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The fast global k-means (FGKM) clustering algorithm is one of the most effective
approaches for resolving the local convergence of the k-means clustering algorithm.
Numerical experiments show that it can effectively determine a global or near global
minimizer of the cost function. However, the FGKM algorithm needs a large amount of
computational time or storage space when handling large data sets. To overcome this defi-
ciency, a more efficient FGKM algorithm, namely FGKM+A, is developed in this paper. In
the development, we first apply local geometrical information to describe approximately
the set of objects represented by a candidate cluster center. On the basis of the approxi-
mate description, we then propose an acceleration mechanism for the production of new
cluster centers. As a result of the acceleration, the FGKM+A algorithm not only yields the
same clustering results as that of the FGKM algorithm but also requires less computational
time and fewer distance calculations than the FGKM algorithm and its existing modifica-
tions. The efficiency of the FGKM+A algorithm is further confirmed by experimental studies
on several UCI data sets.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Clustering is an important problem in statistical multivariate analysis, data mining and machine learning [12]. The goal of
clustering is to group a set of objects into clusters so that the objects in the same cluster are highly similar but remarkably
dissimilar with objects in other clusters [20]. To tackle this problem, various types of clustering algorithms have been devel-
oped in the literature (e.g., [14] and references therein). Among them, the k-means clustering algorithm [17] is one of the
most efficient clustering algorithms for large-scale spherical data sets. It has extensive applications in such domains as finan-
cial fraud, medical diagnosis, image processing, information retrieval, and bioinformatics.

The k-means clustering algorithm uses the alternating minimization method to solve a nonconvex optimization problem
in finding cluster solutions [14]. However, the obtained clustering results guarantee local optimization solutions only [20].
To solve this problem, several techniques have been developed based on different global search methods, such as simulated
annealing [6,11], genetic algorithms [3,15,19,23], colony optimization [2,27], particle swarm optimization [1,16], stochastic
optimization [9], and black hole algorithm [13]. Among these methods, the fast global k-means clustering (FGKM) algorithm
proposed by Likas et al. [22] is a very effective search approach, which uses the incremental learning technique to solve the
local minimum problem. The numerical experiment results [4] have shown that the FGKM algorithm can determine a global
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or near global minimizer of the k-means objective function. Nevertheless, the FGKM algorithm requires calculating the dis-
tances between any two data objects in each iteration. For a small data set, we can use O(n2) memory space to store distances
and avoid repeated computations, where n is the number of data objects. However, for a large data set, storing these dis-
tances is unfeasible. For instance, if a data set has n = 106 objects, storing the distances between all objects (assuming double
precision storage) requires 8 TB of memory, which is unavailable on a general purpose machine [7].

To make the FGKM algorithm more effective, a modified global k-means (MGKM) algorithm was proposed in [4]. The
algorithm minimizes an auxiliary objective function to determine new cluster centers. Compared with the FGKM algorithm,
the MGKM algorithm can obtain a slightly better result but with a longer computational time [18]. Bagirov et al. [5] sug-
gested a new version of the MGKM algorithm to reduce the computational time of the clustering process and obtain an
approximation result. Likas et al. [22] proposed the kd-tree to speed up the generation of new cluster centers in the FGKM
algorithm. Unfortunately, the kd-tree-based algorithm is unsuitable for data sets with high dimensions, given that its com-
putational complexity grows exponentially with the data dimensions [18,10]. Lai and Huand [18] presented a fast search
algorithm by using projection and inequality to reduce the number of distance calculations in determining new cluster cen-
ters, which is called the MFGKM algorithm. This algorithm can expedite the FGKM algorithm while retaining its effective-
ness. The projection and inequality in the MFGKM algorithm is based on global geometrical information, whereas clusters
tend to exist in the local geometrical spaces of real data sets. In addition, local geometrical information can provide us with
a smaller search space than global geometrical information. These facts lead us to the development of a more efficient FGKM
algorithm that makes use of the local geometrical information in the expedition of the search process of the FGKM algorithm
while retaining the same clustering results.

