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Many real data sets in databases may vary dynamically. With the rapid development of data processing
tools, databases increase quickly not only in rows (objects) but also in columns (attributes) nowadays.
This phenomena occurs in several fields including image processing, gene sequencing and risk prediction
in management. Rough set theory has been conceived as a valid mathematical tool to analyze various
types of data. A key problem in rough set theory is executing attribute reduction for a data set. This paper
focuses on attribute reduction for data sets with dynamically-increasing attributes. Information entropy
is a common measure of uncertainty and has been widely used to construct attribute reduction algo-
rithms. Based on three representative entropies, this paper develops a dimension incremental strategy
for redcut computation. When an attribute set is added to a decision table, the developed algorithm
can find a new reduct in a much shorter time. Experiments on six data sets downloaded from UCI show
that, compared with the traditional non-incremental reduction algorithm, the developed algorithm is
effective and efficient.

� 2012 Published by Elsevier B.V.
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1. Introduction

Rough set theory, proposed by Pawlak, is a relatively new soft
computing tool to conceptualize and analyze various types of data
[23–25]. It has become a popular mathematical framework for pat-
tern recognition, image processing, feature selection, rule extrac-
tion, neuro-computing, conflict analysis, decision supporting,
granular computing, data mining and knowledge discovery from
given data sets [4–7,13,16,19,33,34,38,41,44].

In rough set theory, an important concept is attribute reduction
which can be considered a kind of specific feature selection. In
other words, based on rough set theory, one can select useful fea-
tures from a given data set. Attribute reduction does not attempt to
maximize the class separability but rather to keep the discernibil-
ity ability of the original ones [8,11,12,26,31,37,42]. In the last two
decades, researchers have proposed many reduction algorithms
[10,14,20,21,29,39,40]. However, most of these algorithms can
only be applicable to static data sets. In other words, when data
sets vary with time, these algorithms have to be implemented from
scratch to obtain new reduct. As data sets change with time, espe-
cially at an unprecedented rate, it is very time-consuming or even
infeasible to run repeatedly an attribute reduction algorithm.

To overcome this deficiency, researchers have recently pro-
posed many new analytic techniques for attribute reduction. These
83

84

85

86

Elsevier B.V.

6.
g), ljy@sxu.edu.cn (J. Liang),

al., Attribute reduction: A dime
techniques usually can directly carry out the computation using
the existing result from the original data set [9,14,18,22,36]. A
common character of these algorithms is that they were proposed
to deal with dynamically-increasing data sets in an incremental
manner. However, many real databases expand not only in rows
(objects) but also in columns (attributes) in many applications.
For example, with the development of tools in gene sequencing,
the obtained segments of DNA may get longer, which results in
storing more columns. So does cancer patients, there will be more
clinical features as the disease progresses, which also results in
expansion of attributes. Another example is about the information
input of students. For a student, different departments in a school
may save his various information. Merging all of his information
can offers his a comprehensive evaluation. The process of merging
information may also result in the expansion of attributes in dat-
abases. Moreover, there are many other examples about the expan-
sion of attributes such as image processing, risk prediction and
animal experiments. Therefore, to acquire knowledge from data
sets with dynamically-increasing attributes, it is necessary to de-
sign a dimension incremental strategy for reduct computation.

Based on rough set theory, there exists some research on
knowledge updating caused by the variation of attributes. In [1],
an incremental algorithm was proposed to update the upper and
lower approximations of a target concept in an information sys-
tem. For an incomplete information system, when there are multi-
ple attributes that are deleted from or added into it, Li et al.
proposed an approach to update approximations of a target con-
cept [15]. In addition, based on rough fuzzy set theory, two
nsion incremental strategy, Knowl. Based Syst. (2012), http://dx.doi.org/
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incremental approaches to update rough fuzzy approximations
were presented in [2]. One of these two approaches starts from
the boundary set, and the other one is based on the cut sets of a
fuzzy set. In [43], Zhang et al. proposed an incremental algorithm
for updating approximations of a concept in variable precision
rough set. Based on above analysis, we remark that existing dimen-
sion incremental algorithms mainly focus on updating approxima-
tions. The dimension incremental algorithms for updating reduct
have not yet been discussed so far. Therefore, this paper presents
a dimension incremental algorithm for redcut computation.

The information entropy from classical thermodynamics is used
to measure out-of-order degree of a system. It is introduced in
rough set theory to measure uncertainty of a data set, which has
been widely applied to devise heuristic attribute reduction algo-
rithms [16,17,27–29,32]. Complementary entropy [17], combina-
tion entropy [27] and Shannon’s entropy [30] are three
representative entropies which have been mainly used to construct
reduction algorithms in rough set theory. To fully explore proper-
ties in reduct updating caused by the expansion of attributes, this
paper develops a dimension incremental algorithms for dynamic
data sets based on the three entropies. In view of that a key step
of the development is the computation of entropy, this paper first
introduces three dimension incremental mechanisms of the three
entropies. These mechanisms can be used to determine an entropy
by adding an attribute set to a decision table. When several attri-
butes are added, instead of recomputation on the given decision ta-
ble, the dimension incremental mechanisms derive new entropies
by integrating the changes of conditional classes and decision clas-
ses into the existing entropies. With these mechanisms, a dimen-
sion incremental attribute reduction algorithm is proposed for
dynamic decision tables. When an attribute set is added to a deci-
sion table, the developed algorithm can find a new reduct in a
much shorter time. Experiments on six data sets downloaded from
UCI show that, compared with the traditional non-incremental
reduction algorithm, the developed algorithm is effective and
efficient.

The rest of this paper is organized as follows. Some preliminar-
ies in rough set theory are briefly reviewed in Section 2. Three rep-
resentative entropies are introduced in Section 3. Section 4
presents the dimension incremental mechanisms of the three
entropies for dynamically-increasing attributes. In Section 5, based
on the dimension incremental mechanisms, a reduction algorithm
is proposed to compute reducts for dynamic data sets. In Section 6,
six UCI data sets are employed to demonstrate effectiveness and
efficiency of the proposed algorithm. Section 7 concludes this pa-
per with some discussions.

2. Preliminary knowledge on rough sets

This section reviews several basic concepts in rough set theory.
Throughout this paper, the universe U is assumed a finite non-
empty set.

An information system, as a basic concept in rough set theory,
provides a convenient framework for the representation of objects
in terms of their attribute values. An information system is a qua-
druple S = (U,A,V, f), where U is a finite nonempty set of objects and
is called the universe and A is a finite nonempty set of attributes,
V =

S
a2AVa with Va being the domain of a, and f:U � A ? V is an

information function with f(x,a) 2 Va for each a 2 A and x 2 U. The
system S can often be simplified as S = (U,A).

Each nonempty subset B # A determines an indiscernibility
relation in the following way,

RB ¼ fðx; yÞ 2 U � Ujf ðx; aÞ ¼ f ðy; aÞ;8a 2 Bg:

The relation RB partitions U into some equivalence classes given by
Please cite this article in press as: F. Wang et al., Attribute reduction: A dim
10.1016/j.knosys.2012.10.010
U=RB ¼ f½x�Bjx 2 Ug; just U=B;

where [x]B denotes the equivalence class determined by x with re-
spect to B, i.e.,

½x�B ¼ fy 2 Ujðx; yÞ 2 RBg:

Given an equivalence relation R on the universe U and a subset
X # U, one can define a lower approximation of X and an upper
approximation of X by

RX ¼
[
fx 2 Uj½x�R # Xg

and

RX ¼
[
fx 2 Uj½x�R \ X – Øg;

respectively [3]. The order pair ðRX;RXÞ is called a rough set of X with
respect to R. The positive region of X is denoted by POSR(X) = R X.

