which makes it widely used to tackle effectively many
problems in real applications. We know that when the fuzzy in-
dex m approaches 1, the fuzzy k-means algorithm becomes the
hard k-means algorithm [5]. This conclusion states us that the
hard k-means algorithm is a special case of the fuzzy k-means
algorithm.

The k-means-type algorithms have attracted great interest in
the literature. There are considerable research efforts to char-
acterize the key features of the k-means-type clustering al-
gorithms. People have identified several factors [6] that may
strongly affect the k-means clustering analysis including high
dimensionality [7]–[9], sparseness of the data [10], noise and
outliers in the data [11]–[13], scales of the data [14]–[17], types
of attributes [18], [19], the fuzzy index m [20]–[23], initial
cluster centers [24]–[29], and the number of clusters [30]–[32].
However, further investigation is needed to understand how
data distributions can have the impact on the performance of
k-means-type clustering. For skewed-distributed data, such as
imbalance data, the k-means-type clustering algorithms tend to
have poor performance because they often partition a part of ob-
jects belonging to the majority classes into the minority classes,
which makes clusters have relatively uniform sizes, although in-
put data have varied cluster sizes. This effect is called the “uni-
form effect” in [33]. It is of great value to study how imbalanced
data distributions affect the performance of the k-means-type al-
gorithms because many real data are imbalanced, such as fraud
detection, oil spill detection, risk management, and medical
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diagnosis/monitoring. Furthermore, people are also interested
in identifying rare classes in the datasets with imbalanced data
distributions. For example, in the domain of network intrusion
detection, the number of malicious network activities is usu-
ally very small compared with the number of normal network
connections.

However, most of these studies on imbalanced data focus on
supervised learning. In unsupervised learning, Xiong et al. [33]
provided a formal and organized study of the effect of skewed
data distributions on the hard k-means clustering. However, the
theoretic analysis is only based on the hard k-means algorithm.
Our experimental studies illustrate that the fuzzy k-means clus-
tering algorithm has more evident “uniform effect” than the hard
k-means clustering algorithm. Moveover, as the fuzzy index m
increases, the “uniform effect” becomes obvious. A theoretic
analysis on the effect of imbalanced data distributions on the
fuzzy k-means clustering is provided in Section III.

Furthermore, how to use the k-means-type technique to ef-
fectively cluster imbalanced data is also an important issue.
In the literature, several variations of the fuzzy k-means algo-
rithm, such as the kernel-based fuzzy algorithms [34]–[36], the
Gustafson–Kessel algorithm [37], and the iterative compatible
cluster merging algorithm [38], have been proposed to discover
clusters of varied sizes. Although they have more robustness to
cluster datasets with varied cluster sizes than the fuzzy k-means
algorithm, we have found that these algorithms cannot effec-
tively avoid the occurrence of the “uniform effect.” Because
of the fact that a single center cannot sufficiently represent a
majority class, a subset of objects in the majority class is often
wrongly partitioned into several minority classes. In this paper,
we will use multicenters to represent each cluster, instead of one
single center, because multicenters can help divide the objects
of a majority class into several subclusters with considerable
smaller sizes similar to those of the minority classes. This can
rebalance the scales of the majority classes and the minority
classes to reduce the effect of imbalanced data distributions on
the performance of the k-means-type algorithms.

Guha et al. [39] early proposed to make use of multiple rep-
resentative points to get the shape information of the “natural”
clusters with nonspherical shapes [1] and achieve an improve-
ment on noise robustness over the single-link algorithm. In [40],
a multiprototype clustering algorithm was proposed, which ap-
plies the hard k-means algorithm to discover clusters of arbitrary
shapes and sizes. However, there are following problems in the
real applications of these algorithms to cluster imbalanced data.
1) These algorithms depend on a set of parameters whose tun-
ing is problematic in practical cases. 2) These algorithms make
use of the randomly sampling technique to find cluster cen-
ters. However, when data are imbalanced, the selected samples
more probably come from the majority classes than the minor-
ity classes. 3) The number of clusters k needs to be determined
in advance as an input to these algorithms. In a real dataset, k
is usually unknown. 4) The separation measures between sub-
clusters that are defined by these algorithms cannot effectively
identify the complex boundary between two subclusters. Their
shortcomings are analyzed in Section IV. 5) The definition of
clusters in these algorithms is different from that of k-means.

Their definition is similar to that of density-based spatial clus-
tering of applications with noise (DBSCAN) [41]. They assume
that if objects are density connected, they should belong to the
same cluster. A major advantage of such definition is that clus-
ters of different shapes can be found. However, when data are
nonuniform and sparse, objects in the same cluster tend to be
density unconnected. This induces the objects in the same clus-
ter to be partitioned into several clusters. In the k-means-type
algorithms, a cluster is viewed as a hypersphere. The density
nonconnectivity within a cluster has a minor impact on discover-
ing the cluster. However, a disadvantage of this definition is that
only the clusters which are linearly separable in the input space
can be obtained. To overcome this limitation, the kernel tech-
niques are applied to the k-means-type algorithms [34]–[36],
which implicitly map the nonlinearly separable data in the in-
put space into a high-dimensional space where data are linearly
separable. In fact, we cannot determine which one of the two
definitions is right because different people have different inter-
pretations about what is a cluster. The answer of this question
often depends on human experience and intent. In this paper,
we only consider that clusters are linearly separated. The non-
linearly separated clusters can be dealt with by the kernel trick,
which is outside the scope of this paper.

In this paper, we will first give a theoretic analysis on the
effect of imbalanced data distributions on the fuzzy k-means
algorithm. Furthermore, in order to avoid the “uniform effect,”
we will propose a multicenter (MC) clustering algorithm which
uses multicenters to represent each cluster, instead of one sin-
gle center. This algorithm consists of the three subalgorithms:
the fast global fuzzy k-means (FGFKM), “Best-M Plot” (BMP),
and grouping multicenter (GMC) algorithms. First, the FGFKM
algorithm will be presented to obtain several reliable cluster cen-
ters. Next, we will propose the BMP algorithm to find the most
appropriate value of m and determine the number of clusters
k. Finally, a new separation measure between subclusters will
be defined. Based on this measure, the GMC algorithm will be
proposed to group the cluster centers to represent k clusters.

The rest of this paper is organized as follows. A detailed
review of the k-means-type algorithms is presented in Section II.
Section III illustrates the effect of imbalanced data distributions
on the k-means-type clustering. In Section IV, an MC clustering
algorithm is proposed to effectively cluster imbalanced data.
Section V illustrates the effectiveness of the proposed algorithm.
Finally, a concluding remark is given in Section VI.

II. K-MEANS-TYPE CLUSTERING ALGORITHMS

Let X = {X1 ,X2 , . . . , Xn} be a set of n objects. Object
Xi = {xi,1 , xi,2 , . . . , xi,d} is characterized by a set of d at-
tributes (variables). The k-means-type algorithms [2]–[4] search
for a partition of X into k clusters that minimize the objective
function F with unknown variables U and V as follows:

F (U, V ) =
k∑

l=1

n∑

i=1

(ul,i)m‖Xi − Vl‖2 (1)
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Fig. 1. “Uniform effect” occurs when the hard k-means algorithm is implemented. (a) Imbalanced data distribution before clustering. (b) Clustering result in the
first iteration. (c) Clustering result in the last iteration.

