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Feature selection is a challenging problem in many areas such as pattern recognition, ma-

chine learning and data mining. Rough set theory, as a valid soft computing tool to analyze

various types of data, has beenwidely applied to select helpful features (also called attribute

reduction). In rough set theory, many feature selection algorithms have been developed in

the literatures, however, they are very time-consumingwhen data sets are in a large scale. To

overcome this limitation, we propose in this paper an efficient rough feature selection algo-

rithm for large-scale data sets, which is stimulated frommulti-granulation. A sub-table of a

data set can be considered as a small granularity. Given a large-scale data set, the algorithm

first selects different small granularities and then estimate on each small granularity the

reduct of the original data set. Fusing all of the estimates on small granularities together, the

algorithm can get an approximate reduct. Because of that the total time spent on computing

reducts for sub-tables is much less than that for the original large-scale one, the algorithm

yields in a much less amount of time a feature subset (the approximate reduct). According

to several decision performance measures, experimental results show that the proposed

algorithm is feasible and efficient for large-scale data sets.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Asa common technique fordatapreprocessing inpattern recognition,machine learninganddatamining, feature selection

has attractedmuch attention in recent years [5–7,20,21,23,26,30,40]. In practices, databases increase quickly not only in the

rows (objects) but also in the column (features) nowadays. Tens, hundreds even thousands of features are stored in databases

in some real-world applications, which has resulted in datawith high dimension. However, only a limited amount of features

is useful in practice, that is, an excessive amount of features may cause a significant slowdown in the learning process and

irrelevant or redundant features may deteriorate the performance of learning algorithms [12,13,38]. To ease this situation,

it is desirable to reduce redundant features and select informative features for decreasing the cost of measuring, storing and

transmitting, shortening the process time and gaining more compact classification models with a better generalization.

Roughset theory, proposedbyPawlak [31–33], is a relativelynewsoft computing tool for theanalysisof avaguedescription

of an object, and has become a popularmathematical framework for pattern recognition, image processing, feature selection,

rule extraction, neuro-computing, conflict analysis, decision supporting, granular computing, data mining and knowledge

discovery from large data sets [3,4,8,28,36,50,51]. In rough set theory, an important concept is attribute reduction (or

approximate reduct), which can be considered a kind of specific feature selection. In other words, based on rough set theory,
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one can select useful features froma given data table. Attribute reduction does not attempt tomaximize the class separability

but rather to retain the discernible ability of original features for the objects from the universe [15,16,41,44,52].

As one of the most important research topics along with the fast development of rough set theory, attribute reduction

has aroused wide concern and study, and many attribute reduction techniques have been developed in last twenty years.

Applying discernibility matrix, Skowron [42] proposed an attribute reduction algorithm by computing disjunctive normal

form, which is able to obtain all attribute reducts of a given table whereas finding the minimal reduct of a decision table

is an NP-hard problem. Kryszkiewicz and Lasek [22] proposed an approach to computing the minimal set of attributes

that functionally determine a decision attribute. These two attribute reduction algorithms are usually computationally

very expensive, especially for dealing with large-scale data sets of high dimensions. Therefore, to overcome this difficulty,

many heuristic attribute reduction algorithms have been developed in rough set theory [11,13,24,25,39,35,43,45,46,48].

A heuristic attribute reduction algorithm can extract a single reduct from a given table in a relatively short time. In order

to further reduce computational time, based on four kinds of common heuristic reduction algorithms, Qian et al. [37]

developed a common accelerator to improve the time efficiency of a heuristic search process. According to the accelerator,

certain objects are deleted from the universe every time when a new attribute is selected and added into the core. However,

if the core is a reduct for some table, the accelerator will have no effect on the time reduction. And for some very large-scale

data sets, the accelerated computational time is still very long. Besides, in view of the computational space utilization, it is

space-consuming aswell to find a reduct to a large-scale data set. Therefore, it is desired to have an efficient and space-saving

feature selection algorithm to large-scale data tables.

In biological research, social survey, product testing, etc., since it usually is very difficult or impossible to collect all

the samples, one often has to use some of the samples to estimate the totality. This leads to the main idea of this paper,

namely, estimating on sub-tables the reduct of a large-scale data set. The idea of reduct computation on sub-tables was

also mentioned in the process of dynamic reducts [1]. It should be pointed out that, this idea in the dynamic reducts aim to

find stable reducts of a given decision table, however, not to get the estimates. In addition, we remark that dynamic reducts

need to select lots of sub-tables and the size of each sub-table is very close to the size of the original table [2]. Therefore,

the computation of dynamic reducts is also very time-consuming for a large-scale data table. In addition, based on reduct

subspaces, Miao et al. [27] constructed a classifier for partially labeled data, and the subspace was not introduced to get the

estimates, either.

Drove by the above analysis, an efficient rough feature selection algorithm is devised in this paper. The algorithm targets

estimating reduct of a large-scale data set from a multi-granulation view. A sub-table of a large-scale data set can be

considered as single small granularity; and one can estimate on this small granularity the reduct of the original table. By

collecting different sub-tables together, one can compute a reduct on each small granularity towhich the original large-scale

table ismapped. Fusing together these reducts on all small granularities, we obtain a feature subset of the original large-scale

table. It should be noted that the available feature subset usually is not an exact reduct (Pawlak’s reduct) on the original

large table but an approximate reduct. The total time spent on computing reducts for sub-tables is much less than that for

the original large-scale one and the space utilization is also much smaller. In practices, to save computational time, it is

good enough to find an approximate reduct. In order to further illustrate the feasibility of the proposed feature selection

algorithm, several experimental tests are given in this paper,which have been carried out according to four commondecision

measures on reducts.

The rest of this paper is organized as follows: some preliminaries in rough set theory are briefly reviewed in Section 2.

In Section 3, by introducing the approach for selecting small granularities and finding a reduct on each small granularity,

we give an efficient rough feature selection algorithm for large-scale data sets. In Section 4, ten UCI large-scale data sets

are employed to illustrate the feasibility and efficiency of the proposed algorithm. Section 5 concludes the paper with some

discussions.

2. Preliminary knowledge on rough sets

In this section, we will review several basic concepts in rough set theory. Throughout this paper, we assume that the

universe U is a finite nonempty set.

An information table, as a basic concept in rough set theory, provides a convenient framework for the representation of

objects in terms of their attribute values. An information system S is a pair (U, A) , whereU is a finite nonempty set of objects

and is called the universe and A is a non-empty, finite set of attributes. For each a ∈ A, a mapping a : U → Va is determined

by a given decision table, where Va is the domain of a.