A partial relation � on the family {U/BjB # A} is defined as fol-
lows [27]: U/P � U/Q (or U/Q � U/P) if and only if, for every Pi 2 U/P,
there exists Qj 2 U/Q such that Pi # Qj, where U=P ¼ fP1; P2; . . . ;

Pmg and U=Q ¼ fQ 1;Q 2; . . . ;Q ng are partitions induced by
P,Q # A, respectively. In this case, we say that Q is coarser than
P, or P is finer than Q. If U/P � U/Q and U/P – U/Q, we say Q is
strictly coarser than P (or P is strictly finer than Q), denoted by
U/P � U/Q (or U/Q � U/P).

It is clear that U/P � U/Q if and only if, for every X 2 U/P, there
exists Y 2 U/Q such that X # Y, and there exist X0 2 U/P and
Y0 2 U/Q such that X0 � Y0.

A decision table is an information system S = (U,C [ D) with
C \ D = Ø, where an element of C is called a condition attribute, C
is called a condition attribute set, an element of D is called a deci-
sion attribute, and D is called a decision attribute set. Given P # C
and U/D = {D1,D2, . . . , Dr}, the positive region of D with respect to
the condition attribute set P is defined by POSPðDÞ ¼

Sr
k¼1PDk.
3. Three representative entropies

In rough set theory, a given data table usually has multiple re-
ducts, whereas it has been proved that finding its minimal is an
NP-hard problem [31]. To overcome this deficiency, researchers
have proposed many heuristic reduction algorithms which can
generate a single reduct from a given table [10–12,16,17,28]. Most
of these algorithms are of greedy and forward search type. Starting
with a nonempty set, these algorithms keep adding one or several
attributes of high significance into a pool at each iteration until the
dependence no longer increases. Among various heuristic attribute
reduction algorithms, reduction based on information entropy (or
its variants) is a kind of common algorithm which has attracted
much attention. The main idea of these algorithms is to keep the
conditional entropy of target decision unchanged. This section re-
views three representative entropies which are usually used to
measure the attribute significance in a heuristic reduction
algorithm.

In [16], the complementary entropy was introduced to measure
uncertainty in rough set theory. Liang et al. also proposed the con-
ditional complementary entropy to measure uncertainty of a deci-
sion table in [17]. By preserving the conditional entropy
unchanged, the conditional complementary entropy was applied
to construct reduction algorithms and reduce the redundant fea-
tures in a decision table [28]. The conditional complementary en-
tropy used in this algorithm is defined as follows [16,17,28].

Definition 1. Let S = (U,C [ D) be a decision table and B # C. Then,
one can obtain the condition partitions U/B = {X1,X2, . . . , Xm} and U/
D = {Y1,Y2, . . . , Yn}. Based on these partitions, a conditional entropy
of B relative to D is defined as
ension incremental strategy, Knowl. Based Syst. (2012), http://dx.doi.org/
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EðDjBÞ ¼
Xm

i¼1

Xn

j¼1

jXi \ Yjj
jUj

Yc
j 	 Xc

i

��� ���
jUj ; ð1Þ

where Yc
i and Xc

j are complement sets of Yi and Xj respectively.
Based on the classical rough set model, Shannon’s information

entropy [30] and its conditional entropy were also introduced to
find a reduct in a heuristic algorithm [29,32]. In [32], the reduction
algorithm keeps the conditional entropy of target decision
unchanged, and the conditional entropy is defined as follows [32].

Definition 2. Let S = (U,C [ D) be a decision table and B # C. Then,
one can obtain the condition partitions U/B = {X1,X2, . . . , Xm} and U/
D = {Y1,Y2, . . . , Yn}. Based on these partitions, a conditional entropy
of B relative to D is defined as

HðDjBÞ ¼ 	
Xm

i¼1

jXij
jUj
Xn

j¼1

jXi \ Yjj
jXij

log
jXi \ Yjj
jXij

� �
: ð2Þ

Another information entropy, called combination entropy, was
presented in [27] to measure the uncertainty of data tables. The
conditional combination entropy was also introduced and can be
used to construct the heuristic reduction algorithms [27]. This
reduction algorithm can find a feature subset that possesses the
same number of pairs of indistinguishable elements as that of
the original decision table. The definition of the conditional combi-
nation entropy is defined as follows [27].
299

300

302302

303

304
305

307307

308309

311311

312
313

315315
Definition 3. Let S = (U,C [ D) be a decision table and B # C. Then
one can obtain the condition partitions U/B = {X1,X2, . . . , Xm} and U/
D = {Y1,Y2, . . . , Yn}. Based on these partitions, a conditional entropy
of B relative to D is defined as

CEðDjBÞ ¼
Xm

i¼1

jXij
jUj

C2
jXi j

C2
jUj
	
Xn

j¼1

jXi \ Yjj
jUj

C2
jXi\Yj j

C2
jUj

 !
: ð3Þ

where C2
jXi j denotes the number of pairs of objects which are not dis-

tinguishable from each other in the equivalence class Xi.

4. Dimension incremental mechanism

Given a dynamic decision table, this section introduces the
dimension incremental mechanisms for the three entropies. When
an attributes set is added to a decision table, instead of recompu-
tation on the given decision table, the dimension incremental
mechanisms derive new entropies by integrating the changes of
conditional classes and decision classes into the existing entropies.

For convenience, here are some explanations which will be used
in the following theorems. Given a decision table S = (U,C [ D),
B # C, U/B = {X1,X2, . . . , Xm} and U/D = {Y1,Y2, . . . , Yn}. Suppose that
P is a conditional attribute set, and U/(B [ P) can be expressed as

U=ðB [ PÞ ¼ X1;X2; . . . ;Xk;X
kþ1
1 ;Xkþ1

1 ; . . . ;Xkþ1
lkþ1
;Xkþ2

1 ;Xkþ2
2 ; . . . ;

n
Xkþ2

lkþ2
; . . . ;Xm

1 ;X
m
2 ; . . . ;Xm

lm

o
;

where
Sli

j¼1Xi
j ¼ Xi ði ¼ kþ 1; kþ 2; . . . ;mÞ, i.e., Xi 2 U/B is divided

into Xi
1;X

i
2; . . . ;Xi

li
in U/(B [ P).

Example 1. Let U = {x1,x2,x3,x4,x5,x6,x7} and U/B = {{x1,x2},{x3,x4},{-
= {{x1,x2},{x3,x4},{x5,x6,x7}}. Suppose that P is the incremental
attribute set, and U/(B [ P) = {{x1,x2},{x3},{x4},{x5},{x6,x7}}. Hence,
we have

X1 ¼ fx1; x2g;X2 ¼ fx3; x4g;
X2

1 ¼ fx3g;X2
2 ¼ fx4g;

l2 ¼ 2;

X2 ¼ X2
1 [ X2

2:
Please cite this article in press as: F. Wang et al., Attribute reduction: A dime
10.1016/j.knosys.2012.10.010
And

X3 ¼ fx5; x6; x7g;
X3

1 ¼ fx5g;X3
2 ¼ fx6; x7g;

l3 ¼ 2;

X3 ¼ X3
1 [ X3

2:

4.1. Dimension incremental mechanism of complementary entropy

Given a decision table, Theorem 1 introduces the dimension
incremental mechanism based on complementary entropy (see
Definition 1).