The rest of this paper is organized as follows. Section 2 reviews the k-means and FGKM algorithms. Section 3 presents a
more efficient FGKM algorithm (i.e., FGKM+A). Section 4 analyzes the space and computational complexity of the proposed
algorithm. Section 5 illustrates the effectiveness of the proposed algorithm on real data sets. Finally, Section 6 concludes the
paper with some remarks.

2. The k-means and FGKM algorithms

Let U = {x1, x2, . . . , xn} be a set of n objects. Object xi = {xi1, xi2, . . . , xim} is characterized by a set of m attributes (variables).
The k-means algorithm [17] searches for a partition of U into k clusters that minimizes the objective function F with
unknown variables W and V:
FðW ;VÞ ¼
Xk

l¼1

Xn

i¼1

wlikxi � vlk2
; ð1Þ
subject to
wli 2 f0;1g;
Xk

l¼1

wli ¼ 1; 0 <
Xn

i¼1

wli < n; 1 6 l 6 k; 1 6 i 6 n: ð2Þ
where

� W = [wli] is a k-by-n {0,1} matrix, wli is a binary variable, and indicates whether object xi belongs to the lth cluster, wli = 1
if xi belongs to the lth cluster and 0 otherwise;
� V = [v1,v2, . . . , vk] and vl = [vl1,vl2, . . . , vlm] is the lth cluster center with m attributes;
� kxi � vlk2 ¼

Pm
j¼1ðxij � v ljÞ2 is Euclidean distance between the object xi and the lth cluster center vl.

The minimization of F in (1) with the constraints in (2) forms a class of constrained nonlinear optimization problems
whose solutions are unknown. The usual method toward the optimization of F in (1) is to use partial optimization for V
and W. In this method, we first fix V and find necessary conditions on W to minimize F. Thereafter, we fix W and minimize
F with respect to V. The above optimization problem can be solved by iteratively solving the following two minimization
problems.

� Problem P1: Fix V ¼ bV , solve the reduced problem FðW; bV Þ;
� Problem P2: Fix W ¼ cW , solve the reduced problem FðcW ;VÞ.

Problem P1 is solved by
wli ¼
1; if kxi � v̂lk2

6 kxi � v̂hk2
;1 6 h 6 k;

0; otherwise:

(
ð3Þ
for 1 6 i 6 n, 1 6 l 6 k.
Problem P2 is solved by
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v lj ¼
Pn

i¼1ŵlixijPn
i¼1ŵli

; ð4Þ
for 1 6 l 6 k, 1 6 j 6m.
This process is formalized in the k-means algorithm [17]:

The k-means algorithm

Step 1. Choose an initial point set V(1) 2 Rmk. Determine W(1) such that F(W,V(1)) is minimized. Set t = 1.
Step 2. Determine V(t+1) such that F(W(t),V(t+1)) is minimized. If F(W(t),V(t+1)) = F(W(t),V(t)), then stop; otherwise goto Step 3.
Step 3. Determine W(t+1) such that F(W(t+1),V(t+1)) is minimized. If F(W(t+1),V(t+1)) = F(W(t),V(t+1)), then stop; otherwise set

t = t + 1 and goto Step 2.

Since the time complexity of the algorithm is O(nkmt), it can efficiently cluster large data sets. However, the obtained clustering
results guarantee local minimum solutions only. Thus, the performance of the algorithm heavily depends on initial cluster centers.

The global k-means clustering algorithm introduced by [22] constitutes a deterministic global optimization method that
is independent of any initial parameter values and employs the k-means algorithm as a local search procedure. Instead of
randomly selecting initial values for all cluster centers as is the case with most global clustering algorithms, the proposed
technique proceeds in an incremental manner to add optimally a new cluster center at each stage.