Fig. 2. As ‖V1 − V2‖2 decreases, the difference between ‖Xi − V1‖2 and
‖Xi − V2‖2 decreases.

subject to

ul,i ∈ [0, 1],
k∑

l=1

ul,i = 1, 0 <

n∑

i=1

ul,i < n (2)

for 1 ≤ i ≤ n and 1 ≤ l ≤ k, where U = [ul,i ] is a k-by-n
real matrix, with ul,i being the membership degree of the
ith object Xi to the lth cluster; V = [V1 , V2 , . . . , Vk ]; Vl =
[vl,1 , vl,2 , . . . , vl,d ] is the lth cluster center with d attributes;
‖Xi − Vl‖2 =

∑d
j=1(xi,j − vl,j )2 is the Euclidean distance be-

tween the object Xi and the center Vl of the lth cluster; and
m ∈ [1,+∞) is the fuzzy index. When m = 1, the fuzzy k-
means clustering algorithm becomes the hard k-means cluster-
ing algorithm.

The optimal minimum value of F is normally solved by the
alternative optimization method. It relates to two updated equa-
tions: U and V . The update equations are given as follows.

If m = 1, U is updated by

ûl,i =
{

1, if ‖Xi − V̂l‖2 ≤ ‖Xi − V̂h‖2 , 1 ≤ h ≤ k

0, otherwise
(3)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k. If m > 1, U is updated by

ûl,i = 1
/ k∑

h=1

[
‖Xi − V̂l‖2

‖Xi − V̂h‖2

]1/(m−1)

(4)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k.

V is updated by

v̂l,j =
∑n

i=1(ûl,i)m xi,j∑n
i=1(ûl,i)m

(5)

for 1 ≤ l ≤ k, 1 ≤ j ≤ d.
Unlike the hard k-means algorithm, the fuzzy k-means algo-

rithm produces a fuzzy partition matrix U . We obtain the cluster
memberships from U as follows. The object Xi is assigned to
the lth cluster if ul,i = max1≤h≤kuh,i . When the maximum is
not unique, if Xi is assigned to the cluster of first achieving the
maximum, a partition of X is formed. If we assign Xi to all the
clusters of achieving the maximum, a covering of X is formed.

III. EFFECT OF IMBALANCED DATA DISTRIBUTIONS ON

K-MEANS-TYPE CLUSTERING

In [33], Xiong et al. provided a formal and organized study
of the effect of skewed data distributions on the hard k-means
clustering. Furthermore, they formally illustrated that the hard
k-means clustering algorithm tends to produce clusters of rela-
tively uniform sizes, even if input data have varied “true” cluster
sizes. This effect is called the “uniform effect.”

They discussed the effect of the hard k-means clustering on
the distribution of the cluster sizes when the number of clusters
k is 2. They rewrote the objective function (1) as

F (U, V ) =
−2n1n2‖V1 − V2‖2

2n
+

∑n
i=1

∑n
j=1 ‖Xi − Xj‖2

2n
(6)

where nl is the number of objects in the lth cluster, for l = 1, 2.
We know that

∑n
i=1

∑n
j=1 ‖Xi − Xj‖2 is a constant for a given

dataset, regardless of U and V . In addition, n =
∑2

l=1 nl is the
total number of objects in the data. In other words, the minimiza-
tion of the objective function F is equivalent to the maximization
of n1n2‖V1 − V2‖2 . If the effect of ‖V1 − V2‖2 is isolated, the
maximization of n1n2‖V1 − V2‖2 implies the maximization of
n1n2 , which leads to n1 = n2 = n/2. This means that for the
minimization of the objective function F , the hard k-means
algorithm tends to produce clusters of relatively uniform sizes.
For instance, Fig. 1 shows a scenario where the “uniform effect”
occurs when the hard k-means clustering algorithm is used to
cluster an imbalanced dataset which contains a majority cluster
(2000 objects) and a minority cluster (200 objects).
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Fig. 3. “Uniform effect” does not occur when the hard k-means algorithm is implemented. (a) Imbalanced data distribution before clustering. (b) Clustering
result in the first iteration. (c) Clustering result in the last iteration.

In the aforementioned analysis, the effect of the component
‖V1 − V2‖2 is isolated. However, for real-world datasets, the
values of the two components are related to each other. Accord-
ing to (6), we also see that the smaller the distance between
the cluster centers, the larger the effect of the “uniform effect’,
whereas when the distance between the cluster centers does not
decrease in iterations, the probability of the occurrence of the
“uniform effect” decreases. In the following, we will analyze
the contribution of the distance between cluster centers, i.e.,
‖V1 − V2‖2 , to the occurrence of the “uniform effect” when
the k-means-type algorithms are used to cluster imbalanced
data. To simplify the analysis, we only consider that the num-
ber of clusters is 2. Let D1 be the majority class and D2 be
the minority class. To minimize the effect of initial cluster cen-
ters on the performance of the k-means-type algorithms, we
set V

(1)
l =

∑
Xi ∈Dl

/Xi |Dl | for l = 1, 2, which are the “true”
cluster centers.

We rewrite

V2 =

∑n
i=1,Xi ∈D1

(u2,i)m Xi +
∑n

i=1,Xi ∈D2
(u2,i)m Xi∑n

i=1,Xi ∈D1
(u2,i)m +

∑n
i=1,Xi ∈D2

(u2,i)m
. (7)

According to (7), we know that the larger the∑n
i=1,Xi ∈D2

(u2,i)m is compared with
∑n

i=1,Xi ∈D1
(u2,i)m ,

the more important role the objects in D2 play in comput-
ing V2 . If

∑n
i=1,Xi ∈D2

(u2,i)m �
∑n

i=1,Xi ∈D1
(u2,i)m ,

V2 has good representability in D2 , whereas if∑n
i=1,Xi ∈D2

(u2,i)m ≤
∑n

i=1,Xi ∈D1
(u2,i)m , the objects

in D1 play a more important role in computing V2 than the ob-
jects in D2 . In this case, V2 has more representability in D1 than
D2 . When the value of m is larger than 1,

∑n
i=1,Xi ∈D1

(u2,i)m

is not equal to zero. This means that the objects in D1 always
take a certain relevance in computing V2 . To simplify the
analysis, we set U as

ûl,i =
{

1/q, if Xi /∈ Dl,

1 − 1/q, if Xi ∈ Dl,
(8)

for 1 ≤ i ≤ n, 1 ≤ l ≤ 2, where q > 1. We write V as

V1 =
(1 − 1/q)m

∑n
i=1,Xi ∈D1

Xi + (1/q)m
∑n

i=1,Xi ∈D2
Xi

|D1 |(1 − 1/q)m + |D2 |(1/q)m

(9)

and

V2 =
(1/q)m

∑n
i=1,Xi ∈D1

Xi + (1 − 1/q)m
∑n

i=1,Xi ∈D2
Xi

|D1 |(1/q)m + |D2 |(1 − 1/q)m
.

(10)
Given D2 , when the number of objects in D1 approaches a very
large value, we can obtain

Vl ≈
∑n

i=1,Xi ∈D1
Xi

|D1 |
(11)

for 1 ≤ l ≤ 2.
This states us that ‖V1 − V2‖2 decreases as the number of ob-

jects in D1 increases. Because of ‖V1 − V2‖2 ≥ ‖|Xi − V1‖2 −
‖Xi − V2‖2 |, the closer the V2 to V1 , the smaller the differ-
ence between ‖Xi − V1‖2 and ‖Xi − V2‖2 , which is shown
in Fig. 2. This means that u2,i will be close to u1,i , for
1 ≤ i ≤ n. The closer the V2 to V1 , the more the objects in
D1 have no less memberships to D2 than D1 . This makes
|C2 | close to |C1 |, where C1 = {Xi |u2,i ≤ u1,i , Xi ∈ X}, and
C2 = {Xi |u1,i ≤ u2,i , Xi ∈ X}. In this case, the “uniform ef-
fect” will occur.