Theorem 1. Let S = (U,C [ D) be a decision table and B # C. U/
B = {X1,X2, . . . , Xm} and U/D = {Y1,Y2, . . . , Yn}. Suppose that P is the
incremental conditional attribute set and U=ðB [ PÞ ¼ X1;X2; . . . ;f
Xk;X

kþ1
1 ;Xkþ1

2 ; . . . ;Xkþ1
lkþ1

;Xkþ2
1 ;Xkþ2

2 ; . . . ;Xkþ2
lkþ2

; . . . ;Xm
1 ; Xm

2 ; . . . ;Xm
lmg.

Then, the new conditional entropy becomes
EðDjðB [ PÞÞ ¼ EðDjBÞ 	 D;

where

D ¼
Xm

I¼kþ1

XlI

i¼1

Xn

j¼1

XI
i \ Yj

��� ���Pi0–i XI
i0 	 Yj

��� ���
jUj2

:

Proof. From Definition 1, we have

EðDjBÞ ¼
Xm

I¼1

Xn

j¼1

jXI \ Yjj
jUj

Yc
j 	 Xc

I

��� ���
jUj ¼

Xm

I¼1

Xn

j¼1

jXI \ Yjj
jUj

jXI 	 Yjj
jUj :

Because XI ¼
SlI

i¼1XI
iðI ¼ kþ 1; . . . ;mÞ (the specific introduction of lI

can be got from Example 1), we have

EðDjBÞ ¼
Xk

I¼1

Xn

j¼1

jXI \ Yjj
jUj

jXI 	 Yjj
jUj þ

Xm

I¼kþ1

Xn

j¼1

jXI \ Yjj
jUj

jXI 	 Yjj
jUj

¼
Xk

I¼1

Xn

j¼1

jXI \ Yjj
jUj

jXI 	 Yjj
jUj þ

Xm

I¼kþ1

Xn

j¼1

XlI

i¼1

XI
i \ Yj

��� ���
jUj

�

XlI

i¼1

XI
i 	 Yj

��� ���
jUj :

Because thatXlI

i¼1

XI
i \Yj

��� ��� 
XlI

i¼1

XI
i	Yj

��� ���¼XlI

i¼1

XI
i \Yj

��� ��� XI
i	Yj

��� ���þ XI
i \Yj

��� ��� 
X
i0–i

XI
i0 	Yj

��� ���
 !

¼
XlI

i¼1

XI
i \Yj

��� ��� XI
i	Yj

��� ���þXlI

i¼1

XI
i \Yj

��� ��� 
X
i0–i

XI
i0 	Yj

��� ���;
we can get

EðDjBÞ¼
Xk

I¼1

Xn

j¼1

jXI \Yjj
jUj

jXI	Yjj
jUj

þ
Xm

I¼kþ1

Xn

j¼1

XlI

i¼1

XI
i \Yj

��� ��� XI
i	Yj

��� ���þXlI

i¼1

XI
i \Yj

��� ��� 
X
i0–i

XI
i0 	Yj

��� ���
jUj2

¼
Xk

I¼1

Xn

j¼1

jXI \Yjj
jUj

jXI	Yjj
jUj þ

Xm

I¼kþ1

Xn

j¼1

XlI

i¼1

�
XI

i \Yj

��� ��� XI
i	Yj

��� ���þ XI
i \Yj

��� ��� 
Pi0–i XI
i0 	Yj

��� ���
jUj2

:
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It is obvious that
Pk

I¼1

Pn
j¼1
jXI\Yj j
jUj

jXI	Yj j
jUj þ

Pm
I¼kþ1

Pn
j¼1

PlI
i¼1 XI

i

���
\Yj j XI

i	Yjj j
jUj2¼EðDjðB[PÞÞ

. Let D ¼
Pm

I¼kþ1

Pn
j¼1

PlI
i¼1

XI
i\Yjj j


P
i0–i

XI
i0 	Yjj j

jUj2
, we have

EðDjBÞ ¼ EðDjðB [ PÞÞ þ D;

namely,

EðDjðB [ PÞÞ ¼ EðDjBÞ 	 D:

This completes the proof. h
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4.2. Dimension incremental mechanism of Shannon’s information
entropy

In this subsection, the dimension incremental mechanism
based on Shannon’s entropy (see Definition 2) is introduced in
Theorem 2.

Theorem 2. Let S = (U,C [ D) be a decision table and B # C. U/
B = {X1,X2, . . . , Xm} and U/D = {Y1,Y2, . . . ,Yn}. Suppose that P is the
incremental conditional attribute set and U=ðB [ PÞ ¼ X1;X2; . . . ;f
Xk;X

kþ1
1 ;Xkþ1

2 ; . . . ;Xkþ1
lkþ1

;Xkþ2
1 ;Xkþ2

2 ; . . . ;Xkþ2
lkþ2

; . . . ;Xm
1 ;X

m
2 ; . . . ;Xm

lmg.
Then, the new Shannon’s information entropy becomes

HðDjðB [ PÞÞ ¼ HðDjBÞ þ D;

where,

D ¼
Xm

I¼kþ1

XlI

i¼1

Xn

j¼1

XI
i \ Yj

��� ���
jUj log

XI
i

��� ���jXI \ Yjj

jXIj XI
i \ Yj

��� ��� :

374374

375
376

378378

379

380

382382

383
384

386386
Proof. Because XI ¼
SlI

i¼1XI
iðI ¼ kþ 1; . . . ;mÞ, we have

HðDjBÞ

¼	
Xk

I¼1

jXI j
jUj
Xn

j¼1

jXI \Yjj
jXI j
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Because 	
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we have H(DjB) = H(Dj(B [ P)) 	 D. Hence, H(Dj(B [ P)) = H(DjB) + D.
This completes the proof. h

4.3. Dimension incremental mechanism of combination entropy

For convenience of introducing dimension incremental mecha-
nism of combination entropy, here gives a variant of the definition
of combination entropy (see Definition 3). According to C2

N ¼
NðN	1Þ

2 ,
Definition 4 shows a variant of combination entropy. Based on this
variant, the dimension incremental mechanism of combination en-
tropy is introduced in Theorem 3.

Definition 4. Let S = (U,C [ D) be a decision table and B # C. One
can obtain the condition partition U/B = {X1,X2, . . . , Xm} and U/
D = {Y1,Y2, . . . , Yn}. Then, the conditional entropy of B relative to D
is defined as

CEðDjBÞ ¼
Xm

i¼1

jXij2ðjXij 	 1Þ
jUj2ðjUj 	 1Þ

	
Xn

j¼1

jXi \ Yjj2ðjXi \ Yjj 	 1Þ
jUj2ðjUj 	 1Þ

 !
: ð4Þ
Theorem 3. Let S = (U,C [ D) be a decision table and B # C. U/
B = {X1,X2, . . . , Xm} and U/D = {Y1,Y2, . . . ,Yn}. Suppose that P is the
incremental conditional attribute set and U=ðB [ PÞ ¼ X1;X2; . . . ;f
Xk;X

kþ1
1 ;Xkþ1

2 ; . . . ;Xkþ1
lkþ1
;Xkþ2

1 ;Xkþ2
2 ; . . . ;Xkþ2

lkþ2
; . . . ;Xm

1 ;X
m
2 ; . . . ;Xm

lmg.
Then, the new conditional entropy becomes

CEðDjðB [ PÞÞ ¼ CEðDjBÞ 	 D;

where
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Proof. Because XI ¼
SlI

i¼1XI
iðI ¼ kþ 1; . . . ;mÞ, we have
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And we simplify two items in the above formula as follows
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Input: A decision table S = (U,C [ D), core attributes COREC on C and the new
condition attribute set P.