According to (3), we can obtain W and minimize FðW; bV Þ when bV is given. Therefore, the objective function (1) can be
rewritten as follows:
FðVÞ ¼ min
W

FðW;VÞ ¼
Xn

i¼1

min
vl2V
kxi � vlk2

: ð5Þ
The global k-means algorithm is briefly described as follows [22]:

The global k-means algorithm

Step 1. Compute V�1 ¼ fv1g from the data set U, where v1 ¼
Pn

i¼1xi=n and n is the number of objects in U. Set h = 1.
Step 2. Set h = h + 1. If h > k, then stop.
Step 3. For each object xi 2 U, apply the k-means algorithm with the initial set of cluster centers V�h�1 [ fxig and obtain the

resulting set of cluster centers Vh(i) = {v1(i),v2(i), . . . ,vh(i)}.
Step 4. Set V�h ¼ VhðrÞ which satisfies
FðVhðrÞÞ ¼min
n

i¼1
FðVhðiÞÞ;
and goto Step 2.

When handling large data sets, the global k-means algorithm is inefficient, since it has a time complexity of O(n2mk2t).
Therefore, several modified algorithms have been proposed to reduce the computational load.

Likas et al. [22] proposed a FGKM algorithm, which is described as follows:

The FGKM algorithm

Step 1. Compute V�1 ¼ fv1g from the data set U, where v1 ¼
Pn

i¼1xi=n and n is the number of objects in U. Set h = 1.
Step 2. Set h = h + 1. If h > k, then stop.
Step 3. For each object xi 2 U, compute
bi
h ¼

Xn

j¼1

max 0; dj
h�1 � kxj � xik2

� �

where dj

h�1 ¼minvl2V�h�1
kvl � xjk2.

Step 4. Set V ¼ V�h�1 [ fxqg which satisfies
bq
h ¼max

n

i¼1
bi

h:
Step 5. Apply the k-means algorithm with the initial set of cluster centers V, save the resulting set of cluster centers into V�h
and compute dj

h for each xj 2 U. Goto Step 2.

Compared with the global k-means clustering algorithm, the FGKM algorithm does not execute the k-means algorithm for
each data object in Step 3. Instead, the FGKM computes an upper bound FðVhðiÞÞ 6 FðV�h�1Þ � bi

h making the time complexity
O(n2mk + nmk2t). The numerical experiment results in [4] have shown that the FGKM algorithm can determine a global or
near global minimizer of the objective function.
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3. The FGKM+A algorithm

In the FGKM algorithm, computing bi
h for each xi in U is an important step, given that bi

h is necessary to determine which
object in U will be the initial center of a new cluster. However, the process is extremely time consuming. Here,

bi
h ¼

P
xj2PhðxiÞ dj

h � kxj � xik2
� �

, where PhðxiÞ ¼ fxjjkxj � xik2
6 dj

h�1;xj 2 Ug, for 1 6 i 6 n. The FGKM algorithm needs to iden-

tify a set Ph(xi) from U by calculating the distance between each object xj in U and xi. The entire process needs n2 distance
calculations. In this section, we propose an acceleration mechanism to reduce the computing cost of the process.

The mechanism will enhance the efficiency of the FGKM algorithm in the following two aspects:

� Instead of directly computing kxj � xik2 for each object xj 2 U, we will compute its estimated value and determine
whether xj belongs to Ph(xi).
� Given that the FGKM algorithm requires only the determination of the object xi with the maximum bi

h, computing the
exact bi

h value for each xi, 1 6 i 6 n is unnecessary. We will first compute an upper bound b̂i
h of bi

h. If b̂i
h < maxn

i¼1bi
h, it

is concluded that xi is impossible to be the new initial center; otherwise, we will compute the exact bi
h.

We will introduce how to take advantage of the local geometrical information of objects to build the acceleration mech-
anism. We first pre-process the given data set U into k0 subsets such that data objects close to each other in space are likely to
be placed in the same subset, where n� k0 > k (Fig. 1). The formal description is as follows: Let S ¼ fS1; S2; . . . ; Sk0 g, where
Sl � U, Sl \ Sq = £, and

Sk0

l¼1Sl ¼ U, for 1 6 l – q 6 k0; C ¼ fc1; c2; . . . ; ck0 g, where cl ¼
P

x2Sl
x=jSlj is the center of Sl;

R ¼ fr1; r2; . . . ; rk0 g, where rl ¼maxx2Sl
kx� clk2 is the radius of Sl for 1 6 i 6 k0.