When taking the limits of (4) and (5) as m approaches 1 [5],
we obtain

lim
m→1

⎧
⎨

⎩ul,i = 1
/ k∑

h=1

[
‖Xi − V̂l‖2

‖Xi − V̂h‖2

]1/(m−1)
⎫
⎬

⎭

=
{

1, ‖Xi − V̂l‖2 ≤ ‖Xi − V̂h‖2 , 1 ≤ h ≤ k

0, otherwise
(12)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k and

lim
m→1

{
vl,j =

∑n
i=1(ul,i)m xi,j∑n

i=1(ul,i)m

}
=

∑
Xi ∈Cl

xi,j

nl
(13)

for 1 ≤ j ≤ d, 1 ≤ l ≤ k. According to (12) and (13), we
see that when m approaches 1, the fuzzy k-means algo-
rithm becomes the hard k-means algorithm. In this case,∑n

i=1,Xi ∈D1
(u2,i)m is equal to zero. This means that the ob-

jects in D1 do not take a part in computing V2 when the
hard k-means algorithm is implemented. Then, ‖V1 − V2‖2 and
‖|Xi − V1‖2 − ‖Xi − V2‖2 | do not necessarily become small
as the number of the objects in D1 increases. If ‖Xi − V1‖2 <
‖Xi − V2‖2 for each Xi ∈ D1 and ‖Xi − V1‖2 > ‖Xi − V2‖2
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Fig. 4. “Uniform effect” occurs when the fuzzy k-means algorithm is implemented. (a) Imbalanced data distribution before clustering. (b) Clustering result in
the first iteration. (c) Clustering result in the last iteration.

for each Xi ∈ D2 , the “uniform effect” does not occur in the
hard k-means clustering process. This indicates that the charac-
teristic of the data imbalanced distribution does not necessarily
result in the occurrence of the “uniform effect,” when the hard
k-means clustering algorithm is implemented. There are other
factors that contribute to the occurrence of the “uniform effect.”
Fig. 3 shows an example where the “uniform effect” does not
occur when the hard k-means algorithm with the “true” cluster
centers was used to cluster an imbalanced dataset. In this ex-
ample, there are two clusters: a majority cluster (2000 objects)
and a minority cluster (200 objects). Fig. 4 shows that when the
fuzzy k-means algorithm with the same cluster centers is used
to cluster the imbalanced dataset in Fig. 3, the “uniform effect”
occurs.

When taking the limits of (4) and (5) as m approaches infinity
[5], we obtain

lim
m→+∞

⎧
⎨

⎩ul,i = 1
/ k∑

h=1

[
‖Xi − V̂l‖2

‖Xi − V̂h‖2

]1/(m−1)
⎫
⎬

⎭ =
1
k

(14)

for 1 ≤ i ≤ n, 1 ≤ l ≤ k and

lim
m→+∞

{
vl,j =

∑n
i=1(ul,i)m xi,j∑n

i=1(ul,i)m

}
=

∑n
i=1 xi,j

n
(15)

for 1 ≤ j ≤ d, 1 ≤ l ≤ k. According to (14) and (15), we see
that when m approaches infinity, the membership degrees of
each object to all the clusters approach the same value, i.e.,
1/k and all the cluster centers become the same as each other.
This results in |C2 | = |C1 |, where C1 = {Xi |u2,i ≤ u1,i , Xi ∈
X}, and C2 = {Xi |u1,i ≤ u2,i , Xi ∈ X}. This indicates that
the “uniform effect” becomes evident as m increases.

IV. MULTICENTERS CLUSTERING ALGORITHM

In this section, we will propose a clustering algorithm to ef-
fectively cluster imbalanced data and avoid the “uniform effect.”
In the proposed algorithm, we use multicenters to represent each
cluster, instead of one single center (shown in Fig. 5), because
multicenters can help divide the objects of a majority class into
several subgroups with small sizes similar to those of the mi-
nority classes. This can rebalance the scales of the majority
classes and the minority classes to reduce the effect of imbal-

Fig. 5. Multicenters are used to represent each cluster.

anced data distributions on the performance of the k-means-type
algorithms.

The MC clustering algorithm needs to address the following
three problems.

1) How do we obtain a set of cluster centers from the dataset?
2) How do we determine the number of clusters?
3) How do we judge which cluster centers represent the same

clusters?
In the following, we separately investigate each of the afore-

mentioned problems that are involved in the multicenter clus-
tering procedure.

A. Production of Cluster Centers

The k-means-type algorithms perform iteratively the parti-
tion step and new cluster center generation step until conver-
gence [1]. It is noted that they face the local minimum problem.
That is, the clustering result guarantees a local minimum so-
lution only. These algorithms are very sensitive to the initial
cluster centers. For simplicity, users often use the random ini-
tialization method to obtain an initial set of cluster centers. How-
ever, these clustering algorithms need to rerun many times with
different initializations in an attempt to find an optimal solution.
In addition, the random initialization method works well only
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when data are balanced and chances are good that at least one
random initialization is close to a good solution. Therefore, how
to select initial cluster centers is extremely important since they
have a direct impact on the formation of the final clusters.

Recently, several attempts have been reported to solve the
cluster center initialization problem [25]–[29]. Among them,
the fast global k-means clustering algorithm (FGKM), which
was proposed by Likas [27], is an effective method to solve the
local minimum problem. The algorithm proceeds in an incre-
mental way: To solve a clustering problem with h clusters, all
intermediate problems with 1,2, . . . , h− 1 clusters are sequen-
tially solved. The basic idea underlying the proposed method is
that an optimal solution for a clustering problem with h clusters
can be obtained using a series of local searches (using the hard k-
means algorithm). At each local search, the h − 1 cluster centers
are always initially placed at their optimal positions correspond-
ing to the clustering problem with h − 1 clusters. The remaining
hth cluster center is initially placed at several positions within
the data space. Since, for h = 1, the optimal solution is known,
we can iteratively apply the aforementioned procedure to find
optimal solutions for all k-clustering problems: k = 1, 2, . . . , h.
Such an approach leads at least to a near global minimizer. To
reduce the computational complexity of FGKM, some modi-
fied FGKM algorithms have been proposed in [28] and [29].
A detailed description of the FGKM algorithms can be found
in [27]. The results of numerical experiments have shown that
the FGKM algorithm is able to locate either a global minimizer
or a local minimizer close to global one. However, the FGKM
algorithm cannot be used for fuzzy clustering. Therefore, we
will propose the FGFKM algorithm to solve the local mini-
mum problem of the fuzzy k-means algorithm. When m > 1,
the objective function (1) can be reduced by (4) as follows:

f(V ) =
n∑

i=1,∀Vl ∈V ,‖Xi −Vl ‖2 �=0

1/B(Xi, V )m−1

+
n∑

i=1,∃Vl ∈V ,‖Xi −Vl ‖2 =0

B(Xi, V )

=
n∑

i=1,∀Vl ∈V ,‖Xi −Vl ‖2 �=0

1/B(Xi, V )m−1 (16)

where

B(Xi, V ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|V |∑
l=1

[
1/‖Xi − Vl‖2

]1/(m−1)

∀Vl ∈ V, ‖Xi − Vl‖2 �= 0

0, ∃Vl ∈ V, ‖Xi − Vl‖2 = 0.

(17)

Property 1: If ∃Xi ∈ X and B(Xi, V ) �= 0, then f(V ) >
f(V ∪ {Vq}) for any Vq ∈ Rd .