Each non empty subset B ⊆ A determines an indiscernibility relation in the following way,

RB = {(x, y) ∈ U × U | a(x) = a(y),∀a ∈ B}.
The relation RB partitions U into some equivalence classes given by

U/RB = {[x]B | x ∈ U},
where [x]B denotes the equivalence class determined by x with respect to B, i.e.,

[x]B = {y ∈ U | (x, y) ∈ RB}.
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When relation R is know by default or unimportant for consideration, U/RB can be replaced by U/B.
Given an equivalence relation R on the universe U and a subset X ⊆ U, one can define a lower approximation of X and an

upper approximation of X by

RX =⋃{x ∈ U | [x]R ⊆ X}
and

RX =⋃{x ∈ U | [x]R ∩ X �= Ø},
respectively [6]. The order pair (RX, RX) is called a rough set of X with respect to R. The positive region of X is denoted

POSR(X) = RX .

We define a partial relation � on the family {U/B | B ⊆ A} as follows: U/P � U/Q (or U/Q 	 U/P) if and only if, for

every Pi ∈ U/P, there exists Qj ∈ U/Q such that Pi ⊆ Qj , where U/P = {P1, P2, . . . , Pm} and U/Q = {Q1,Q2, . . . ,Qn} are
partitions induced by P, Q ⊆ A, respectively. In this case, we say that Q is coarser than P, or P is finer than Q . If U/P � U/Q
and U/P �= U/Q , we say Q is strictly coarser than P (or P is strictly finer than Q ), denoted by U/P ≺ U/Q (or U/Q � U/P).

It is clear that U/P ≺ U/Q if and only if, for every X ∈ U/P, there exists Y ∈ U/Q such that X ⊆ Y , and there exist

X0 ∈ U/P and Y0 ∈ U/Q such that X0 ⊂ Y0.

A decision table is an information system S = (U, C ∪D)with C ∩D = Ø, where C is called a condition attribute set and

its element is called a condition attribute, D is called a decision attribute set and its element is called a decision attribute.

Given P ⊆ C and U/D = {D1,D2, . . . ,Dr}, the positive region of D with respect to the condition attribute set P is defined

by POSP(D) = ⋃r
k=1 PDk . Then, one can extract decision rules from a decision table.

3. Rough feature selection algorithm with a multi-granulation view

In rough set theory, feature selection is also called attribute reduction, which is a studying focus in many fields. With the

developmentof attribute reduction inapplication, oneof thebottlenecks is thecomputational timeof reductioncomputation,

especially for the large-scale data sets. Therefore, according to the idea of using samples to estimate the totality, we devise in

this section a highly efficient rough feature selection algorithm fromamulti-granulation view. In the design of the algorithm,

we remark that there are three key problems should be considered. The first problem is selecting sub-tables from the large-

scale one, the second one is finding reduct on sub-tables, and the last one is the fusing the all the reducts on sub-tables

together.

A sub-table of a large-scale data table can be considered as single small granularity; and one can estimate on this small

granularity the reduct of the original table. By collecting different sub-tables together, one can compute a reduct on each

small granularity to which the original large-scale table is mapped. Fusing together these reducts on all selected small

granularities, we obtain a feature subset of the original large-scale table. It should be noted that we only discuss the reduct

on the decision table in this paper.

3.1. Selecting small granularity

In the process of selecting small granularity, one of the most important issues is how to determine the size of a small

granularity. Hence, with the use of some concepts and formulas in statistics, we first introduce a familiar approach to

determine sample size [17]. This approach is very common in statistics, which has been widely used to estimate the sample

size in many instances such as estimating the annual salary of college graduates, average consumption of customers and

average deposit of residents.

Let S be a data table (the original large-scale data table) and let the size of S be denoted by N. Then, the sample sizeM′ is
defined as [17]:

M′ = Z2 × σ 2

E2
, (1)

where σ means the standard deviation on S, Z means the Z−statistic under confidence intervals (e.g., the Z−statistic
corresponding to confidence interval 95% is 1.96, and confidence interval 99% is 2.58), and E means the acceptable tolerance

error which can be adjusted as requested.

It can be seen from formula (1) that there is no direct relation between sample sizeM′ and table size N. In fact, if sample

sizeM′ is larger than 5% of the overall size, the sample sizeM′ needs to be adjusted. In [18,29], by introducing the adjustment

coefficient FPC, the above formula is adjusted to reduce the sample size, which is defined as follows:

M = M′N
M′ + N

. (2)
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In view of that the decision tables in rough set theory are categorical data, we introduce the coefficient of unalikeability u

to replace the standarddeviationσ . For thedata table S, let its universe bedenotedbyU. Then, the coefficient of unalikeability

u on U is defined as [19,34]:

u =
∑|U|

i=1
∑|U|

j=1 c(xi, xj)
|U|2 , (3)

where xi, xj ∈ U, and

c(xi, xj) =
⎧⎪⎨
⎪⎩

1, xi �= xj ,

0, xi = xj .

Note that xi ∈ U is a one-dimensional vector in [19,34], whereas the data in a decision table is usually multi-dimensional.

Thus, we expand the definition of c(xi, xj) into multi-dimensional data, which is denoted by cm(xi, xj). Let S = (U, C ∪ D)
be a decision table, a ∈ C, xi ∈ U and xi = (a1(xi), a2(xi), . . . , a|C|(xi)). Then cm(xi, xj) is defined as:

cm(xi, xj) =
|C|∑
k=1

δ(ak(xi), ak(xj)), (4)

with the function δ being given by

δ(ak(xi), ak(xj)) =
⎧⎪⎨
⎪⎩

1, ak(xi) �= ak(xj)

0, ak(xi) = ak(xj).

Hence, for a decision table S, the coefficient of unalikeability can be redefined as

u1 =
∑|U|

i=1
∑|U|

j=1 cm(xi, xj)

|U|2 , (5)

and sample size is redefined as

M′1 =
Z2 × u21

E2
. (6)

Based on the above introduction, an algorithm is given to determine the size of sub-table (small granularity) on a large-

scale decision table as follows:

Algorithm 1. An algorithm to determine the sample size on a large-scale decision table

Input: Decision table S = (U, C ∪ D).
Output: Sample sizeM1.

Step 1: Compute the coefficient of unalikeability u1 (according to equations (4) and (5));

Step 2: Compute sample sizeM′1(according to equation (6));

Step 3: IfM′1 > 0.05|U|, then compute adjusted sample sizeM1 = M′1×|U|
M′1+|U|+1 ;

else M1← M′1.
Step 4: ReturnM1 and end.

Here, we employ an example to illustrate above concepts and computations involved in the determination ofM1. UCI data

set Breast-cancer-wisconsin with 699 objects, 9 attributes and 2 decision classes is used in the example. For convenience,

we remove the objects with missing values from the data set, and the number of remaining objects used in the example

is 683.

Example 1. For the data set Breast-cancer-wisconsin, we have |U| = 683 and |C| = 9.