Output: Core attribute COREC[P on C [ P.

Step 1: Compute U=ðC [ PÞ ¼ X1;X2; . . . ;Xk;X
kþ1
1 ;Xkþ1

1 ; . . . ;Xkþ1
lkþ1

;Xkþ2
1 ;Xkþ2

2 ;
n

. . . ;Xkþ2
lkþ2

; . . . ;Xm
1 ;X

m
2 ; . . . ;Xm

lm g and U/D = {Y1,Y2, . . . , Yn}.

Step 2: Compute ME(Dj(C [ P))(according to Theorems or1–3).
Step 3: COREC[P COREC.

For each a 2 COREC[P do
{
If ME(Dj(C 	 {a}) [ P) = ME(DjC [ P), then COREC[P COREC[P 	 {a}.
}

Step 4: For each a 2 P do
{
If ME(DjC [ (P 	 {a})) – ME(DjC [ P), then COREC[P COREC[P [ {a}.
}

Step 5: Return COREC[P and end.
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we have

CEðDjBÞ ¼ CEðDjðB [ PÞÞ þ D;

namely,

CEðDjðB [ PÞÞ ¼ CEðDjBÞ 	 D:

This completes the proof. h
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5. Dimension incremental algorithms

In rough set theory, core is also a key concept [23,24]. Given a
decision table, core is the intersection of all reducts, and includes
all indispensable attributes in a reduct. Based on the dimension
incremental mechanisms, this section introduces dimension incre-
mental algorithms for core and reduct.

For convenience, a uniform notation ME(DjB) is introduced to denote
the above three entropies. For example, if one adopts Shannon’s condi-
tional entropy to define the attribute significance, then ME(DjB) = H(DjB).
In [16,28,32], the attribute significance is defined as follows.

Definition 5. Let S = (U,C [ D) be a decision table and B # C.
"a 2 B, the significance measure (inner significance) of a in B is
defined as

Siginnerða;B;DÞ ¼ MEðDjB	 fagÞ 	MEðDjBÞ: ð5Þ
Definition 6. Let S = (U,C [ D) be a decision table and B # C.
"a 2 C 	 B, the significance measure (outer significance) of a in B
is defined as

Sigouterða;B;DÞ ¼ MEðDjBÞ 	MEðDjB [ fagÞ: ð6Þ
Given a decision table S = (U,C [ D) and a 2 C. From the litera-

tures [23,16,28,27], one can get that if Siginner(a,C,D) > 0, then the
attribute a is indispensable, i.e., a is a core attribute of S. Based
on the core attributes, a heuristic attribute reduction algorithm
can find an attribute reduct by gradually adding selected attributes
to the core. The definition of reduct based on information entropy
is defined as follows.
Definition 7. Let S = (U,C [ D) be a decision table and B # C. Then
the attribute set B is a relative reduct if B satisfies:

(1) ME(DjB) = ME(DjC);
(2) "a 2 B, ME(DjB) – ME(DjB 	 {a}).

The first condition guarantees that the reduct has the same dis-
tinguish power as the whole attribute set, and the second condi-
tion guarantees that there is no redundant attributes in the reduct.

Based on Definition 5, when a conditional attribute set is added
to a decision table, we propose in the following a dimension incre-
mental algorithm for core computation. In this algorithm, there are
two key problems need to be considered. The first one is removing
non-core attributes from the original core. And the second one is
finding new core attributes from the incremental attribute set.

Algorithm 1. A dimension incremental algorithm for core com-
putation (DIA_CORE)
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Table 1
Comparison of time complexity.

Classic Incremental

Entropy
O(jUj(jCj + jPj) + jUj2) O(jUj(jCj + jPj) + jXkUj)

TA_CORE DIA_CORE

Core
O((jCj + jPj)2jUj + (jCj + jPj)jUj2) O((jCj + jPj)2jUj + (jCj + jPj)jXkUj)

TA_RED DIA_RED
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In rough set theory, as mentioned above, attribute reduct is a
very important issue. Algorithm 2 introduces a dimension incre-
mental algorithm for reduct computation. Supposed that P is an
incremental conditional attribute set. In this algorithm, new core
attributes are found from P firstly, and then attributes with highest
significance are selected from P and added to the reduct gradually.
At last, the redundant attributes in the reduct are deleted.

Algorithm 2. A dimension incremental algorithm for reduction
computation (DIA_RED)
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Table 2
Description of data sets.

Data sets Samples Attributes Classes

1 Backup-large 307 35 19
2 Dermatology 366 33 6
3 Splice 3910 60 3
4 Kr-vs-kp 3196 36 2
5 Mushroom 5644 22 2
6 Ticdata2000 5822 85 2

Reduct
O((jCj + jPj)2jUj + (jCj + jPj)jUj2) O((jCj + jPj)2jUj + (jCj + jPj)jXkUj)

Input: A decision table S = (U,C [ D), reduct REDC on C and the
incremental conditional attribute set P.

Output: Reduct REDC[P on C [ P.
Step 1: Compute

U=ðC [ PÞ ¼ fX1;X2; . . . ;Xk;X
kþ1
1 ;Xkþ1

1 ; . . . ;Xkþ1
lkþ1

;Xkþ2
1 ;Xkþ2

2 ; . . . ;

Xkþ2
lkþ2

; . . . ;Xm
1 ;X

m
2 ; . . . ;Xm

lm g and U/D = {Y1,Y2, . . . , Yn}.

Step 2: Compute ME(Dj(C [ P))(according to Theorems or1–3).
Step 3: CoreP ;, for each a 2 P do

{
If ME(DjC [ (P 	 {a})) – ME(DjC [ P), then CoreP  CoreP [ {a}.
}

Step 4: B REDC [ CoreP, if ME(DjB) = ME(DjC [ P), then turn
to Step 6; else turn to Step 5.

Step 5: while ME(DjB) – ME(DjC [ P) do
{For each a 2 P 	 CoreP, compute Sigouter(a,B,D)

(according to Theorems or1–3 and Definition 6);
Select a0 = max{Sigouter(a,B,D):a 2 P 	 CoreP};
B B [ {a}.

}
Step 6: For each a 2 REDC do

{
If Siginner(a,B,D) = 0, then B B 	 {a}.

}
Step 7: REDC[P B, return REDC[P and end.
In addition, time complexities of above two algorithms are dis-
cussed as follows. The time complexity of a traditional non-incre-
mental heuristic reduction algorithm based on information
entropy given in [28] is O(jUkCj2). However, this time complexity
does not include the computational time of entropies. For a given
decision table, computing entropies is a key step in above reduc-
tion algorithm, which is not computationally costless. Thus, to ana-
lyze the exact time complexity of above algorithm, the time
complexity of computing entropies is given as well.