The pre-processing is required to not produce such clusters in which most of objects are from the same class but quickly
obtain relatively uniform clusters. Since the k-means algorithm has an approximate linear time complexity for the number of
objects and tends to partition the data set into clusters with relatively uniform sizes [8,26], we suggest applying the algo-
rithm with k0 randomly selected initial centers to quickly produce k0 small clusters.

After obtaining the partition S, we can rewrite bi
h ¼

Pk0

l¼1w
l
hðxiÞ where wl

hðxiÞ ¼
P

xj2Sl
maxf0; dj

h�1 � kxi � xjk2g, and
PhðxiÞ ¼

Sk0

l¼1Bl
hðxiÞ where Bl

hðxiÞ ¼ fxjjkxi � xjk2
6 dj

h�1;xj 2 Slg (Fig. 2). When determining whether the objects in Sl belong
to Bl

hðxiÞ, we do not directly compute the distance between xi and each xj in Sl. Considering
kxi � clk2 � kxj � clk2
��� ��� 6 kxi � xjk2

6 kxi � clk2 þ kxj � clk2 ð6Þ
for each xj in Sl, we use kxi � clk2 and kxj � clk2 to estimate kxi � xjk2 and obtain the following inequality rules to reduce sev-
eral unnecessary operations when constructing Ph(xi):

(a) If jkxi � clk2 � kxj � clk2jP dj
h�1 and xj 2 Sl, the object xj does not belong to Bl

hðxiÞ.
(b) If kxi � clk2 þ kxj � clk2

6 dj
h�1 and xj 2 Sl, the object xj belongs to Bl

hðxiÞ.
Fig. 1. Pre-processing of a data set.



Fig. 2. (a) Object space that xi can represent when xi is the new cluster center. (b) dj
h�1; rl; kxi � clk2

; kxj � clk2 and kxi � xjk2 when giving Sl,xi, and xj. (c)
Bl

hðxiÞ in Sl.
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(c) If jkxi � clk2 � rljP max
xj2Sl

dj
h�1, all the objects in Sl do not belong to Bl

hðxiÞ.

(d) If kxi þ clk2 þ rl 6 minxj2Sl
dj

h�1, all the objects in Sl belong to Bl
hðxiÞ.

Similar to rough set theory [21,24,25], we use these rules to build the upper and lower approximations for each Bl
hðxiÞ,

namely, Bl
hðxiÞ and Bl

hðxiÞ, which are described as follows:
Bl
hðxiÞ ¼ xjjjkxi � clk2 � kxj � clk2j 6 dj

h�1;xj 2 Sl

n o
ð7Þ
and
Bl
hðxiÞ ¼ fxjj kxi � clk2 þ kxj � clk2

6 dj
h�1;xj 2 Slg: ð8Þ
We use the two sets to describe approximately Bl
hðxiÞ (Fig. 3). Bl

hðxiÞ denotes a set including the objects that belong to Bl
hðxiÞ.

Bl
hðxiÞ denotes a set including the objects that may belong to Bl

hðxiÞ. Sl � Bl
hðxiÞ denotes a set including the objects that do not

belong to Bl
hðxiÞ. These sets have the following relation:
Bl
hðxiÞ# Bl

hðxiÞ# Bl
hðxiÞ: ð9Þ



Fig. 3. Approximate description of Bl
hðxiÞ.
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The boundary of Bl
hðxiÞ is given as follows:
Bnl
hðxiÞ ¼ Bl

hðxiÞ � Bl
hðxiÞ: ð10Þ
For each wl
hðxiÞ, we obtain the following relation:
wl
hðxiÞ ¼