Then, u1 =
∑|U|

i=1
∑|U|

j=1 cm(xi,xj)

|U|2 = 5.88.

We take Z = 2.58 (confidence interval is 99%) and E = 1.01, then M′1 = Z2×u21
E2
≈ 243.

Because 243 > 683× 0.05 ≈ 34, then M1 = M′1×|U|
M′1+|U|+1 = 179.
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In view of that, according toM′1 in equation (6), Z is a constant value and E is a desired level of precision, we can give an

estimation forM′1. If we select the confidence interval equal to 99% (Z = 2.58) and E = 1.01, then we get thatM′1 ≈ 6.5u21.
Hence, Algorithm 1 can be further described as follows:

Algorithm 1’. An algorithm to determine the sample size on a large-scale decision table

Input: Decision table S = (U, C ∪ D).
Output: Sample sizeM1.

Step 1: Compute sample sizeM′1 = 6.5u1 (according to equations (4 - 6));

Step 2: IfM′1 > 0.05|U|, then compute adjusted sample sizeM1 = M′1×|U|
M′1+|U|+1 ;

else M1← M′1.
Step 3: ReturnM1 and end.

Note that, for a large-scale data set, the sample size M1 found by Algorithm 1(or 1’) can be relatively adjusted, but not

quite different from the original value. For example, instead of M1 = 179 obtained in Example 1, one can use 180 as the

sample size is also fine.

For a decision table, we know that the reduct is directly related to its decision distribution. Thus, the decision distribution

on a small granular space may also affect the estimated result. To ensure the decision distribution on a small granular space

is close to the large-scale one, we set in the algorithm the ratio of decision attribute values of a small granular space equal

to the ratio of the original large-scale one. Besides, there should be some similarities among small granularity, which make

the reducts on small granularity are close to each other relatively and are more convenient for the fusion of feature subset.

Hence, in the selection process of small granularity, wemake each small granularity contains some objects that are identical

to those in another one.

According to the above discussion, we propose the algorithm for selecting sub-table (small granularity) on a large-scale

decision table as follows:

Algorithm 2. An algorithm for selecting small granularity on a large-scale decision table

Input: Decision table S = (U, C ∪ D).
Output: n small granularity Sj = (Uj, C ∪ D) (j = 1, 2, . . . , n).

Step 1: Compute the size of small granularityM1 (according to Algorithm 1);

Step 2: Compute U/D = {D1,D2, . . . ,Dr}, and the decision attribute value proportions pi = |Di|/|U|(i = 1, 2, . . . , r);
Step 3: Compute the numbers of each decision attribute value in the small granularity mi = [M1 × pi](i = 1, 2, . . . , r)

(function [·] is the rounding function);

Step 4: Select the first granularity S1 on U, U1← ∅:
for (i = 1; i ≤ r; i++)
{
Select mi objects from Di randomly, which is denoted by X;

U1← U1 ∪ X;

}
Step 5: Select granularity Sj repeatedly, j← 2:

while(|U −⋃j−1
k=1 Uk| < M1){

Given threshold α (0 < α < 1);
Step 5.1: Select αM objects from table Sj−1:{

Compute Uj−1/D = {D′1,D′2, . . . ,D′r};
Select αmi objects from D′i (i = 1, 2, . . . , r) randomly, which is denoted by X′;
Uj ← Uj ∪ X′;
}

Step 5.2: U′′ = U −⋃j−1
k=1 Uk, and select (1− α)M objects from U′′:

{
Compute U′′/D = {D′′1,D′′2, . . . ,D′′r };
Select (1− α)mi objects from Di (i = 1, 2, . . . , r) randomly, which is denoted by X′′;
Uj ← Uj ∪ X′′;
}

j← j + 1;

}
Step 6: n← j − 1 and end.
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Here are some explanations about Algorithm 2. In Steps 2-3, the algorithm aims to ensure the decision distribution on

sub-tables is close to the large-scale one. Besides, because of that mi are integers, one can get that
∑r

i=1 mi ≈ M. In the

process of selecting sub-tables in Step 5, some objects are selected from the existing sub-tables, which ensure there are

certain similarities among selected sub-tables. In addition, threshold α should not be too small to weaken the similarity, we

propose an empirical value of α = 0.5.

Example 2 (Continued from Example 1). Select sub-tables from Breast-cancer-wisconsin by using Algorithm 2.

From Example 1, we get that there are two decision classes in data set Breast-cancer-wisconsin andM1 = 109. According

to Step 2 and 3, by computing U/D = {D1,D2}, we get the decision attribute value ratio is θ1 = 0.65 and θ2 = 0.35,
respectively. Then, m1 = [179× 0.65] = 116 andm2 = [179× 0.35] = 63.

According to Step 4, we select 116 objects from D1 and 63 objects from D2 randomly, and form the first sub-table U1.

According to Step 5, because α = 0.5, we have α · 179 ≈ 90. Then, we select 90 objects from U1, 89 objets from U − U1

and form the second sub-table U2. By doing so, we select in turn sub-tables U3, U4, . . .. For |U −⋃5
k=1 Uk| = 59 < M1, we

have n = 5, namely, we obtain 5 sub-tables from Breast-cancer-wisconsin.

3.2. Reduction algorithm to small granularity

In practices, a given decision table usually has multiple reducts, and finding its minimal reduct is an NP-hard problem.

Therefore, someheuristic algorithms that can find one reduct in a shorter timewere proposed in Refs. [11,13,24,25,39,43,45,

46,48], most of which are greedy and forward search algorithms. Startingwith a nonempty set, these search algorithms keep

adding one or several attributes of high significance into a pool at each iteration until the dependence no longer increases. A

common acceleratorwas proposed in [37] to save the computational time of existing heuristic algorithms.We employ in this

section the accelerated reduction algorithm to find reduct of sub-tables. Four representative heuristic reduction algorithms

were employed to devise the accelerated algorithm in [37], which are reviewed as follows:

The idea of attribute reduction using positive-region was first originated by Grzymala-Busse in [9,10]. Hu and Cercone

proposed a heuristic attribute reduction algorithm, known as positive-region reduction (PR),which keeps the positive region

of target decision unchanged [11]. The definition of positive region of a decision table can be found in Section 2, and the

attribute dependence degree based on positive region is as follows [31]:

Definition 1. Let S = (U, C∪D) be a decision table and B ⊆ C. The attribute dependence degree of B relative toD is defined

as

γB(D) = |POSB(D)|
|U| . (7)

In a classical rough set model, Shannon’s information entropy was introduced to find reduct in [43], and its conditional

entropy was used to find the relative reduct of a decision table in [45]. The reduction algorithm in [45] keeps the conditional

entropy of target decision unchanged, and is denoted by SCE, where a conditional entropy is defined as follows [45]:

Definition 2. Let S = (U, C ∪ D) be a decision table and B ⊆ C. Then, one can obtain the condition partition U/B =
{X1, X2, . . . , Xm} and decision partition U/D = {Y1, Y2, . . . , Yn}. Based on these partitions, a conditional entropy of B

relative to D is defined as

H(D|B) = −
m∑
i=1
|Xi|
|U|

n∑
j=1
|Xi ∩ Yj|
|Xi| log

( |Xi ∩ Yj|
|Xi|

)
. (8)

In [24], the complementary entropy was used to measure the uncertainty of an information system. And its conditional

entropy can be used to measure the uncertainty of a decision table. In [24,25], based on the complementary entropy, a

heuristic reduction algorithm was introduce to reduce the redundant features. The conditional entropy in this algorithm

will be used in this study and is as follows [24,25]:

Definition 3. Let S = (U, C ∪ D) be a decision table and B ⊆ C. Then, one can obtain the condition partition U/B =
{X1, X2, . . . , Xm} and decision partition U/D = {Y1, Y2, . . . , Yn}. Based on these partitions, a conditional entropy of B

relative to D is defined as

E(D|B) =
n∑

i=1

m∑
j=1
|Yi ∩ Xj|
|U|

|Yc
i ∩ Xc

j |
|U| , (9)

where Yc
i and Xc

j are complement sets of Yi and Xj respectively.
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Qian and Liang in [39] presented a combination entropy for measuring the uncertainty of information systems and used

its conditional entropy to obtain a feature subset. This reduction algorithm can find an attribute subset that possesses the

same number of pairs of indistinguishable elements as that of the original decision table, and is denoted here by CCE. The

definition of the conditional entropy is as follows [39]:

Definition 4. Let S = (U, C ∪ D) be a decision table and B ⊆ C. Then one can obtain the condition partition U/B =
{X1, X2, . . . , Xm} and decision partition U/D = {Y1, Y2, . . . , Yn}. Based on these partitions, a conditional entropy of B

relative to D is defined as

CE(D|B) =
m∑
i=1

⎛
⎝ |Xi|
|U|

C2|Xi|
C2|U|
−

n∑
j=1
|Xi ∩ Yj|
|U|

C2|Xi∩Yj|
C2|U|

⎞
⎠ . (10)

where C2|Xi| denotes the number of pairs of objects which are not distinguishable from each other in the equivalence class Xi.

Based on the above four measures, the common attribute significance in a heuristic reduction algorithm is defined as

follows [37]:

Definition 5. Let S = (U, C ∪ D) be a decision table and B ⊆ C. ∀a ∈ B, the significance measure (inner significance) of a

in B is respectively defined as

Siginner1 (a, B,D,U) = γB(D)− γB−{a}(D),

Siginner2 (a, B,D,U) = H(D|B− {a})− H(D|B),
Siginner3 (a, B,D,U) = E(D|B− {a})− E(D|B),
Siginner4 (a, B,D,U) = CE(D|B− {a})− CE(D|B).

Definition 6. Let S = (U, C ∪ D) be a decision table and B ⊆ C. ∀a ∈ C − B, the significance measure (outer significance)

of a in B is respectively defined as

Sigouter1 (a, B,D,U) = γB∪{a}(D)− γB(D),

Sigouter2 (a, B,D,U) = H(D|B)− H(D|B ∪ {a}),
Sigouter3 (a, B,D,U) = E(D|B)− E(D|B ∪ {a}),
Sigouter4 (a, B,D,U) = CE(D|B)− CE(D|B ∪ {a}).

Given a decision table S = (U, C ∪ D) and a ∈ C. From the literature [24,31,37,39], we know that if Siginner� (a, C,D) > 0

(� = 1, 2, 3, 4), then the attribute a is indispensable, i.e., a is a core attribute of S. Based on the core attributes, a heuristic

attribute reduction algorithm can find an attribute reduct by gradually adding selected attributes to the core.

For convenience, we introduce a uniform notation ME(D|B) to denote those four measures. For example, if one adopts

Shannon’s entropy to define an attribute significance, then ME(D|B) = H(D|B). Based on above measures for attribute

significance, a feature selection accelerated algorithm was proposed in [37], which is as follows:

Algorithm 3. An accelerated attribute reduct algorithm to a decision table (FSPA)

Input: Decision table S = (U, C ∪ D)
Output: One reduct red

Step 1: red← ∅;
Step 2: for (j = 1; j ≤ |C|; j ++)

{ if Siginner(aj, C,D,U) > 0, then red← red ∪ {aj};}
Step 3: Let i← 1, P← red, Ui ← U;

Step 4: while (MEUi(D|P) �= MEUi(D|C)) do
{ i← i+ 1;

Ui = Ui−1 − POS
Ui−1
P (D);

Compute and select sequentially Sigouter(a0, red,D,Ui) = max{Sigouter(ai, red,D,Ui)}, aj ∈ C − red;
red← red ∪ {a0};
P← red;

}
Step 5: return red and end.
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In Step 4, POS
Ui−1
P (D) denotes the positive region of D with respect to the condition attribute subset P on universe

Ui−1. And the time complexity of the above algorithm is O(|U||C| + ∑|C|
i=1 |Ui|(|C| − i + 1)) according to the literature

[37].

However, in [37], the time complexity does not include the computational time of entropy and positive region. For a

decision table, computing entropy and positive region is a key step in the above reduction algorithm, which is not com-

putationally costless. Thus, to analyze the exact time complexity of the algorithm, we need to give the time complexity of

computing entropy and positive region as well.

For a decision table, according to Definitions 1–4, we first need to compute the conditional classes and decision classes,

respectively, and then compute the value of entropy or positive region. Xu et al. in [49] gave a fast algorithm for partition

with time complexity being O(|U||C|). So, the time complexity of computing entropy or positive region is

O(|U||C| + |U| +
m∑
i=1
|Xi| ·

n∑
j=1
|Yj|) = O(|U||C| + |U| + |U||U|) = O(|U|2),

where the specific introduction of m, n, Xi and Yj is shown in Definitions 1-4. Thus, the time complexity of Algorithm 2

should be modified as

O(|U|2|C| +
|C|∑
i=1
|Ui|2(|C| − i+ 1)).

Example 3 (Continued from Example 2). Find reduct of sub-tables of Breast-cancer-wisconsin by using FSPA.

For convenience, based on positive region, we only employ in this example one sub-table of Breast-cancer-wisconsin to

illustrate the reduct computation.

In step 2, according to Definition 5, we have Siginner1 (aj, C,D,U) = γC(D) − γC−{a}(D). Hence, we get the attribute

significance in order are Siginner1 (a1, C,D,U) = Siginner1 (a2, C,D,U) = Siginner1 (a3, C,D,U) = Siginner1 (a4, C,D,U) =
Siginner1 (a5, C,D,U) = Siginner1 (a6, C,D,U) = Siginner1 (a7, C,D,U) = Siginner1 (a8, C,D,U) = 0. Then, we have red = ∅
now.