Given a decision table, according to Definitions 1–3, it first
needs to compute the conditional classes and decision classes,
respectively, and then computes the value of entropy. Xu et al. in
[35] gave a fast algorithm for partition with time complexity being
O(jUkCj). So, the time complexity of computing entropy is

OðjUkCj þ jUj þ
Xm

i¼1

jXij 

Xn

j¼1

jYjjÞ ¼ OðjUkCj þ jUj þ jUkUjÞ

¼ OðjUkCj þ jUj2Þ;

where the specific introduction of m,n,Xi and Yj is shown in Defini-
tions 1–3. Hence, when P is added to the table, the time complexity
of computing entropy is

H ¼ OðjUkC [ Pj þ jUj2Þ ¼ OðjUjðjCj þ jPjÞ þ jUj2Þ:

By using the dimension incremental formulas shown in Theorems
1–3, one can also get the entropy. According to Theorems 1–3, the
time complexity of computing entropy is

H0 ¼ OðjUjðjCj þ jPjÞ þ jXjjUjÞ;

where X denotes the union of changed conditional classes in the
universe before and after adding P to the table.
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In a traditional heuristic algorithm based on entropy, the time
complexity of core computation is O(jCj(jUkCj + jUj2)) = O(jCj2-

jUj + jCkUj2). Hence, when P is added to a decision table, the time
complexity of core computation is O(jC [ Pj2jUj + jC [ PkUj2) = -
(jC [ Pj2jUj + jC [ PkUj2) = O((jCj + jPj)2jUj + (jCj + jPj)jUj2). In the
algorithm DIA_CORE, the time complexity of Step 1–2 is H0; in Step
3, the time complexity of deleting non-core attributes is O(jCOREC-

jH0) = O(jCjH0); new core attributes are selected in Step 4 and its
time complexity is O(jPjH0). Hence, the total time complexity of
DIA_CORE is

OðH0 þ jCjH0 þ jPjH0Þ ¼ OððjCj þ jPjÞ2jUj þ ðjCj þ jPjÞjXjjUjÞ:

In a traditional heuristic reduct algorithm based on entropy, the
time complexity of reduct computation is O(jCj2jUj + jCkUj2 + -
(jCj2jUj + jCkUj2 + jCjH) = O(jCj2jUj + jCkUj2). Hence, when P is added
to a decision table, the time complexity of reduct computation is
O((jCj + jPj)2jUj + (jCj + jPj)jUj2). In the algorithm DIA_RED, the time
complexity of Step 1–2 is H0; the time complexity of Step 3 is
O(jPjH0); in Step 5, the time complexity of adding attributes is also
O(jPjH0); and in Step 6, the time complexity of deleting reductant
attributes is O(jCjH0). Thus, the total time complexity of the algo-
rithm DIA_RED is

OðH0 þ jPjH0 þ jCjH0Þ ¼ OððjCj þ jPjÞ2jUj þ ðjCj þ jPjÞjXjjUjÞ:

To stress above findings, the time complexities of computing entro-
py, core and reduct are shown in Table 1. TA_CORE and TA_RED de-
note the traditional algorithm for core and reduct, respectively.

From Table 1, because of that jXj is usually much smaller than
jUj, we can conclude that the computational time of new dimen-
sion incremental algorithms are usually much smaller than that
of the traditional ones.

6. Experimental analysis

The objective of the following experiments is to show effective-
ness and efficiency of the proposed dimension incremental algo-
rithms. The data sets used in the experiments are outlined in
Table 2, which are all downloaded from UCI repository of machine
learning databases. All the experiments have been carried out on a
personal computer with Windows 7, Inter (R) Core (TM) i7-2600
CPU (2.66 GHz) and 4.00 GB memory. The software being used is
Microsoft Visual Studio 2005 and the programming language is
ension incremental strategy, Knowl. Based Syst. (2012), http://dx.doi.org/
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Table 3
Comparison of algorithms for core computation based on complementary entropy.

Data sets SIA
(%)

TA_CORE DIA_CORE PIT
(%)

Core Time/s Core Time/s

Backup-
large

20 7, 16 0.4240 7, 16 0.0330 92.21

40 7, 16 0.4910 7, 16 0.0350 92.87
60 7, 16 0.5800 7, 16 0.0440 92.41
80 7, 16 0.6670 7, 16 0.0615 90.78

100 7, 16 0.6970 7, 16 0.0785 88.74

Dermatology 20 16, 18 0.4650 16, 18 0.0355 92.37
40 16, 18 0.5570 16, 18 0.0320 94.25
60 ; 0.6620 ; 0.0453 93.15
80 ; 0.7780 ; 0.0685 91.20

100 ; 0.8140 ; 0.0714 91.23

Splice 20 ; 55.361 ; 3.5819 93.53
40 ; 66.870 ; 7.2015 89.23
60 ; 78.369 ; 13.082 83.31
80 ; 89.682 ; 16.000 82.16

100 ; 93.364 ; 18.792 79.87

Kr-vs-kp 20 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22 13.401 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
19, 20, 21, 22

6.2631 53.26

40 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23 23.768 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19,
20, 21, 22, 23

9.5251 59.93

60 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26

30.601 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26

12.881 57.91

80 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24,
25, 26, 27, 28, 30, 31, 32, 33, 34

47.492 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20,
21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

13.098 72.42

100 1, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26,
27, 28, 30, 31, 33, 34, 35, 36

61.341 1, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 17, 18, 20, 21,
23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36

15.756 74.31

Mushroom 20 1, 2, 3, 9 11.321 1, 2, 3, 9 1.2912 88.59
40 1, 2, 3, 9 19.677 1, 2, 3, 9 2.0521 89.57
60 20 35.650 20 3.0354 91.49
80 ; 90.832 ; 5.2079 94.27

100 ; 120.34 ; 8.9416 92.57

Ticdata2000 20 2, 5, 43, 44, 45, 46, 47, 48, 49, 51 228.97 2, 5, 43, 44, 45, 46, 47, 48, 49, 51 15. 215 93.36
40 2, 5, 43, 44, 45, 47, 48, 49, 54, 55, 57, 58, 59 338.71 2, 5, 43, 44, 45, 47, 48, 49, 54, 55, 57, 58, 59 33.163 90.21
60 2, 5, 43, 44, 47, 49, 54, 55, 57, 58, 59, 61, 62, 63, 64, 68 424.13 2, 5, 43, 44, 47, 49, 54, 55, 57, 58, 59, 61, 62, 63,

64, 68
51.768 87.79

80 2, 5, 43, 44, 47, 55, 58, 59, 61, 62, 63, 64, 68 494.39 2, 5, 43, 44, 47, 55, 58, 59, 61, 62, 63, 64, 68 73.063 85.22
100 2, 5, 43, 44, 47, 55, 59, 68, 80, 83 563.78 2, 5, 43, 44, 47, 55, 59, 68, 80, 83 81.231 85.59

Table 4
Comparison of algorithms for core computation based on combination entropy.