X
xj2Bl

hðxiÞ

max 0;dj
h�1 � kxi � xjk2

n o
¼

X
xj2Bl

hðxiÞ

dj
h�1 � kxi � xjk2

� �
þ

X
xj2Bnl

hðxiÞ

maxf0;dj
h�1 � kxi � xjk2g

¼
X

xj2Bl
hðxiÞ

dj
h�1 �

X
xj2Bl

hðxiÞ

kxi � xjk2 þ
X

xj2Bnl
hðxiÞ

max 0; dj
h�1 � kxi � xjk2

n o
¼

X
xj2Bl

hðxiÞ

dj
h�1 �

X
xj2Bl

hðxiÞ

jBl
hðxiÞjkxik2 �

X
xj2Bl

hðxiÞ

kxjk2 þ 2xi

X
xj2Bl

hðxiÞ

xj

þ
X

xj2Bnl
hðxiÞ

max 0; dj
h�1 � kxi � xjk2

n o
¼

X
xj2Bl

hðxiÞ

dj
h�1 � jB

l
hðxiÞj kxi � �xlk2 � k�xlk2

� �
�

X
xj2Bl

hðxiÞ

kxjk2

þ
X

xj2Bnl
hðxiÞ

max 0; dj
h�1 � kxi � xjk2

n o

ð11Þ
where �xl ¼

P
xj2Bl

h
ðxi Þ

xj

jBl
hðxiÞj

is the mean of the objects in Bl
hðxiÞ. By computing wl

hðxiÞ according to (11), we can derive the following

observations: (1) jSlj � jBl
hðxiÞj objects in Sl can be directly rejected to construct Bl

hðxiÞ; (2) if we save kxik2 for each object
xi 2 U before the FGKM algorithm is implemented, which only needs O(n) spaces, we only need to compute k�xlk2 and
kxi � �xlk2, instead of computing kxi � xjk2 for each xj 2 Bl

hðxiÞ; (3) Bnl
hðxiÞ is an uncertain region. We need to compute

kxi � xjk2 for each xj in Bnl
hðxiÞ to determine whether xj belongs to Bl

hðxiÞ, thus indicating that a smaller jBnl
hðxiÞj value cor-

responds to a lower number of distances that are unnecessarily computed. When Bnl
hðxiÞ is empty, cases where all objects in

Sl are certain are identified:

(1) If rule (c) is satisfied, then Bl
hðxiÞ ¼ Ø. In this case, we can directly reject all the objects in Sl and set wl

hðxiÞ ¼ 0.
(2) If rule (d) is satisfied, then Bl

hðxiÞ ¼ Sl. In this case, we can directly compute
wl
hðxiÞ ¼

X
xj2Sl

dj
h�1 � jSlj kxi � clk2 � kclk2

� �
�
X
xj2Sl

kxjk2
: ð12Þ
On the basis of the above analyses, we can reduce lots of unnecessary distance calculations by Bl
hðxiÞ and Bl

hðxiÞ for
1 6 l 6 k0 while computing the exact bi

h.
We will further reduce the computational complexity. According to Step 4 of the FGKM algorithm, only the object xi with

the maximum bi
h should be identified, indicating that computing the exact bi

h value for each xi, 1 6 i 6 n, is unnecessary.
Therefore, we will first use the approximate description of Bl

hðxiÞ by Bl
hðxiÞ and Bl

hðxiÞ to calculate the upper bound b̂i
h of

bi
h for 1 6 i 6 n, which is defined as follows:
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b̂i
h ¼

Xk0

l¼1

ŵl
hðxiÞ; ð13Þ
where
ŵl
hðxiÞ ¼

0 if Bl
hðxiÞ ¼ Ø;

jSlj kxi � clk2 � kclk2
� �

þ
X
xj2Sl

kxjk2
; if Bl

hðxiÞ ¼ Sl;

X
xj2Bl

hðxiÞ

dj
h�1 � kxi � clk2 � kxj � clk2

��� ���� �
; otherwise:

8>>>>>>><>>>>>>>:
ð14Þ
Given that wl
hðxiÞ 6 ŵl

hðxiÞ for 1 6 l 6 k0, we have bi
h 6 b̂i

h.
After obtaining the upper bound b̂i

h, if b̂i
h < e 6maxn

i¼1bi
h, we can easily conclude that xi cannot be the new initial cluster

center. This conclusion can further reduce the amount of distance calculations. Here, e is a parameter set to the maximum
value of all obtained exact bi

h if they exist; otherwise, is set to zero.
The new acceleration mechanism is shown in Table 1, which describes how to use the above approximate description to

obtain rapidly the hth initial cluster center, for 1 < h 6 k. We use the mechanism to expedite the clustering procedure of the
FGKM algorithm. The accelerated FGKM algorithm is called FGKM+A which is described as follows:
Table 1
An acceleration mechanism for producing the hth initial cluster center.