In step 4, for the first loop, because red = ∅, we have POS
U1
P (D) = ∅. Then according to Sigouter1 (a, red,D,U) =

γred∪{a}(D)− γred(D),we get the attribute significance in order are Sigouter1 (a1, C,D,U1) = 0.1611, Sigouter1 (a2, C,D,U1) =
0.7500, Sigouter1 (a3, C,D,U1) = 0.7556, Sigouter1 (a4, C,D,U1) = 0.1222, Sigouter1 (a5, C,D,U1) = 0.0833, Sigouter1 (a6, C,D,

U1) = 0.0500, Sigouter1 (a7, C,D,U1) = 0.1778 and Sigouter1 (a8, C,D,U1) = 0.1111. Then, we have a0 = a3 and red =
∅ ∪ a3 = a3 now.

Because γred(D) �= γC(D), we continue to add attribute to red. In view of that the calculation of following loops are similar

to the first one, we didn’t give the specific precesses here. By through three loops, the final reduct is {a3, a5, a6}, which is

simplified as {3, 5, 6}.
3.3. An efficient feature selection algorithm for large-scale decision tables

For a large-scale decision table, fromAlgorithm 1 and Algorithm 2, we obtain a group of estimates to the reduct. By fusing

together these estimates, we get a valid feature subset for the large-scale decision table.

Given a decision table, under the introduction of discernibility matrix and core in [11], we first develop the following

theorem, which will be used in our further development.

Theorem 1. Let S = (U, C ∪ D) be decision table, a ∈ C and U0 ⊆ U. If a0 is a core attribute on U0, then a0 is a core attribute

on U.

Proof. Asmentioned in [11], if an element in the discernibility matrix is a single attribute, then this attribute belongs to the

core attribute set.

Let M′ = {m′ij} be the discernibility matrix on U0 and M = {mij} be the discernibility matrix on U. Then, we have

M′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m′11

m′12 m′22
...

...

m′|U0|1 m′|U0|2 · · · m′|U0||U0|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11

m12 m22

...
...

m|U|1 m|U|2 · · · m|U||U|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)
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respectively. Because of U0 ⊆ U, matrixM can be rewritten as

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m′11
m′12 m′22

...
...

m′|U0|1 m′|U0|2 · · · m′|U0||U0|
m′|U0|+11 m′|U0|+12 · · · m′|U0|+1|U0| m′|U0|+1|U0|+1

...
...

...

m|U|1 m|U|2 · · · m|U||U0| m|U||U0|+1 · · · m|U||U|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

It is easy to see that M′ is a sub-matrix of M. Obviously, if element m′ij ∈ M′ contains just one attribute, then m′ij ∈ M

also contains one attribute only. Namely, if a0 is a core attribute on U0, then a0 is also a core attribute on U. This completes

the proof. �

Asmentioned above, core attribute is the indispensable attribute in a reduct, which means the intersection of all reducts

of a data table. Hence, an effective feature subset should contains as many core attributes as possible. From Theorem 1, we

know that if an attribute is a core attribute on a sub-table, then this attribute is a core attribute on the original table. To

ensure the final feature subset include as many core attributes as possible, we form a set by all the estimates on sub-tables

and use it as the final feature subset. And an rough feature selection algorithm is proposed as follows:

Algorithm 4. An efficient rough feature selection algorithm(E-FSA)

Input: A large-scale decision table S = (U, C ∪ D)
Output: Feature subset Red

Step1: Selectn small granularity according toAlgorithm2 from S: S1 = (U1, C∪D), S2 = (U2, C∪D), · · · , Sn = (Un, C∪D);
Step 2: Red← ∅;

for (j = 1; j ≤ n; j ++)
{

Compute the attribute reduct redj of table Sj = (Uj, C ∪ D) using Algorithm 3 ;

Red = Red ∪ redj ;}
Step 3: return Red and end.

Time complexity of Algorithm 4 : the time complexity of Step 1 is n|Uj||C| according to Algorithm 2; in Step 2, regarding

to Algorithm 3, the time complexity of finding reducts on n sub-tables is O(n|Uj|3|C| + n
∑|C|

i=1 |Ui
j |3(|C| − i+ 1)); and time

complexity of Step 3 is n|C|. Thus, the time complexity of E-FSA is O(n|Uj|2|C| + n
∑|C|

i=1 |Ui
j |2(|C| − i+ 1)).

From the discussion in the previous subsections, we know that, for a large-scale decision table S = (U, C ∪ D), the time

complexity of the accelerated algorithm in [37] is O(|U|2|C| +∑|C|
i=1 |Ui|2(|C| − i + 1)). Usually, |U|2 and |Ui|2 are much

larger than n|Uj|2 and n|Ui
j |2, respectively. Therefore, the computational time of algorithm E-FSA is much smaller than that

of the accelerated algorithm.

Note that, for a sub-table, most of the reduction algorithms can be employed to find reducts. We mainly focus on in

this paper how to select sub-tables from a large-scale data table, and fuse the final reducts on all selected sub-tables. In

the process of finding reduct on a sub-table, we employ the accelerated framework based on four kinds of representative

heuristic reduction algorithms in this paper. This is also the reason why we select those four kinds of algorithms to test our

proposed algorithm in the experiment part (Section 4.2). In addition, based on the framework that is dividing and fusing on

a large-scale data set proposed in this paper, by employing other reduction algorithms to find reduct on a sub-table, one can

also construct appropriate efficient algorithms.

Example 4 (Continued from Example 3). Find feature subset of Breast-cancer-wisconsin by using E-FSA.

In this example, we find feature subset based on positive-region reduction algorithm. According to Example 2, we obtain

five sub-tables of Breast-cancer-wisconsin.

By using Algorithm 3, we get reducts on above five sub-tables, which are {3, 5, 6}, {1, 2, 3, 5}, {1, 2, 5}, {1, 2, 5} and
{1, 2}. Then, the final feature subset is {1, 2, 3, 5, 6}.

For data set Breast-cancer-wisconsin, the reduct foundby FSPA(Algorithm3) based onpositive-region reduction is {1, 3, 5,
6}. Comparing with algorithm FSPA, there is one redundant attribute in the feature subset found by E-FSA.
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Example 4 illustrated the process of finding feature subset by using E-FSA based on positive-region reduction. In the

same way, other three reduction algorithms (algorithms based on entropy) mentioned in Section 3.2 can be also used to

select features. In addition, for the convenience of calculation, data set Breast-cancer-wisconsin employed in Examples 1-4

is relatively in a small scale. In the following section of experiments, we employ several larger-scale data sets to test the

algorithm E-FSA.

4. Experimental analysis

The objective of the following experiments is to show the computational efficiency of the proposed algorithm E-FSA.