Data sets SIA
(%)

TA_CORE DIA_CORE PIT
(%)

Core Time/s Core Time/s

Backup-
large

20 7, 16 0.4180 7, 16 0.0462 88.95

40 7, 16 0.4870 7, 16 0.0302 93.80
60 7, 16 0.5720 7, 16 0.0307 94.64
80 7, 16 0.6610 7, 16 0.0420 93.64

100 7, 16 0.6840 7, 16 0.0650 90.50

Dermatology 20 16, 18 0.4970 16, 18 0.0921 81.47
40 16, 18 0.5880 16, 18 0.2001 65.96
60 ; 0.6770 ; 0.2066 69.49
80 ; 0.7980 ; 0.3098 61.18

100 ; 0.8460 ; 0.3208 62.08

Splice 20 ; 53.071 ; 5.0801 90.43
40 ; 63.867 ; 7.5008 88.26
60 ; 75.333 ; 10.201 86.46
80 ; 86.767 ; 11.801 86.40

100 ; 91.151 ; 12.780 85.98

Kr-vs-kp 20 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22 13.073 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
19, 20, 21, 22

3.9028 70.15

40 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26

23.026 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26

8.0024 65.25

60 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23,
24, 25, 26, 27, 28, 30

29.858 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
20, 21, 22, 23, 24, 25, 26, 27, 28, 30

10.302 65.50
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Table 4 (continued)

Data sets SIA
(%)

TA_CORE DIA_CORE PIT
(%)

Core Time/s Core Time/s

80 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24,
25, 26, 27, 28, 30, 31, 32, 33, 34

44.897 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20,
21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

13.922 68.99

100 1, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 17, 18, 20, 21, 57.954 1, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 17, 18, 20, 21, 15.420 73.40

Mushroom 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36
20 1, 2, 3, 9 11.216 1, 2, 3, 9 1.8140 83.83
40 1, 2, 3, 9 19.359 1, 2, 3, 9 3.0071 84.47
60 20 46.080 20 4.0093 88.46
80 ; 88.483 ; 5.3102 93.99

100 ; 98.337 ; 6.8436 93.04

Ticdata2000 20 2, 5, 43, 44, 45, 46, 47, 48, 49, 51 226.20 2, 5, 43, 44, 45, 46, 47, 48, 49, 51 8.3150 96.32
40 2, 5, 43, 44, 45, 47, 48, 49, 54, 55, 57, 58, 59 340.05 2, 5, 43, 44, 45, 47, 48, 49, 54, 55, 57, 58, 59 14.302 95.79
60 2, 5, 43, 44, 47, 49, 54, 55, 57, 58, 59, 61, 62, 63, 64, 68 409.33 2, 5, 43, 44, 47, 49, 54, 55, 57, 58, 59, 61, 62, 63,

64, 68
35.509 91.32

80 2, 5, 43, 44, 47, 55, 58, 59, 61, 62, 63, 64, 68 470.11 2, 5, 43, 44, 47, 55, 58, 59, 61, 62, 63, 64, 68 70.147 85.07
100 2, 5, 43, 44, 47, 55, 59, 68, 80, 83 527.01 2, 5, 43, 44, 47, 55, 59, 68, 80, 83 91.437 82.65

Table 5
Comparison of algorithms for core computation based on Shannon’s entropy.

Data sets SIA
(%)

TA_CORE DIA_CORE PIT
(%)

Core Time/s Core Time/s

Backup-
large

20 7, 16 0.4290 7, 16 0.0300 93.00

40 7, 16 0.5130 7, 16 0.0330 93.56
60 7, 16 0.6110 7, 16 0.0450 92.64
80 7, 16 0.6900 7, 16 0.0590 91.45

100 7, 16 0.7110 7, 16 0.0650 90.86

Dermatology 20 16, 18 0.4730 16, 18 0.0350 92.60
40 16, 18 0.5810 16, 18 0.0440 92.43
60 ; 0.7060 ; 0.0590 91.64
80 ; 0.8110 ; 0.0790 90.26

100 ; 0.8250 ; 0.0870 89.45

Splice 20 ; 57.105 ; 4.6803 91.80
40 ; 68.741 ; 8.3805 87.81
60 ; 80.573 ; 12.441 84.56
80 ; 91.010 ; 15.581 82.88

100 ; 105.96 ; 18.081 82.94

Kr-vs-kp 20 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22 12.511 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
19, 20, 21, 22

4.3630 65.12

40 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26

22.245 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26

6.9065 68.95

60 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23,
24, 25, 26, 27, 28, 30

28.751 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18,
20, 21, 22, 23, 24, 25, 26, 27, 28, 30

12.033 58.15

80 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 23, 24, 25,
26, 27, 28, 30, 31, 32, 33, 34

43.165 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

14.093 67.35

100 1, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26,
27, 28, 30, 31, 33, 34, 35, 36

55.864 1, 3, 4, 5, 6, 7, 10, 12, 13, 15, 16, 17, 18, 20, 21, 23,
24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36

15.810 71.70

Mushroom 20 1, 3, 9 10.795 1, 3, 9 1.0122 90.62
40 1, 3, 9 18.689 1, 3, 9 1.9027 89.82
60 20 33.867 20 2.0367 93.98
80 ; 87.452 ; 4.0056 95.42

100 ; 102.37 ; 8.3276 91.87

Ticdata2000 20 2, 5, 43, 44, 45, 46, 47, 48, 49, 51 240.53 2, 5, 43, 44, 45, 46, 47, 48, 49, 51 15.012 93.76
40 2, 5, 43, 44, 45, 47, 48, 49, 54, 55, 57, 58, 59 362.86 2, 5, 43, 44, 45, 47, 48, 49, 54, 55, 57, 58, 59 17.181 95.26
60 2, 5, 43, 44, 47, 49, 54, 55, 57, 58, 59, 61, 62, 63, 64, 68 428.77 2, 5, 43, 44, 47, 49, 54, 55, 57, 58, 59, 61, 62, 63,

64, 68
23.533 94.51

80 2, 5, 43, 44, 47, 55, 58, 59, 61, 62, 63, 64, 68 487.45 2, 5, 43, 44, 47, 55, 58, 59, 61, 62, 63, 64, 68 40.019 91.79
100 2, 5, 43, 44, 47, 55, 59, 68, 80, 83 555.83 2, 5, 43, 44, 47, 55, 59, 68, 80, 83 50.610 90.89
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Table 6
Comparison of algorithms for reduct computation based on complementary entropy.

Data sets SIA
(%)

TA_RED DIA_RED PIT
(%)

Reduct Time/s Reduct Time/s

Backup-
large

20 1, 4, 6, 7, 8, 9, 15, 16, 22 1.7271 1, 4, 6, 7, 8, 9, 15, 16, 22 0.0430 97.51

40 1, 4, 6, 7, 8, 9, 15, 16, 22 2.0261 1, 4, 6, 7, 8, 9, 15, 16, 22 0.0360 98.22
60 1, 4, 6, 7, 8, 9, 15, 16, 22 2.3851 1, 4, 6, 7, 8, 9, 15, 16, 22 0.0490 97.94
80 1, 4, 6, 7, 8, 9, 15, 16, 22 2.7512 1, 4, 6, 7, 8, 9, 15, 16, 22 0.0690 97.49

100 1, 4, 6, 7, 8, 9, 15, 16, 22 2.8142 1, 4, 6, 7, 8, 9, 15, 16, 22 0.0830 97.05

Dermatology 20 1, 2, 3, 4, 5, 14, 16, 18, 19 1.8261 1, 2, 3, 4, 5, 14, 16, 18, 19 0.2070 88.66
40 1, 2, 3, 4, 5, 14, 16, 18, 19 2.2561 1, 2, 3, 4, 5, 14, 16, 18, 19 0.2020 91.05
60 2, 3, 4, 7, 9, 16, 17, 19, 28 2.4941 1, 2, 3, 4, 5, 14, 16, 18, 19 0.2560 89.73
80 1, 2, 3, 4, 5, 16, 19, 28, 31, 32 3.3382 1, 2, 3, 4, 5, 14, 16, 18, 19 0.4080 87.78

100 1, 2, 3, 4, 5, 16, 19, 28, 31, 32 3.4612 1, 2, 3, 4, 5, 14, 16, 18, 19 0.4040 88.33

20 1, 5, 10, 11, 16, 18, 21, 30, 32, 35 260.76 1, 5, 10, 11, 16, 18, 21, 30, 32, 35 5.5803 97.86
40 1, 5, 10, 11, 16, 18, 21, 30, 32, 35 316.93 1, 5, 10, 11, 16, 18, 21, 30, 32, 35 9.3805 97.04