1 Set e = 0;
2 for each data object xi in U
3 for each subset Sl in S
4 set Bl

h ¼ Bl
h ¼ Ø;

5 if rule (c) is satisfied
6 set ŵl

hðxiÞ ¼ wl
hðxiÞ ¼ 0;

7 continue;
8 end if
9 if rule (d) is satisfied

10 compute wl
hðxiÞ, according to Eq. (12);

11 set ŵl
hðxiÞ ¼ wl

hðxiÞ and Bl
h ¼ Bl

h ¼ Sl;

12 else
13 for each data object xj in Sl

14 if jkxi � clk2 � kxj � clk2j 6 dj

15 Bl
h ¼ Bl

h [ fxjg;
16 end if
17 if kxi � clk2 + kxj � clk2j 6 dj

18 Bl
h ¼ Bl

h [ fxjg;
19 end if
20 end for
21 compute ŵl

hðxiÞ according to Eq. (14);
22 end if
23 end for
24 compute b̂i

h ¼
Pk0

l¼1ŵl
hðxiÞ;

25 if b̂i
h 6 e

26 set bi
h ¼ 0;

27 continue;
28 else
29 for l = 1 to k0

30 if jBl
hj � jB

l
hj – 0

31 compute wl
hðxiÞ, according to Eq. (11);

32 end if
33 end for
34 compute bi

h ¼
Pk0

l¼1wl
hðxiÞ;

35 if e < bi
h

36 set e ¼ bi
h and q = i;

37 end if
38 end for
39 output the object xq;
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The FGKM+A algorithm
Table 2
Data sets from UCI.

Data set Objects Attributes

Handwritten digits 5620 64
Statlog 6435 36
Musk 6598 168
Isolet 7797 617
Coil 9000 86
Letters 20,000 16
Shuttle 58,000 9
Corel image 68,040 89
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Fig. 4. (a) Computational times for different numbers of clusters on the handwritten digits data. (b) Numbers of distance calculations for different numbers
of clusters on the handwritten digits data.
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Fig. 5. (a) Computational times for different numbers of clusters on the statlog data. (b) Numbers of distance calculations for different numbers of clusters
on the statlog data.
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Step 1. Randomly select k0 initial cluster centers and apply the k-means algorithm to partition the data set into k0 subsets,
i.e., S ¼ fS1; S2; . . . ; Sk0 g. Furthermore, save the center of each subset and the distances between each object and these
centers.

Step 2. Compute V�1 ¼ fv1g from the data set X, where v1 ¼
Pn

i¼1xi=n and n is the number of objects in U. Set h = 1.
Step 3. Set h = h + 1. If h > k, then stop.
Step 4. Use the acceleration mechanism in Table 1 to select the object xq from U as the hth initial cluster center. Set

V ¼ V�h�1 [ fxqg.
Step 5. Apply the k-means algorithm with the initial set of cluster centers V, save the resulting set of cluster centers into V�h

and compute dj
h for each xj 2 U. Goto Step 2.