The data sets used in the experiments are outlined in Tables 1, 5 and 14, which were all downloaded from UCI repository of

machine learning databases. All the experiments were carried out on a personal computer with Windows XP and Inter(R)

Core(TM)2 Quad CPU Q9400, 2.66 GHz and 3.37 GB memory. The software being used is Microsoft Visual Studio 2005 and

programming language is C#.

In order to illustrate the feasibility and efficiency of the algorithm E-FSA, we employ in this section ten UCI data sets

to test the algorithm. The experiments are divided into three parts, which are illustration of the feasibility, efficiency and

high-efficiency for large scale data tables, respectively. In the first two parts, the feasibility and efficiency of E-FSA are

illustratedmainly throughcomparing itwith theusual and representative attribute reductionalgorithms. To further illustrate

the efficiency, two larger-scale data sets are employed in the last part to conduct the experiment. The specific design of

experiment of each part is in the following.

4.1. Feasibility analysis

As mentioned above, a given data table usually has multiple reducts. Based on the introduction of discernibility matrix

in a decision table, an attribute reduction algorithmwas proposed in [11], which is able to obtain all attribute reducts of the

decision table. Given a feature subset, if it is very close to one reduct of a decision table, then it is commonly considered as

an effective approximated reduct; and if it is quite different from all reducts, it is ineffective apparently. In this section, the

experiment aims to illustrate that if algorithm E-FSA can find an effective approximated reduct, that is, E-FSA is feasible.

In this section, two UCI data sets used in the experiments are outlined in Table 1. For each data set, we first find all reducts

by applying the above algorithm in [11], and then compute the feature subset Red using E-FSA. The feasibility of the algorithm

E-FSA is demonstrated by comparing Red with all the reducts. In these two data sets, Mushroom is a data set with missing

values, and for a uniform treatment of all data sets, we remove the objects withmissing values. Moreover,Winequality-white

is preprocessed using the data tool Rosetta.

By carrying out the algorithm in [11] on these twodata sets,we get that there are 156 reducts of Mushroom and2 reducts of

Winequality-white, which are shown in Table 2 and Table 3, respectively. In view of that there aremany reducts of Mushroom,

we only list a small part of the result here. The feature subsets found by algorithm E-FSA are shown in Table 4. In these three

tables, each element denotes an attributes subset of the data set, for example, the first element {2, 3, 10, 11, 20} in Table 2

is a reduct (an attributes subset) of Mushroom, the value 2, 3, 10, 11 and 20 correspond to the 2nd, 3rd, 10th 11th and 20th

attribute in the data set Mushroom.

From the experimental results in Table 2-4, it is easy to see that, for data setMushroom, the feature subset found by E-FSA

is Red = {1, 5, 20, 21}, and the nearest reduct in Table 2 is the 45th reduct {5, 20, 21}. Comparing with the 45th reduct,

there is one redundant feature in the feature subset Red and the found feature subset is obviously effective. And for data set

Winequality-white, the feature subset is Red = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11}, which is identical to the first reduct in Table 3,

Table 1

Data sets description.

Data sets Samples Attributes Classes

1 Mushroom 5644 22 2

2 Winequality-white 4898 11 9

Table 2

All reducts on Mushroom.

No. Reduct

1 2,3,10,11,20

2 2,7,10,11,15,20

.

.

.
.
.
.

44 5,17,18,19,20

45 5,20,21

.

.

.
.
.
.

155 5,17,19,22

156 5,21,22
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Table 3

All reducts onWinequality-white.

No. Reduct

1 1,2,3,5,6,7,8,9,10,11

2 1,2,3,4,6,7,8,9,10,11

Table 4

Feature subset Red by using H-FSA.

Data set Feature subset

Mushroom 1,5,20,21

Winequality-white 1,2,3,5,6,7,8,9,10,11

that is, the found feature subset is not only an appromaxited reduct but a reduct. Hence, one can conclude that algorithm

E-FSA can find an effective approximate reduct, and the proposed algorithm E-FSA is feasible.

4.2. Efficiency analysis

In rough set theory, finding the minimal reduct of a decision table has been proved an NP-hard problem. Thus, many

heuristic reduction algorithms have been developed, which can find a single reduct from a given decision table in a shorter

time. To reduce computational time further, Qian et al. in [37](published in Artificial Intellegence) proposed an accelerated

framework to accelerate aheuristic process of attribute reduction. Basedon four kinds of representative reduction algorithms

which are positive-region reduction [9–11], Shannon’s entropy reduction [43,45], complementary entropy reduction [24,25]

and combination entropy reduction [39], four kinds of feature selection accelerated algorithms (FSPA) were devised in [37].

Note that, "FSPA" is a uniform expression of the four kinds of accelerated algorithms, not a reduction algorithm. In Section 3.2

and 3.3, by using the accelerated framework in [37], we devised the algorithm E-FSA based on these four kinds of algorithms.

Because of that, algorithm E-FSA can find a single feature subset as well, we compare in this section the computational

time of E-FSA with heuristic reduction algorithms. For convenience, among the many heuristic algorithms, we also select in

this section above four kinds of representative heuristic algorithms to test the efficiency of E-FSA. Because of that above four

kinds of algorithms have been accelerated in [37], we compare the computational time of E-FSA and FSPA based on those

four kinds of algorithms in the experiments. In addition, there may be some difference between the feature subsets found

by E-FSA and FSPA. Hence, we also compare the decision performance of the feature subsets according to four common

evaluation measures, which are approximate classified precision, approximate classified quality, certainty measure and

consistency measure.

Approximate classified precision and approximate classified quality, in rough set theory, were defined commonly to

describe the precision of approximate classification [31].

Definition 7 [31]. Let S = (U, C ∪D) be a decision table and U/D = {X1, X2, . . . , Xr}. The approximate classified precision

of C with respect to D is defined as

APC(D) = |POSC(D)|∑r
i=1 |CXi| . (13)

Definition 8 [31]. Let S = (U, C∪D) be a decision table. The approximate classified quality of C with respect toD is defined

as

AQC(D) = |POSC(D)|
|U| . (14)

In rough set theory, by adopting reduction algorithms, one can get reducts for a given decision table. Then, based on a

reduct, a set of decision rules can be generated from a decision table. We briefly recall the notions of decision rules, which

will be used in the following development.