Proof: Given V , we add a new cluster center Vq to V and
obtain

B(Xi, V ∪ {Vq})=

⎧
⎪⎨

⎪⎩

B(Xi, V ) +
[
1/‖Xi − Vq‖2

]1/(m−1)

if B(Xi, V ) �= 0 and ‖Xi − Vq‖2 �= 0

0, if B(Xi, V ) = 0 or ‖Xi − Vq‖2 = 0.
(18)

By (17) and (18), we find the following properties.
1) If B(Xi, V ) �= 0 and ‖Xi − Vq‖2 �= 0, then

B(Xi, V ∪ {Vq}) > B(Xi, V ), i.e., 1/B(Xi, V )m−1 >
1/B(Xi, V ∪ {Vq})m−1 . In this case, the value of the
function f decreases.

2) If B(Xi, V ) �= 0 and ‖Xi − Vq‖2 = 0, then B(Xi, V ) >
B(Xi, V ∪ Vq ) = 0, i.e., 1/B(Xi, V )m−1 > B(Xi, V ∪
{Vq}). In this case, the value of the function f decreases.

3) If B(Xi, V ) = 0, then B(Xi, V ) = B(Xi, V ∪ {Vq}) =
0. In this case, the value of the function f does not change.

According to the aforementioned analysis, we know that if
∃Xi ∈ X and B(Xi, V ) �= 0, the value of the function f de-
creases. Hence, the result follows. �

If B(Xi, V ) = 0 for each object Xi ∈ X , clustering such a
dataset is meaningless. Therefore, without loss of generality, we
think that after a new cluster center Vq is added, the value of the
function f will decrease. Moreover, the membership degrees of
each object to the first h fuzzy clusters have been changed.

Property 2: ul,i(V ) ≥ ul,i(V ∪ {Vq}), for 1 ≤ i ≤ n, where
ul,i(V ) is a membership degree of Xi to the lth fuzzy cluster
when V is as the set of cluster centers.

Proof: According to (4), we can obtain

ul,i(V )=
[1/‖Xi−Vl‖2 ]1/m−1

B(Xi, V )
, if ∀Vl ∈ V, ‖Xi − Vl‖2 �= 0.

(19)
By (18), we find that if ‖Xi − Vl‖2 �= 0, then B(Xi, V ∪

{Vq}) > B(Xi, V ), i.e., ul,i(V ) ≥ ul,i(V ∪ {Vq}). If ‖Xi −
Vq‖2 = 0, then u|V |+1,i(V ∪ {Vq}) = 1 and ul,i(V ∪ {Vq}) =
0 ≤ ul,i(V ) for 1 ≤ l ≤ |V |. Hence, the result follows. �

Property 3: Cl(V ) ⊇ Cl(V ∪ {Vq}), for 1 ≤ i ≤ n, 1 ≤ l ≤
|V |, where Cl(V ) is the lth fuzzy cluster that is obtained by
using V as the set of cluster centers to fuzzily partition X .

Proof: By Property 2, the result can be easily obtained. �
Properties 1, 2, and 3 state that after a new cluster center

is added, it can obtain some objects from the existed clusters
to form a new cluster, which makes the value of the function f
decrease. This means that while we add an object to V , the more
the value of the function f decreases, the more reliable the object
is as the (h + 1)th cluster center. Therefore, an incremental
algorithm is used to obtain the k cluster centers. This algorithm
starts with one cluster center V1 =

∑n
i=1 Xi/n and attempts

to optimally add one object as a new cluster center at each
stage. The selected object Xj ′ as the (h + 1)th cluster center
can minimize the function f. After the object Xj ′ is found,
the FGFKM algorithm with the initial cluster centers V = V ∪
{Xj ′ } is used to fuzzily partition the dataset into h + 1 fuzzy
clusters. The result set of cluster centers will be used as the initial
cluster centers in the next stage. The algorithm is presented as
follows.
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Fast Global Fuzzy K-Means Algorithm
Step 1. Input the parameter m and the matrix D = [Di,j ],

where Di,j = ‖Xi − Xj‖2 for 1 ≤ i ≤ j ≤ n. Compute V =
{V1} from the dataset X where V1 =

∑n
i=1 Xi/n, and compute

B(Xi, V ) for 1 ≤ i ≤ n, according to (17). Set h = 1.
Step 2. Find the object Xj ′ ∈ X which satisfies

Xj ′ = argminn
j=1f(V ∪ {Xj})

= argminn
j=1

n∑

i=1,Di j �=0,B (Xi ,V ) �=0

× 1
[
B(Xi, V ) + D

−1/m−1
ij

]m−1 . (20)

Set V = V ∪ {Xj ′ }.
Step 3. Use V as the set of initial cluster centers and ap-

ply the fuzzy k-means algorithm to partition X into h + 1
clusters and obtain the result set of cluster centers V ∗ =
{V ∗

1 , V ∗
2 , . . . , V ∗

h+1}. According to (17), update B(Xi, V
∗) for

1 ≤ i ≤ n. Set V = V ∗.
Step 4. Set h = h + 1. If h < k, go to Step 2; otherwise, stop.
Before the implementation of the FGFKM algorithm, we need

to compute D, which is O(n2). Although this operation is ex-
pensive, D will only need to be precalculated for once in the pro-
posed multicenters algorithm. In the FGFKM algorithm, adding
an object as the (h + 1)th cluster center needs O(n) calculations.
After a new cluster center is added, using the fuzzy k-means al-
gorithm to calculate the new cluster centers for the FGFKM
algorithm requires O(nkt) calculations, where t is the number
of iterations that are performed by the fuzzy k-means algorithm.
Therefore, the computational cost of the FGFKM algorithm to
generate a set of kmax cluster centers is O((n + nkmaxt)kmax).
Here, kmax � n is the number of cluster centers that we hope
to obtain.

B. Determination of the Number of Clusters

After obtaining the kmax cluster centers by using the FGFKM
algorithm, we need to determine the number of clusters k. Tra-
ditionally, cluster analysis uses statistical validity indices that
are based on the within and between-cluster information to val-
idate the clustering results. A typical index curve consists of the
index values for different k number of clusters. Those ks at the
peaks, valleys, or distinguishing “knees” on the index curve are
regarded as candidates of the optimal number of clusters (the
best k); see, for instance, [42]. However, for imbalanced data,
the traditional validity indices cannot effectively evaluate the
clustering results because the distances between some points
in the majority class may be larger than the distances between
some points in different classes. Therefore, we will propose a
new method to evaluate the number of clusters for imbalanced
data.

According to the limiting properties of (4) and (5), we know
that the closer the value of m is to 1, it is more likely that each
object is assigned to a single cluster, whereas the larger the
value of m, the more clusters to which each object is assigned.
This makes the cluster centers which represent the same clusters

move to the same locations and form several rallying points. As
m increases to a certain level, the number of rallying points of
the cluster centers is the same as the number of the “true” clusters
in the dataset. This indicates that the value of m can help us to
find the “true” number of clusters. However, as m increases even
further, the number of rallying points becomes smaller than the
number of the true clusters in the dataset. Finally, the number
of rallying points becomes 1.

Let us consider the following example to demonstrate the
aforementioned properties. Fig. 6 shows the movements of the
cluster centers that are obtained by the FGFKM algorithm with
different values of the fuzzy index m. In this example, we stim-
ulate three clusters which are marked by different colors: green
(2000 objects), purple (400 objects), and red (200 objects), re-
spectively. When m increases to 2, we see that the 13 cluster
centers move to three locations. The number of the rallying
points is just equal to the number of the “true” clusters. How-
ever, as m continues to grow, some cluster centers get away from
their rallying points to the global center of the dataset. When m
is equal to 2.5, all the cluster centers are moved to the global
center.

The previous analysis states us that the determination of the
number of clusters needs to solve the following subproblems.