4. Space and time complexity

4.1. Space complexity

In the FGKM+A algorithm, we need to save a partition vector Pc = [p1, p2, . . . , pn], where pi = l if the object xi belongs to Sl;
the distance matrix D = [Dil] which is a n � k0 real matrix; Dil = kxi � clk2 for 1 6 i 6 n,1 6 l 6 k0 and kxjk2 for each object xi,
1 6 i 6 n. The above procedure requires O(n(k0 + 2)) space. Given that k0 � n, n(k0 + 2)� n2.
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Fig. 6. (a) Computational times for different numbers of clusters on the musk data. (b) Numbers of distance calculations for different numbers of clusters on
the musk data.
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Fig. 7. (a) Computational times for different numbers of clusters on the isolet data. (b) Numbers of distance calculations for different numbers of clusters on
the isolet data.
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4.2. Time complexity

In Step 1, we apply the k-means algorithm to partition the data set into k0 subsets, which needs O(nk0t) distance calcula-
tions, where t is the number of iterations. In the procedure, the center cl of each subset Sl(1 6 l 6 k0) and the distances be-
tween each object xi(1 6 i 6 n) and all the centers can be obtained. Furthermore, we need to calculate kxjk2 for each object
xi(1 6 i 6 n), which is O(n) operations. In Step 4, we need O(n1n2) distance calculations to obtain the hth initial cluster center,
where n1(�n) and n2(�n) are the numbers of objects and distance calculations required to obtain the exact bi

h, respectively.
To generate k cluster centers, the proposed algorithm needs O(nk0t + n + n1n2k + nk2t) distance calculations. Given that the
computational complexity of FGKM is O(n2k + nk2t) in terms of the number of distance calculations, we may conclude that
the proposed algorithm has less computational complexity.
5. Experimental results

To verify the efficiency of the proposed algorithm, experiments with eight standard data sets are conducted on an Intel
Q9400 computer with 2G RAM. These data sets (Table 2) are downloaded from the UCI Machine Learning Repository [28].
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Fig. 8. (a) Computational times for different numbers of clusters on the coil data. (b) Numbers of distance calculations for different numbers of clusters on
the coil data.
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Fig. 9. (a) Computational times for different numbers of clusters on the letters data. (b) Numbers of distance calculations for different numbers of clusters
on the letters data.
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Fig. 10. (a) Computational times for different numbers of clusters on the shuttle data. (b) Numbers of distance calculations for different numbers of clusters
on the shuttle data.
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Fig. 11. (a) Computational times for different numbers of clusters on the corel image data. (b) Numbers of distance calculations for different numbers of
clusters on the corel image data.
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We compare the FGKM+A algorithm with the FGKM algorithm proposed by Likas et al. [22] and the MFGKM algorithm pro-
posed by Lai and Huang [18] in terms of computing time and number of distance calculations. In the following experiments,
we set k0 ¼ b

ffiffiffi
n
p
c for FGKM+A.

Figs. 4–11 show the total execution time and distance calculations of these algorithms on the eight data sets with the
different numbers of clusters, respectively. These data sets include the handwritten digits, statlog, musk, isolet, coil, letters,
shuttle and corel image data sets which have different sizes. On each of these provided data sets, the FGKM+A algorithm
outperforms the FGKM and MFGKM algorithms in terms of computing time and distance calculations. When the number
of clusters k increases, the efficiency of the proposed algorithm becomes more remarkable than the FGKM and MFGKM
algorithms.

Furthermore, we test the scalability with the different numbers of dimensions on the two data sets, namely, the musk and
isolet data sets. We fix the numbers of clusters k to be as 20. Figs. 12 and 13 show that the FGKM+A algorithm exhibits better
scalability with increasing dimensions, compared with the FGKM and MFGKM algorithms.
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Fig. 12. (a) Computational times for different numbers of attributes on the musk data. (b) Numbers of distance calculations for different numbers of
attributes on the musk data.
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Fig. 13. (a) Computational times for different numbers of attributes on the isolet data. (b) Numbers of distance calculations for different numbers of
attributes on the isolet data.
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6. Conclusions

To improve the efficiency of the FGKM clustering algorithm, an acceleration mechanism has been developed in this paper
by using the local geometrical information of data objects. In the development, an approximate description of an object set
has been proposed to help users reduce the computational complexity of determining new cluster centers. Compared with
the FGKM and MFGKM algorithms, the accelerated FGKM algorithm, i.e., FGKM+A, requires less computing time and fewer
distance calculations while retaining the same clustering results. The performance of the proposed algorithm is more
remarkable as the number of dimensions or clusters of a data set increases.
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