Splice 60 1, 5, 10, 11, 18, 21, 30, 32, 35, 46 377.33 1, 5, 10, 11, 16, 18, 21, 30, 32, 35 14.531 96.15
80 1, 5, 10, 11, 18, 21, 30, 32, 35, 46 430.35 1, 5, 10, 11, 16, 18, 21, 30, 32, 35 20.661 95.20

100 1, 5, 10, 11, 18, 21, 30, 32, 35, 46 448.15 1, 5, 10, 11, 16, 18, 21, 30, 32, 35 22.701 94.93

Kr-vs-kp 20 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22

13.191 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22

6.5604 50.27

40 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26

23.361 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26

9.7206 58.39

60 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 30

30.904 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 30

13.011 57.90

80 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

57.224 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

17.101 70.12

100 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36

88.898 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36

18.701 78.96

Mushroom 20 1, 2, 3, 5, 9 15.322 1, 2, 3, 5, 9 1.8410 87.98
40 1, 2, 3, 5, 9 24.901 1, 2, 3, 5, 9 2.9520 88.14
60 3, 5, 20 37.889 3, 5, 20 4.5300 88.04
80 3, 5, 16, 20 94.591 3, 5, 20 7.7205 91.84

100 3, 5, 16, 20 159.75 3, 5, 20 10.079 93.69

Ticdata2000 20 2, 5, 7, 15, 17, 30, 38, 43, 44, 45, 46, 47, 48, 49, 51 867.06 2, 5, 7, 15, 17, 30, 38, 43, 44, 45, 46, 47, 48, 49, 51 19.251 97.78
40 2, 3, 5, 15, 31, 37, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,

58, 59
1283.7 2, 5, 7, 15, 17, 30, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,

58, 59
37.922 97.05

60 2, 5, 9, 14, 18, 31, 39, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

1993.7 2, 5, 7, 15, 17, 30, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

60.763 96.95

80 2, 3, 5, 15, 31, 38, 39, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

3156.9 2, 5, 7, 15, 17, 30, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

112.08 96.45

100 2, 5, 7, 15, 17, 31, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 63, 64, 68, 80, 83

4886.8 2, 5, 7, 15, 17, 30, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 63, 64, 68, 80, 83

213.90 95.62

Table 7
Comparison of algorithms for reduct computation based on combination entropy.

Data sets SIA
(%)

TA_RED DIA_RED PIT
(%)

Reduct Time/s Reduct Time/s

Backup-
large

20 1, 4, 5, 7, 8, 10, 13, 16, 22 1.6651 1, 4, 5, 7, 8, 10, 13, 16, 22 0.0624 96.25

40 1, 4, 5, 7, 8, 10, 13, 16, 22 1.9911 1, 4, 5, 7, 8, 10, 13, 16, 22 0.0312 98.43
60 1, 4, 5, 7, 8, 10, 13, 16, 22 2.3321 1, 4, 5, 7, 8, 10, 13, 16, 22 0.0468 97.99
80 1, 4, 5, 7, 8, 10, 13, 16, 22 2.6782 1, 4, 5, 7, 8, 10, 13, 16, 22 0.0624 97.67

100 1, 4, 5, 7, 8, 10, 13, 16, 22 2.7682 1, 4, 5, 7, 8, 10, 13, 16, 22 0.0780 97.18

Dermatology 20 1, 2, 3, 4, 5, 14, 16, 18, 19 1.8311 1, 2, 3, 4, 5, 14, 16, 18, 19 0.1212 93.38
40 1, 2, 3, 4, 5, 14, 16, 18, 19 2.2401 1, 2, 3, 4, 5, 14, 16, 18, 19 0.2480 88.93
60 1, 2, 3, 4, 5, 7, 14, 16, 18, 19 2.9262 1, 2, 3, 4, 5, 14, 16, 18, 19 0.2568 91.22
80 1, 2, 3, 4, 14, 16, 18, 19, 31, 32 3.4372 1, 2, 3, 4, 5, 14, 16, 18, 19 0.3980 88.42

100 1, 2, 3, 4, 14, 16, 18, 19, 31, 32 3.5472 1, 2, 3, 4, 5, 14, 16, 18, 19 0.3980 88.78

Splice 20 2, 4, 6, 8, 10, 18, 22, 30, 33, 35 249.96 2, 4, 6, 8, 10, 18, 22, 30, 33, 35 5.1480 97.94
40 2, 9, 10, 12, 19, 22, 25, 30, 39, 43 306.59 2, 4, 6, 8, 10, 18, 22, 30, 33, 35 8.5800 97.20
60 1, 3, 8, 10, 18, 19, 30, 34, 40, 50 363.03 2, 4, 6, 8, 10, 18, 22, 30, 33, 35 13.260 96.35
80 1, 3, 4, 10, 18, 26, 30, 35, 50, 57 420.22 2, 4, 6, 8, 10, 18, 22, 30, 33, 35 19.188 95.43

100 1, 4, 9, 10, 14, 20, 26, 30, 37, 59 435.62 2, 4, 6, 8, 10, 18, 22, 30, 33, 35 20.748 95.24

Kr-vs-kp 20 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22

13.042 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22

5.9280 54.55
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Table 7 (continued)

Data sets SIA
(%)

TA_RED DIA_RED PIT
(%)

Reduct Time/s Reduct Time/s

40 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26

22.963 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26

9.2040 59.92

60 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 30

29.780 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 30

12.324 58.62

80 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

54.460 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

15.912 70.78

100 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36

85.254 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36

17.472 79.51

Mushroom 20 1, 2, 3, 5, 9 14.789 1, 2, 3, 5, 9 2.1840 85.23
40 1, 2, 3, 5, 9 24.383 1, 2, 3, 5, 9 3.2760 86.56
60 3, 5, 20 36.395 3, 5, 20 4.9920 86.28
80 3, 5, 16, 20 91.947 3, 5, 20 8.1120 91.18

100 3, 5, 16, 20 110.30 3, 5, 20 9.8335 91.08

Ticdata2000 20 2, 5, 15, 23, 26, 27, 29, 30, 43, 44, 45, 46, 47, 48, 49, 51 1022.6 2, 5, 15, 23, 26, 27, 29, 30, 43, 44, 45, 46, 47, 48, 49, 51 17.316 98.31
40 2, 3, 5, 15, 31, 37, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,

58, 59
1350.1 2, 5, 15, 23, 26, 27, 29, 30, 43, 44, 45, 47, 48, 49, 54, 55,

57, 58, 59
34.320 97.46

60 2, 5, 14, 15, 18, 19, 23, 31, 43, 44, 45, 47, 48, 49, 54, 55,
57, 58, 59, 61, 62, 63, 64, 68

2297.5 2, 5, 15, 23, 26, 27, 29, 30, 43, 44, 45, 47, 48, 49, 54, 55,
57, 58, 59, 61, 62, 63, 64, 68

98.124 97.58

80 2, 3, 5, 15, 31, 38, 39, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

3233.7 2, 5, 15, 23, 26, 27, 29, 30, 43, 44, 45, 47, 48, 49, 54, 55,
57, 58, 59, 61, 62, 63, 64, 68

112.08 96.97

100 2, 5, 7, 15, 17, 31, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 63, 64, 68, 80, 83

5025.7 2, 5, 15, 23, 26, 27, 29, 30, 43, 44, 45, 47, 48, 49, 54, 55,
57, 58, 59, 61, 63, 64, 68, 80, 83

191.72 96.19

Table 8
Comparison of algorithms for reduct computation based on Shannon’s entropy.