1) How do we obtain an appropriate value of m?
2) Given m, how do we find the number of rallying points of

cluster centers?
To choose an appropriate fuzzy index m is very important

when implementing the fuzzy k-means algorithm. Up to date,
theoretical and empirical results on the study of setting the fuzzy
index m have been obtained [20]–[23]. In 1976, a physical in-
terpretation of the fuzzy k-means algorithm when m = 2 was
given in [20]. Based on the performance of some cluster valid-
ity indices, Pal and Bezdek [4] have given heuristic guidelines
regarding the best choice for m, suggesting that it is probably in
the [1.5, 2.5] interval. Similar recommendations have appeared
in [21] and [22]. Yu gave some theoretical rules to select the
fuzzy index m in [23]. Most researchers have also proposed
m = 2. In our proposed algorithm, we will select an appro-
priate value of m from the [1.1, 2.5] interval to determine the
number of clusters.

The example in Fig. 6 indicates that the changes of m will
cause the changes of the distances between the cluster centers
which represent the same clusters and the changes of the num-
bers of neighbors of the cluster centers. In the following, we
will analyze these changes using three cases. 1) As m increases
from 1.1, the cluster centers which represent the same clusters
move to the same stations, which makes the distances between
them decrease and the numbers of their neighbors increase. 2)
As m continues to grow, some of them get away from others to
the global center, which makes some of their distances increase
and the numbers of neighbors of some cluster centers decrease;
3) As m increases to a certain value, all of them move to the
global center, which makes their distances decrease and the
numbers of their neighbors increase. From these cases, we see
that the optimum value of m should be a boundary value be-
tween the first case and the second case. Next, we will find the
boundary value m by examining the changes of their neighbors
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Fig. 6. (a) Data distribution on the dataset. (b) Cluster centers obtained by the FGFKM algorithm with m = 1.1. (c) Cluster centers obtained by the FGFKM
algorithm with m = 1.5. (d) Cluster centers obtained by FGFKM with m = 1.8. (e) Cluster centers obtained by FGFKM with m = 2.0. (f) Cluster centers
obtained by FGFKM with m = 2.1. (g) Cluster centers obtained by FGFKM with m = 2.2. (h) Cluster centers obtained by FGFKM with m = 2.3. (i) Cluster
centers obtained by FGFKM with m = 2.6.

from the first case to the second case. The neighborhood of a
cluster center is defined as follows.

Definition 1 (Neighborhood of a Cluster Center): Let V =
{V1 , V2 , . . . , Vkm a x } be a result set of cluster centers obtained by
the FGFKM algorithm. For arbitrary Vi ∈ V , the neighborhood
δ(Vi) of Vi is defined as

δ(Vi) = {Vj |Vj ∈ V, ‖Vj − Vi‖2 ≤ θ} (21)

where θ is a threshold.
The size of the neighborhood depends on the threshold θ.

More cluster centers fall into the neighborhood of Vi if θ takes
a great value. Therefore, the threshold θ is a key factor for the
neighborhood. We set θ as the minimal distance between the
cluster centers that is obtained by the FGFKM algorithm with
m = 1.1, i.e.,

θ = min
1≤i<j≤km a x

‖Vi − Vj‖2 . (22)

The reason to set such threshold θ is given next. We select m
in the interval [1.1, 2.5], which means that 1.1 is the minimal
value proposed by us. When m = 1.1, the distances between
the cluster centers that are obtained by the FGFKM algorithm
should be large, and the number of their neighbors should be
small, compared with other values of m in the given interval.

Next, we will propose the BMP algorithm to conveniently
capture the dramatic difference between the numbers of neigh-
bors of the cluster centers.

Best M-Plot Algorithm
Step 1. Input mstart , mend , λ, and kmax . Set mtmp = mstart .
Step 2. Obtain a resulting set V of the cluster centers

by the FGFKM algorithm with m = mstart . Then, com-
pute the threshold θ and |δ(Vi)| for each cluster center
Vi ∈ V to store by ascending order into a queue Qm tm p =
[Qm tm p (1), Qm tm p (2), . . . , Qm tm p (kmax)].
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TABLE I
QUEUES Qm WITH DIFFERENT m

Step 3. If mtmp + λ > mend , then put out mtmp , and
stop; otherwise, apply the FGFKM algorithm with m =
mtmp + λ to obtain a resulting set V of the cluster
centers. Compute |δ(Vi)| for each cluster center Vi ∈ V
to store by ascending order into a queue Qm tm p +λ =
[Qm tm p +λ(1), Qm tm p +λ(2), . . . , Qm tm p +λ(kmax)].

Step 4. For 1 ≤ i ≤ kmax , if Qm tm p (i) > Qm tm p +λ(i), then
put out mtmp , and stop.

Step 5. Set mtmp = mtmp + λ, and go to Step 3.
In this algorithm, the value of m increases from mstart to

mend with the step length of λ. In this paper, we propose to
set mstart = 1.1, mend = 2.5, and λ = 0.1. The computational
cost of the BMP algorithm is O([(n + nkmaxt)kmax + k2

max ]β),
where β = (mend − mstart)/λ. Here, the O(k2

max) operations
are used to calculate Qm tm p , while the value of mtmp is given.

Let us reconsider the example in Fig. 6. Table I shows the
changes of the queues Qm with different m ∈ [1.1, 2.6]. We see
that from m = 1.1 to 2.0, the values of Qm increase gradually.
However, from m = 2.0 to 2.1, Qm (2) decreases. This means
that the boundary value of m is 2. We will use the cluster
centers that are obtained by the FGFKM algorithm with m = 2
to determine the number of clusters in the given dataset.

The second subproblem can be solved by using the Max–
Min distances between the cluster centers. We first construct a
descending sequence of cluster centers and define a possibility
function of an existing rallying point. Furthermore, we will find
the number of rallying points of the cluster centers, which is
used to determine the number of clusters.

Definition 2 (Descending Sequence of Cluster Centers): Let
V = {V1 , V2 , . . . , Vkm a x } be a result set of cluster centers ob-
tained by the FGFKM algorithm. We construct a sequence
S = {V ′

1 , V
′
2 , . . . , V

′
km a x

} of the cluster centers in V , such that

⎧
⎪⎨

⎪⎩

‖V ′
l − V ′

l+1‖2 = max
1≤i<j≤km a x

‖Vi − Vj‖2 , if l = 1

l−1
min
j=1

‖V ′
l − V ′

j ‖2 =
km a xmax
h=1

l−1
min
j=1

‖Vh − V ′
j ‖2 , if l > 1

(23)

for 1 ≤ l ≤ kmax .
Definition 3 (Possibility Function of an Existing Rallying

Point): The possibility of the existing lth rallying point is defined

as

P (l) =

⎧
⎨

⎩

l−1
min
j=1

‖V ′
l − V ′

j ‖2 , if l > 1

P (2), if l = 1
(24)

for 1 ≤ l ≤ kmax .
Intuitively, if there are k rallying points in the obtained cluster

centers, the distances between these rallying points should be
large. Hence, we could select the first k cluster centers which
are the farthest from each other to be as rallying points. Since
the k + 1 rallying point does not exist, the (k + 1)th cluster
center which is selected as the (k + 1)th rallying point will
be very close to one of the first k cluster centers. This means
that P (k + 1) is far smaller than P (l), 1 ≤ l ≤ k. The values
of the function P from k to k + 1 show a dramatic change.
At the same time, the values of the function P from k + 1 to
kmax should be much less distinctive, because these chosen
k + 2, k + 3, . . . , kmax cluster centers will also be very close to
one of the first k initial cluster centers. This heuristic states us
that the value of P (l) could reflect the possibility of the existing
lth rallying point. The higher the value, the more possibly the lth
rallying point exists. While we select the (k + 1)th cluster center
as a rallying point, the function P from k + 1 goes into a plateau.
This means that k + 1 should be a knee point on the function P .
However, since the number of clusters is not usually less than
2, the values of the function P from k = 1 to 2 should not show
a dramatic change; otherwise, it is meaningless. Therefore, we
set P (1) = P (2) in the definition of the function P . We will
determine the number of clusters by analyzing the function P
to find a knee point. Fig. 7 shows a curve of the function P
of the example in Fig. 6. According to Fig. 7, we can see that
the determined number of clusters is 3 since k = 4 is a knee
point. After the cluster centers are obtained, the computation
complexity to find the number of clusters is O(k2

max).