Definition 9 [32,38]. Let S = (U, C ∪ D) be a decision table. U/C = {X1, X2, . . . , Xm}, U/D = {Y1, Y2, . . . , Yn} and∩Yj �= ∅. des(Xi) and des(Yj) are denoted the descriptions of the equivalence classes Xi and Yj , respectively. A decision rule

induced by C is formally defined as

Zij : des(Xi)→ des(Yj), Xi ∈ U/C, Yj ∈ U/D. (15)

To evaluate the decision performance, certainty measure and support measure were introduced to evaluate a single

decision rule and were not suitable for measuring a rule set [3,14]. For a rule set, twomeasures were introduced to measure

the certainty and consistency in [32]. However, in [38], it has been pointed out that those twomeasures cannot give elaborate
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depictions of the certainty and consistency for a rule set. To address this issue, certainty measure and consistency measure

were proposed to evaluate the certainty and consistency of a set of decision rules [38], which has attracted considerable

attention [47].

Definition 10 [38]. Let S = (U, C ∪ D) be a decision table, U/C = {X1, X2, . . . , Xm}, U/D = {Y1, Y2, . . . , Yn}, and
RULE = {Zij|Zij : des(Xi)→ des(Yj), Xi ∈ U/C, Yj ∈ U/D} . The certainty measure α of the decision rules on S is defined as

α(S) =
m∑
i=1

n∑
j=1
|Xi ∩ Yj|2
|U||Xi| . (16)

Definition 11 [38]. Let S = (U, C ∪ D) be a decision table, U/C = {X1, X2, . . . , Xm}, U/D = {Y1, Y2, . . . , Yn}, and
RULE = {Zij|Zij : des(Xi)→ des(Yj), Xi ∈ U/C, Yj ∈ U/D}. The consistency measure β of the decision rules on S is defined

as

β(S) =
m∑
i=1
|Xi|
|U|

⎡
⎣1− 4

|Xi|
n∑

j=1
|Xi ∩ Yj|2
|Xi| (1− |Xi ∩ Yj|

|Xi| )

⎤
⎦ . (17)

In the experiments, for the feature subsets found by E-FSA and FSPA, we compare their computational time, approximate

classified precision(AP), approximate classified quality(AQ), certainty measure α and consistency measure β . Six UCI large-

scale data sets are employed to test the algorithms, which are outlined in Table 5. In these six data sets, Ticdata2000, Adult

and Connect are preprocessed by discretization using the data tool Rosetta.

The experimental results are reported in Tables 6-13. For convenience, positive-region reduction is represented by

PR, Shannon’s entropy reduction is represented by SCE, complementary entropy reduction is represented by LCE and

combination entropy reductio is represented by CCE. Based on these four reduction algorithms, Tables 6, 8, 10, 12 show the

feature subsets of E-FSA and FSPA and Tables 7, 9, 11, 13 show the comparison of computational time and the four evaluation

measures.

According to above experimental results, it is easy to see from the Tables 6, 8, 10 and 12 that the feature subsets found by

E-FSA and FSPA are relatively close. And from Tables 7, 9, 11 and 13, one can observe that the values for the four evaluation

Table 5

Description of data sets for efficiency.

Data sets Samples Attributes Classes

1 Ticdata2000 5822 85 2

2 Nursery 12960 8 5

3 Letter 20000 16 26

4 Adult 45222 14 2

5 Shuttle 58000 9 7

6 Connect 67557 42 3

Table 6

Comparison of feature subsets based on PR.

Data sets FSPA E-FSA

2,3,5,6,7,8,9,14,15,18,30, 2,3,4,5,7,14,15,16,18,30,31,

Ticdata2000 39,43,44,45,47,48,49,52,54, 38,39,43,44,45,47,48,49,52,

55,57,59,61,64,68,80,83 54,55,57,59,61,62,64,68,83

Nursery 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8

Letter 3,4,8,9,10,11,12,13,14,15,16 1,2,4,7,8,9,10,11,12,13,15

Adult 1,2,3,4,7,8,11,13 1,2,3,4,6,7,11,13

Shuttle 1,2,3,5 1,2,3,5

1,2,3,4,5,7,8,9,10,11,13,14,15, 1,2,3,4,5,7,8,9,10,11,13,14,15,

Connect 16,17,19,20,21,22,23,25,26,27,28, 16,17,18,19,20,21,22,24,23,25,26,

29,31,32,33,34,36,37,38,39,41 27,31,32,33,34,35,37,38,39,40,41

Table 7

Comparison of evaluation measures and computational time based on PR.

Data sets FSPA E-FSA

AQ AP α β Time/s AQ AP α β Time/s

Ticdata2000 0.9792 0.9593 0.9901 0.9803 296.3750 0.9777 0.9563 0.9894 0.9789 140.4062

Nursery 0.9531 0.9104 0.9765 0.9531 13.3594 0.9531 0.9104 0.9765 0.9531 3.4218

Letter 1.0000 1.0000 0.9999 1.0000 112.6250 1.0000 1.0000 0.9999 1.0000 27.3906

Adult 0.9997 0.9995 0.9998 0.9997 1811.5313 0.9997 0.9995 0.9998 0.9997 80.2500

Shuttle 1.0000 1.0000 1.0000 1.0000 712.25 1.0000 1.0000 1.0000 1.0000 48.0312

Connect 1.0000 1.0000 1.0000 1.0000 116585.7031 1.0000 1.0000 1.0000 1.0000 2743.53125
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Table 8

Comparison of feature subsets based on SCE.

Data sets FSPA E-FSA

2,5,9,18,31,37,40,43,44, 2,5,7,9,15,18,26,27,43,

Ticdata2000 45,47,48,49,54,55,57,58, 44,45,47,48,49,52,54,55,

59,61,63,64,68,80,83 57,59,61,62,64,68,83

Nursery 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8

Letter 2,3,4,8,9,10,11,12,13,14,15,16 1,2,3,4,5,6,8,9,10,11,12,13,15

Adult 1,2,3,4,7,8,11,13 1,2,3,4,6,7,11,13

Shuttle 1,2,3,5 1,2,3,5

1,2,3,4,5,7,8,9,10,11,13,14,15, 1,2,3,4,5,7,8,9,10,11,13,14,15,16,

Connect 16,17,19,20,21,22,23,25,26,27,28, 17,19,20,21,22,23,25,26,27,28,29

30,31,32,33,34,35,37,38,39,41 30,31,32,33,34,35,36,37,38,39,41

Table 9

Comparison of evaluation measures and computational time based on SCE.

Data sets FSPA E-FSA

AQ AP α β Time/s AQ AP α β Time/s

Ticdata2000 0.9792 0.9592 0.9901 0.9803 1043.8906 0.9773 0.9557 0.9893 0.9785 494.9218

Nursery 0.9531 0.9104 0.9765 0.9531 187.9531 0.9531 0.9104 0.9765 0.9531 51.3750

Letter 1.0000 1.0000 0.9999 1.0000 2740.2500 1.0000 1.0000 0.9999 1.0000 745.9843

Adult 0.9997 0.9995 0.9998 0.9997 13467.5312 0.9997 0.9995 0.9998 0.9997 1461.7031

Shuttle 1.0000 1.0000 1.0000 1.0000 10153.1719 1.0000 1.0000 1.0000 1.0000 1907.9687

Connect 1.0000 1.0000 1.0000 1.0000 250924.1710 1.0000 1.0000 1.0000 1.0000 9096.250

Table 10

Comparison of feature subsets based on LCE.