C. Grouping Multicenters to Represent Each Cluster

In this section, we will first propose a separation measure to
evaluate how well two subclusters are separated. Next, we will
present the GMC algorithm in which the separation measure is
used to group multicenters to represent each cluster.

A separation measure is used to reflect how well two clus-
ters are separated. Conceptually, a large separation of two clus-
ters indicates less of an inclination to integrate these clusters
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Fig. 7. Sketch of the function P (k).

into a larger one. It is also called cluster distance or similar-
ity in the literature [39], [43]–[45]. The distances between the
closest or farthest data points of two clusters are used to mea-
sure the cluster separation in the agglomerative clustering algo-
rithms [43], [44]. They are not only computationally expensive
but sensitive to noise as well because of the dependence on a
few points. In the center-based clustering algorithms, the sep-
aration of two clusters is often measured by using the distance
between their centers. Although this measure is computation-
ally efficient and robust to noise, it cannot reflect the degree of
overlap between two clusters. For example, Fig. 8 shows that for
the same distance between two clusters, the separation of two
clusters can be different. Intuitively, we see that Clusters A and
B are less separated than Clusters B and C. This is because there
is a clear boundary between Clusters B and C, compared with
that between A and B. However, with the use of the separation
measure, the separation of Clusters A and B is equal to that of
Clusters B and C. In [40], Liu et al. proposed to find a sparse re-
gion between two clusters and count data points falling into the
region. The number of data points in the region is used to reflect
the separation of the two clusters. The question is how to find
the sparse region between the two clusters. Liu et al. first project
data points from two clusters onto the line that connects the two
centers. Next, they partition the line into 2B bins of equal size
and count the data points that fall into each bin. The bin that
has the smallest number of data points is selected as the sparse
region. However, there are following problems. 1) The value of
B has an impact on the number of data points that fall into a bin.
It is difficult to select an appropriate B value when the domain
knowledge of the datasets is not available. 2) In addition to B, a
bin size depends on the distance between two centers. Given B,
if the distances between two pairs of centers are different, the
two obtained sparse regions have different sizes.

To overcome these shortcomings, we use the degree of over-
lap between two clusters to reflect their separation. Given two
clusters, the more the data objects have similar memberships
to them, the larger their overlapping degree. When the overlap-
ping degree is large, the boundary between the two clusters is not
clear. This means that their separation is poor. When the over-
lapping degree is very small so that each data object is clearly

assigned to only one cluster, the separation of the two clusters is
very large. We will define the separation measure between two
clusters as follows.

Definition 4 (Separation Measure): Let C = {C1 , C2 , . . . ,
Ckm a x } be a partition of X and V = {V1 , V2 , . . . , Vkm a x }, where
Vl is the center of Cl for 1 ≤ l ≤ kmax . The separation measure
between Cl and Ch is defined as

S(Cl, Ch) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2|C ′

l |
∑

Xj ′ ∈C ′
l

‖|Xj ′ − Vl‖2 − ‖Xj ′ − Vh‖2 |
‖Xj ′ − Vl‖2 + ‖Xj ′ − Vh‖2

+
1

2|C ′
h |

∑

Xj ′ ∈C ′
h

‖|Xj ′ − Vl‖2 − ‖Xj ′ − Vh‖2 |
‖Xj ′ − Vl‖2 + ‖Xj ′ − Vh‖2

if |C ′
l | �= 0 and |C ′

h | �= 0

1
2

+
1

2|C ′
l |

∑

Xj ′ ∈C ′
l

‖|Xj ′ − Vl‖2 − ‖Xj ′ − Vh‖2 |
‖Xj ′ − Vl‖2 + ‖Xj ′ − Vh‖2

if |C ′
l | �= 0 and |C ′

h | = 0

1
2

+
1

2|C ′
h |

∑

Xj ′ ∈C ′
h

‖|Xj ′ − Vl‖2 − ‖Xj ′ − Vh‖2 |
‖Xj ′ − Vl‖2 + ‖Xj ′ − Vh‖2

if |C ′
l | = 0 and |C ′

h | �= 0

1, if |C ′
l | = 0 and |C ′

h | = 0

(25)

for 1 ≤ l < h ≤ k, where

C ′
l =

{
Xj ′ | ‖Vl − Vh‖2 + ‖Vl − Xj ′ ‖2 − ‖Vh − Xj ′ ‖2

2
√
‖Vl − Xj ′ ‖2

√
‖Vl − Vh‖2

≥ 0

Xj ′ ∈ Cl

}
,

and

C ′
h =

{
Xj ′ | ‖Vl − Vh‖2 + ‖Vh − Xj ′ ‖2 − ‖Vl − Xj ′ ‖2

2
√
‖Vh − Xj ′ ‖2

√
‖Vl − Vh‖2

≥ 0

Xj ′ ∈ Ch

}
.

In the definition, we use the distances between objects and
centers to measure the degree of overlap between clusters, in-
stead of memberships of objects to clusters. According to (4),
we obtain that the difference between the memberships of Xj ′

to clusters Cl and Ch is

‖ul,j ′ − uh,j ′ ‖

=

∣∣∣∣
(

1
‖Xj ′−Vl ‖2

)1/m−1
−

(
1

‖Xj ′−Vh ‖2

)1/m−1
∣∣∣∣

(
1

‖Xj ′−Vl ‖2

)1/m−1
+

(
1

‖Xj ′−Vh ‖2

)1/m−1
+ P

(26)



738 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 20, NO. 4, AUGUST 2012

Fig. 8. Distances between the centers of three clusters.

where

P =
∑

1≤t≤km a x ,t �= l,t �=h

(
1

‖Xj ′ − Vt‖2

)1/m−1

.

We see that ‖ul,j ′ − uh,j ′ ‖ is affected by two factors: m and
P . For each object in Cl ∪ Ch , the closer the value of m is to
1, the larger the difference between its memberships to clusters
Cl and Ch , which makes the degree of overlap between clusters
computed by using the memberships approach 0. This overlap-
ping measure does not reflect the separation between the two
clusters. In terms of the effect of P , the larger the P , the smaller
the difference between its memberships to clusters Cl and Ch ,
which weakens the degree of overlap between the two clusters.
In addition, computing the separation measure between the two
clusters should be independent of other clusters. Therefore, we
remove m and P from (26) and obtain

∣∣1/‖Xj ′ − Vl‖2 − 1/‖Xj ′ − Vh‖2
∣∣

1/‖Xj ′ − Vl‖2 + 1/‖Xj ′ − Vh‖2

=

∥∥|Xj ′ − Vl‖2 − ‖Xj ′ − Vh‖2
∣∣

‖Xj ′ − Vl‖2 + ‖Xj ′ − Vh‖2 (27)

which is used to measure the separation between the two
clusters.

In this separation measure, we only take into account a subset
of objects in Cl and Ch . Fig. 9 shows that the overlap between the
clusters Cl and Ch should only emerge between the hyperplanes
HPl which is with the point Vl lying on and a normal vector−−→
VlVh and HPh which is with the point Vh lying on and a normal
vector

−−→
VlVh . Therefore, we select the objects between HPl and

HPh from Cl and Ch to measure the separation between Cl and
Ch . Next, we propose the GMC algorithm that is based on the
separation measure, which is described as follows.

Grouping Multicenter Algorithm
Step 1. Input k, which is the number of clusters, C =

{C1 , C2 , . . . , Ckm a x }, which is a partition of X , and V =
{V1 , V2 , . . . , Vkm a x }, which is the set of cluster centers. Let
CP = {CP1 , CP2 , . . . , CPkm a x } be an initial partition of C,
where CPi = {Ci} for 1 ≤ i ≤ kmax .

Fig. 9. Overlapping region between two clusters.

Step 2. If |CP | ≤ k, go to Step 3; otherwise, find CPi and
CPj from CP , which are satisfied as

min
1≤i<j≤km a x

min
Ci ′ ∈C Pi ,Cj ′ ∈C Pj

S(Ci ′ , Cj ′), (28)

add CPi ∪ CPj to CP , and remove CPi and CPj . Go to Step
2.

Step 3. Construct a partition V P = {V P1 , V P2 , . . . , V Pk}
of V , where V Pi = {Vi ′ |Vi ′ ∈ V is the center of Ci ′ ∈ CPi},
for 1 ≤ i ≤ k. Output V P .

We apply the GMC algorithm to obtain a partition V P of V .
For 1 ≤ i ≤ k, all the cluster centers in V Pi are used to collec-
tively represent the ith cluster. The computation complexity of
the GMC algorithm is O(nkmax + k2

max log kmax).

D. Overall Implementation

The MC clustering algorithm is implemented under the frame-
work that is shown in Fig. 10. This algorithm consists of the three
subalgorithms: the FGFKM, BMP, and CMG algorithms. In the
first phase, we apply the FGFKM algorithm to obtain kmax re-
liable cluster centers from a dataset. Before the implementation
of the FGFKM algorithm, we need to input two parameters: the
number of cluster centers kmax(≥ k) and the fuzzy index m. In
clustering imbalanced data, if the fuzzy index m is an oversized
value, the obtained cluster centers may have similar features,
which makes the “uniform effect” to occur. However, if the m
value is equal to 1, the algorithm cannot properly deal with noise
and overlapping properties of clusters. Therefore, we suggest
m ∈ [1.1, 1.5], which could make each of these obtained cluster
centers to have a great difference with each other and represent
a different subset of objects. In the second phase, the BMP al-
gorithm is used to find the most appropriate value m∗ from the
[mstart ,mend ] interval with the step length of λ and determine
the number of clusters k. We suggest setting mstart = m, which
is used in the first phase, mend = 2.5, and λ = 0.1. In the last
phase, we use the GMC algorithm to group the cluster centers
that are obtained in the first phase to represent k clusters.

V. EXPERIMENTAL RESULTS

In this section, we present three experiments to evaluate
the effectiveness of the proposed algorithm. The first two
experiments were conducted on synthetic datasets. The last



LIANG et al.: THE K-MEANS-TYPE ALGORITHMS VERSUS IMBALANCED DATA DISTRIBUTIONS 739

Fig. 10. Flowchart of the overall implementation of the MC clustering algorithm.

TABLE II
SUMMARY OF DATASETS

TABLE III
CLUSTER RECOVERY FOR THE IDS1 DATA BY USING SIX ALGORITHMS

experiment was conducted on three real datasets from the
University of California at Irvine. [48].Detailed information
including data size, the number of attributes, and class dis-
tribution can be found in Table II. In Experiments II and
III, the proposed algorithm was compared with the hard k-
means (KM) (m = 1), fuzzy k-means (FKM) (m = 2), kernel
fuzzy k-means (KFKM) (the kernel function is the Gaussian
kernel; m = 2;σ2 = 100), Gustafson–Kessel (GK) (m = 2),
and iterative compatible cluster merging algorithm (ICCM)
(m = 2, c1 = 0.95, c2 = 0.05, c3 = 3). In the comparisons, we
performed the KM, FKM, KFKM, and GK algorithms with the
20 randomly selected cluster centers and the “true” cluster cen-
ters as the initial sets, respectively. In Tables III–IX, R denotes
the average results of these algorithms with these randomly se-
lected cluster centers. B denotes the results of these algorithms
with the “true” cluster centers. For the ICCM algorithm, we
presented its best clustering result on each dataset over 20 ran-
dom runs in Tables III–IX.

To evaluate the performance of clustering algorithms in the
experiments, we consider the five validity measures [33], [46],

[47]: 1) accuracy (AC); 2) precision (PE); 3) recall (RE); 4)
adjusted rand index (ARI); and 5) coefficient of variation (CV).
Let X be a dataset, C = {C1 , C2 , . . . , Ck} be a clustering re-
sult of X , P = {P1 , P2 , . . . , Pk ′ } be a partition of the original
classes in X , nij be the number of common objects of groups
Ci and Pj : nij = |Ci ∩ Pj |, bi be the number of objects in Ci ,
and dj be the number of objects in Pj . These validity measures
are defined as

AC =
1
n

k∑

i=1

maxk ′

j=1nij , PE =
1
k

k∑

i=1

maxk ′
j=1nij

bi

RE =
1
k

k∑

i=1

maxk ′
j=1nij

dargmaxk ′
j = 1

nij

ARI =

∑
ij C2

ni j
− [

∑
i C2

bi

∑
j Cdj

2 ]/C2
n

1
2 [

∑
i C2

bi
+

∑
j C2

dj
] − [

∑
i C2

bi

∑
j C2

dj
]/C2

n

CV =

∣∣∣∣∣∣

√∑k
i=1(bi −

∑k
i=1 bi/k)/(k − 1)

∑k
i=1 bi/k

−

√∑k ′

j=1(dj −
∑k ′

j=1 dj/k′)/(k′ − 1)
∑k ′

j=1 dj/k′

∣∣∣∣∣∣
.

If the clustering result is close to the true class distribution,
then the values of AC, PE, RE, and ARI are high. However, for
imbalanced data, some of AC, PE, RE, and ARI tend to not cap-
ture the “uniform effect” and provided misleading information
about the clustering performance. For example, if the “uniform
effect” occurs, the clustering result tends to have a high value
of AC but low values of the other indices. In this case, it is not
enough to only consider AC to evaluate the clustering result. We
do not deny AC. Conversely, we believe that the larger the value
of AC, the better the clustering solution. We mean that other
measures should be simultaneously considered. In addition, we
employ the CV measure [33] which is a necessary criterion to
validate the clustering results. Although this criterion does not
necessarily indicate a good clustering performance if the CV
value of the clustering result is low, it indicates that if the CV
value is high, the clustering performance is poor.
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TABLE IV
SUMMARY CLUSTERING RESULTS OF DIFFERENT ALGORITHMS ON THE IDS1 DATA

A. Experiment I

In this experiment, we investigated the performance of the
proposed algorithm in clustering balanced data. We generated
3000 synthetic data points from a mixture of three bivariate
Gaussian densities given by

1
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Gaussian
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) (
5 0
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)
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1
3

Gaussian

(
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0

)(
5 0
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)

+
1
3

Gaussian

(
0

20

)(
5 0

0 5

)

where Gaussian [X,Y ] is a Gaussian normal distribution with
the mean X and the covariance matrix Y . The generated dataset
by this density function, which is called BDS1, is shown in
Fig. 11(a). In the experiment, we first applied the FGFKM algo-
rithm to obtain the three cluster centers, as shown in Fig. 11(b).
The three locations were very close to the “true” centers of the
three clusters in the dataset. We also obtained different sets of
nine cluster centers by the FGFKM algorithm with different m
values and found that as m increases from 1.1 to 2, the dis-
tances between cluster centers belonging to the same clusters
decrease. Then, we used the cluster centers that are obtained by
the FGFKM algorithm with m∗ = 2 to determine the number of
clusters [shown in Fig. 14(a)].