Data sets FSPA E-FSA

2,5,7,15,17,31,38,43, 1,2,3,5,9,15,16,17,18,19,24,

Ticdata2000 44,45,47,48,49,54,55,57, 30,31,38,39,43,44,45,47,48,49,52,

58,59,61,63,64,68,80,83 54,55,57,59,60,61,62,64,68,83

Nursery 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8

Letter 1,2,4,5,8,9,10,11,12,13,15,16 1,2,4,5,7,8,9,10,11,12,13,15,16

Adult 1,2,3,4,7,8,11,13 1,2,3,4,6,7,11,13

Shuttle 1,2,3,9 1,2,3,9

1,2,3,4,5,7,8,9,10,11,13,14,15, 1,2,3,4,5,7,8,9,10,11,13,14,15,

Connect 16,17,19,20,21,22,23,25,26,27,28, 16,17,19,20,21,22,23,24,25,26,27,28,

30,31,32,33,34,35,37,38,39,41 30,31,32,33,34,35,37,38,39,40,41

Table 11

Comparison of evaluation measures and computational time based on LCE.

Data sets FSPA E-FSA

AQ AP α β Time/s AQ AP α β Time/s

Ticdata2000 0.9792 0.9592 0.9901 0.9803 1805.5625 0.9777 0.9563 0.9894 0.9789 892.3125

Nursery 0.9531 0.9104 0.9765 0.9531 336.3125 0.9531 0.9104 0.9765 0.9531 98.5937

Letter 1.0000 1.0000 0.9999 1.0000 5558.7813 1.0000 1.0000 0.9999 1.0000 1637.8750

Adult 0.9997 0.9995 0.9998 0.9997 23847.4375 0.9997 0.9995 0.9998 0.9997 2818.7187

Shuttle 1.0000 1.0000 1.0000 1.0000 20228.3906 1.0000 1.0000 1.0000 1.0000 3916.0625

Connect 1.0000 1.0000 1.0000 1.0000 350935.7188 1.0000 1.0000 1.0000 1.0000 15278.0937

Table 12

Comparison of feature subsets based on CCE.

Data sets FSPA E-FSA

2,5,7,15,17,31,38,43, 2,3,5,7,8,15,17,18,19,30,

Ticdata2000 44,45,47,48,49,54,55,57, 31,39,43,44,45,47,48,49,52,54,

58,59,61,63,64,68,80,83 55,57,59,61,62,64,68,80,83

Nursery 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8

Letter 2,4,5,7,8,9,10,11,12,13,15 2,3,5,6,7,8,9,10,11,12,13,15,16

Adult 1,2,3,4,7,8,11,13 1,2,3,4,6,7,11,13

Shuttle 1,2,3,8 1,2,3,8

1,2,3,4,5,7,8,9,10,11,13,14,15, 1,2,3,4,5,7,8,9,10,11,13,14,15,

Connect 16,17,19,20,21,22,23,25,26,27,28, 16,17,19,20,21,22,23,24,25,26,27,

30,31,32,33,34,35,37,38,39,41 28,30,31,32,33,34,35,37,38,39,41
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Table 13

Comparison of evaluation measures and computational time based on CCE.

Data sets FSPA E-FSA

AQ AP α β Time/s AQ AP α β Time/s

Ticdata2000 0.9792 0.9592 0.9901 0.9803 1048.5781 0.9780 0.9570 0.9896 0.9792 437.3593

Nursery 0.9531 0.9104 0.9765 0.9531 159.0938 0.9531 0.9104 0.9765 0.9531 51.2343

Letter 1.0000 1.0000 0.9999 1.0000 2610.3594 0.9999 1.0000 0.9999 0.9999 822.7968

Adult 0.9997 0.9995 0.9998 0.9997 12568.5625 0.9997 0.9995 0.9998 0.9997 1451.5156

Shuttle 1.0000 1.0000 1.0000 1.0000 10948.9218 1.0000 1.0000 1.0000 1.0000 2285.3906

Connect 1.0000 1.0000 1.0000 1.0000 249955.3288 1.0000 1.0000 1.0000 1.0000 9103.6406

Table 14

Description of data sets for high-efficiency.

Data sets Samples Attributes Classes

1 Poker-hand 1025010 10 10

2 Covtype 581012 54 7

Table 15

Feature subsets and computational time on larger-scale data sets.

Data sets Feature subsets Computational time/s

Poker-hand 1,2,3,4,6,8,10 1251.859375

1,2,3,4,5,6,7,8,9,10,11,13,15,16,17,18,

Covtype 19,20,24,25,26,27,28,30,31,33,34,35, 23640.9375

36,37,38,40,43,44,45,46,47,49,52,53,54

measures of the feature subsets are very close, and even identical on some data sets. Whereas, the computational time of

E-FSA is much shorter than that of FSPA. Namely, the performance and decision making of the feature subsets found by the

two algorithms are very close whereas H-FSA is much faster. Hence, the experimental results indicate that, compared with

FSPA, the algorithm E-FSA can find a valid feature subset(an approximate reduct) in a much shorter time.

4.3. Efficiency analysis for large-scale data sets

From the experimental results in the previous subsections, one can see that the algorithm E-FSA can find an effective

feature subset in a much shorter time. To further demonstrate the efficiency, we employ in this section two UCI very larger-

scale data sets to conduct the experiment, which are outlined in Table 14. It should be pointed out that, by using some

representative heuristic reduction algorithms including FSPA, these two data sets are too large in scale to get the feature

subset within 100 h on a PC. In this section, we carry out the algorithm E-FSA on these two large-scale data sets and the

experimental results are given in Table 15.

The experimental results indicate that, for those two very large-scale data sets, E-FSA can find their feature subsetswithin

just 1251.859375 s (0.35 h) and 23640.9375 s (6.6 h) on a PC, respectively. Hence, algorithm E-FSA is efficient, especially for

large-scale data sets.

5. Conclusions

At present, feature selection for large-scale data sets is still a challenging issue in the field of artificial intelligence. In

this paper, with some concepts in statistics, an efficient rough feature selection algorithm has been proposed to deal with

large-scale decision tables. The algorithm found a valid feature subset though dividing a large-scale table into small ones and

fusing the feature selection results of small tables together. The experimental analysis shows that the proposed algorithm is

feasible and efficient. Note that the proposed algorithm not only saves computational time, but also can handle some large-

scale data sets that are very difficult to deal with on a PC because of the high computational time. It is our wish that the idea

of dividing and fusing on data sets provides a new view and thinking on dealing with large-scale data sets in applications.
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