B. Experiment II

In this experiment, we investigated the performance of the
proposed algorithm in clustering imbalanced data. We gener-
ated two synthetic datasets, which we called IDS1 and IDS2,
respectively.

1) IDS1: IDS1 has 2600 synthetic data points which aise
from a mixture of three bivariate Gaussian densities given by
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)
.

The generated dataset by this density function is shown in
Fig. 12(a). In the experiment, we applied the FGFKM algorithm
to obtain different sets of 13 cluster centers by the FGFKM al-
gorithm with different m values and found that as m increases
from 1.1 to 2, the distances between the cluster centers be-
longing to the same clusters decrease. Then, we used the cluster
centers that are obtained by the FGFKM algorithm with m∗ = 2
to determine the number of clusters [shown in Fig. 14(b)].

TABLE V
CLUSTER RECOVERY FOR THE IDS2 DATA BY USING SIX ALGORITHMS

2) IDS2: IDS2 has 3200 synthetic data points which arise
from a mixture of five bivariate Gaussian densities given by
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The generated dataset by this density function is shown in
Fig. 13(a). In the experiment, we applied the FGFKM algorithm
to obtain different sets of 13 cluster centers by the FGFKM al-
gorithm with different m values and found that as m increases
from 1.1 to 1.8, the distances between the cluster centers in
the same clusters decrease. Then, we used the cluster centers
that are obtained by the FGFKM algorithm with m∗ = 1.8 to
determine the number of clusters [shown in Fig. 14(c)].

We compared the proposed algorithm with other five algo-
rithms on the IDS1 and IDS2 data. According to the clustering
results of these existing algorithms (shown in Tables III and
V), we find that the “best” initial cluster centers did not bring
the best results, because of the “uniform effect.” We also see
that the results that are obtained by the proposed algorithm are
very close to the original classifications of the IDS1 and IDS2
datasets. Tables IV and VI show the comparisons of these exist-
ing algorithms for AC, PE, RE, ARI, and CV with the proposed
algorithm.



LIANG et al.: THE K-MEANS-TYPE ALGORITHMS VERSUS IMBALANCED DATA DISTRIBUTIONS 741

TABLE VI
SUMMARY CLUSTERING RESULTS OF DIFFERENT ALGORITHMS ON THE IDS2 DATA

TABLE VII
SUMMARY CLUSTERING RESULTS OF DIFFERENT ALGORITHMS ON THE WINE DATA

TABLE VIII
SUMMARY CLUSTERING RESULTS OF DIFFERENT ALGORITHMS ON THE BREAST CANCER DATA

TABLE IX
SUMMARY CLUSTERING RESULTS OF DIFFERENT ALGORITHMS ON THE ECOLI DATA

Fig. 11. (a) Data distribution on the BDS1 data. (b) Three cluster centers obtained by the FGFKM algorithm when m = 1.1. (c) Nine cluster centers obtained
by the FGFKM algorithm when m = 1.1. (d) Nine cluster centers obtained by the FGFKM algorithm when m = 1.5. (e) Nine cluster centers obtained by the
FGFKM algorithm when m = 1.8. (f) Nine cluster centers obtained by the FGFKM algorithm when m = 2.
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Fig. 12. (a) Data distribution on the IDS1 data. (b) Thirteen cluster centers obtained by the FGFKM algorithm when m = 1.1. (c) Thirteen cluster centers
obtained by the FGFKM algorithm when m = 1.5. (d) Thirteen cluster centers obtained by the FGFKM algorithm when m = 1.8. (e) Thirteen cluster centers
obtained by the FGFKM algorithm when m = 2.

Fig. 13. (a) Imbalanced data distribution on the IDS2 data. (b) Thirteen cluster centers obtained by the FGFKM algorithm when m = 1.1. (c) Thirteen cluster
centers obtained by the FGFKM algorithm when m = 1.5. (d) Thirteen cluster centers obtained by the FGFKM algorithm when m = 1.8. (e) Thirteen cluster
centers obtained by the FGFKM algorithm when m = 1.9.
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Fig. 14. (a) Determination of the number of clusters on the BDS1 data. (b) Determination of the number of clusters on the IDS1 data. (c) Determination of the
number of clusters on the IDS2 data.

Fig. 15. (a) Determination of the number of clusters on the wine data. (b) Determination of the number of clusters on the breast data. (c) Determination of the
number of clusters on the ecoli data.

C. Experiment III

To show the practical applicability of the proposed algorithm,
we apply it to three real datasets, wine, breast cancer, and
ecoli data, which are available at the UCI Machine Learning
Repository.

Similar to Experiment II, the clustering results of the proposed
algorithm on the selected real datasets will be compared with
other five algorithms. Moreover, the number of clusters for each
given dataset determined by the proposed algorithm is shown in
Fig. 15.

1) Wine Data: These data were the result of a chemical anal-
ysis of wines grown in the same region in Italy. It consists of 178
data objects and 13 continuous attributes. It has three clusters.
Fig. 15(a) shows that the number of clusters on the wine data
is 3. The clustering results on the wine data are summarized in
Table VII.

2) Breast Cancer Data: This breast cancer domain was ob-
tained from the University Medical Center, Institute of Oncol-
ogy, Ljubljana, Yugoslavia. It consists of 699 data objects with
nine continuous attributes. However, there are 16 objects in the
dataset that contain a single missing (i.e., unavailable) attribute
value. We remove these objects from the dataset. It has two
clusters: benign (444 data objects) and malignant (239 data ob-
jects). Fig. 15(b) shows that the number of clusters on the breast
cancer data is 2 indeed. The clustering results on the breast
cancer data are summarized in Table VIII.

3) Ecoli Data: These data were about protein localization
sites in eukaryotic cells. It consists of 336 data objects and
seven continuous attributes. We select 327 objects from the
dataset. It has five clusters. The other nine objects as the outliers
are removed. Fig. 15(c) shows that the number of clusters on
the ecoli data is 5. The clustering results on the ecoli data are
summarized in Table IX.

According to Fig. 15, we see that our proposed algorithm can
exactly find the “true” numbers of clusters on these real datasets.
Table VII shows that the proposed algorithm can obtain a very
good clustering result on the wine dataset which is very close
to the result of the hard k-means algorithm with “true” cluster
centers. Tables VIII and IX show that on the breast cancer and
ecoli datasets, the performance of the proposed algorithm is
better than that of other clustering algorithms. In summary, the
aforementioned experimental studies illustrate that the proposed
algorithm cannot only effectively cluster balanced data but can
have a good potential in handling imbalanced data as well.

VI. CONCLUSION

In this paper, we have presented an organized study of the
effect of imbalanced data distributions on the performance of
the k-means-type algorithms. We found that the fuzzy k-means
algorithm more possibly produce clusters with relatively uni-
form sizes than the hard k-means algorithm, even if the input
data have a range of varied “true” cluster sizes. As the fuzzy
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index m increases, the effect becomes evident. We proposed a
multicenters algorithm to avoid the occurrence of the effect. In
the proposed algorithm, we first use the FGFKM algorithm to
obtain several reliable cluster centers and partition the dataset
into several subclusters. Furthermore, based on the fuzzy index
m and the Max–Min distances between the selected cluster cen-
ters, the number of clusters is determined. Finally, a separation
measure was proposed to evaluate how well two subclusters are
separated. Multicenters with small separations were organized
to model each cluster in the agglomerative method, instead of
one single center. The proposed algorithm only needs two pa-
rameters which are easily set up. Our experimental results have
shown the effectiveness of the proposed algorithm to cluster
balanced and imbalanced data.
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