Data sets SIA
(%)

TA_RED DIA_RED PIT
(%)

Reduct Time/s Reduct Time/s

Backup-
large

20 1, 2, 4, 6, 7, 9, 13, 16, 22 1.7092 1, 2, 4, 6, 7, 9, 13, 16, 22 0.0310 98.18

40 1, 2, 4, 6, 7, 9, 13, 16, 22 2.0100 1, 2, 4, 6, 7, 9, 13, 16, 22 0.0380 98.11
60 1, 3, 4, 6, 7, 8, 10, 16, 29 2.3940 1, 3, 4, 6, 7, 8, 10, 16, 29 0.0510 97.87
80 1, 3, 4, 6, 7, 8, 10, 16, 29 2.7556 1, 3, 4, 6, 7, 8, 10, 16, 29 0.0690 97.50

100 1, 3, 4, 6, 7, 8, 10, 16, 29 2.9168 1, 3, 4, 6, 7, 8, 10, 16, 29 0.0730 97.50

Dermatology 20 1, 2, 3, 4, 5, 14, 16, 18, 19 1.8900 1, 2, 3, 4, 5, 14, 16, 18, 19 0.1550 91.80
40 1, 2, 3, 4, 5, 14, 16, 18, 19 2.3100 1, 2, 3, 4, 5, 14, 16, 18, 19 0.2140 90.74
60 3, 4, 5, 7, 9, 13, 15, 21, 26, 27, 28 2.4900 1, 2, 3, 4, 5, 14, 16, 18, 19 0.3590 85.58
80 1, 2, 4, 5, 15, 21, 26, 27, 28, 31, 32 3.3400 1, 2, 3, 4, 5, 14, 16, 18, 19 0.3590 89.25

100 1, 2, 4, 5, 15, 21, 26, 28, 31, 32, 33 3.4400 1, 2, 3, 4, 5, 14, 16, 18, 19 0.4170 87.88

Splice 20 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 282.79 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 8.6325 96.95
40 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 337.59 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 13.358 96.04
60 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 400.81 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 19.408 95.16
80 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 465.94 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 28.512 93.88

100 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 479.89 3, 5, 6, 13, 21, 28, 29, 30, 31, 32, 35 40.313 91.60

Kr-vs-kp 20 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22

13.485 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22

6.4304 52.31

40 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26

23.648 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26

9.6906 59.02

60 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 30

30.904 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28, 30

13.001 57.93

80 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

57.525 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34

17.261 70.00

100 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21,
23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36

90.984 1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 36

18.831 79.30

Mushroom 20 1, 3, 5, 9 13.437 1, 3, 5, 9 2.2301 83.40
40 1, 3, 5, 9 22.256 1, 3, 5, 9 3.6802 83.46
60 3, 5, 20 36.703 3, 5, 20 5.7603 84.31
80 3, 5, 16, 20 97.646 3, 5, 20 9.0605 90.72

100 3, 5, 16, 20 131.53 3, 5, 20 12.324 90.63

Ticdata2000 20 2, 5, 15, 18, 25, 30, 38, 43, 44, 45, 46, 47, 48, 49, 51 868.36 2, 5, 15, 18, 25, 30, 38, 43, 44, 45, 46, 47, 48, 49, 51 20.901 97.59
40 2, 5, 9, 14, 15, 18, 27, 43, 44, 45, 47, 48, 49, 54, 55, 57,

58, 59
1292.5 2, 5, 15, 18, 25, 30, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,

58, 59
37.182 97.12

60 2, 5, 7, 14, 18, 30, 40, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

1982.9 2, 5, 15, 18, 25, 30, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

63.544 96.79

80 2, 5, 7, 14, 15, 18, 39, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

3082.4 2, 5, 15, 18, 25, 30, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 62, 63, 64, 68

110.02 96.43

100 2, 5, 9, 18, 31, 37, 40, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 63, 64, 68, 80, 83

4708.1 2, 5, 15, 18, 25, 30, 38, 43, 44, 45, 47, 48, 49, 54, 55, 57,
58, 59, 61, 63, 64, 68, 80, 83

211.66 95.50
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Table 9
Comparison of evaluation measures based on complementary entropy.

Data sets SIA (%) TA_RED DIA_RED

Entropy AQ AP Entropy AQ AP

Backup-large 20 0.0000 0.9055 0.8274 0.0000 0.9055 0.8274
40 0.0000 0.9055 0.8274 0.0000 0.9055 0.8274
60 0.0000 0.9055 0.8274 0.0000 0.9055 0.8274
80 0.0000 0.9055 0.8274 0.0000 0.9055 0.8274

100 0.0000 0.9055 0.8274 0.0000 0.9055 0.8274

Dermatology 20 0.0000 0.9727 0.9468 0.0000 0.9727 0.9468
40 0.0000 0.9727 0.9468 0.0000 0.9727 0.9468
60 0.0000 0.9645 0.9314 0.0000 0.9727 0.9468
80 0.0000 0.9863 0.9730 0.0000 0.9727 0.9468

100 0.0000 0.9863 0.9730 0.0000 0.9727 0.9468

Splice 20 1.3082E	07 0.9912 0.9826 1.3082E	07 0.9912 0.9826
40 1.3082E	07 0.9912 0.9826 1.3082E	07 0.9912 0.9826
60 1.3082E	07 0.9940 0.9882 1.3082E	07 0.9912 0.9826
80 1.3082E	07 0.9940 0.9882 1.3082E	07 0.9912 0.9826

100 1.3082E	07 0.9940 0.9882 1.3082E	07 0.9912 0.9826

Kr-vs-kp 20 0.0006 0.6439 0.4749 0.0006 0.6439 0.4749
40 0.0002 0.7003 0.5388 0.0002 0.7003 0.5388
60 0.0001 0.7412 0.5889 0.0001 0.7412 0.5889
80 7.8321E	06 0.9712 0.9440 7.8321E	06 0.9712 0.9440

100 0.0000 0.9994 0.9987 0.0000 0.9994 0.9987

Mushroom 20 5.0228E	07 0.9848 0.9700 5.0228E	07 0.9848 0.9700
40 5.0228E	07 0.9848 0.9700 5.0228E	07 0.9848 0.9700
60 0.0000 0.9433 0.8927 0.0000 0.9433 0.8927
80 0.0000 0.9433 0.8927 0.0000 0.9433 0.8927

100 0.0000 0.9433 0.8927 0.0000 0.9433 0.8927

Ticdata2000 20 1.6226E	05 0.9304 0.8699 1.6226E	05 0.9304 0.8699
40 6.4315E	06 0.9425 0.8912 6.4315E	06 0.9425 0.8912
60 4.3663E	06 0.9753 0.9517 4.3663E	06 0.9756 0.9524
80 4.3663E	06 0.9756 0.9524 4.3663E	06 0.9756 0.9524

100 4.1893E	06 0.9766 0.9543 4.1893E	06 0.9766 0.9543

Table 10
Comparison of evaluation measures based on combination entropy.

Data sets SIA (%) TA_RED DIA_RED

Entropy AQ AP Entropy AQ AP

Backup-large 20 0.0000 0.9023 0.8174 0.0000 0.9023 0.8174
40 0.0000 0.9023 0.8174 0.0000 0.9023 0.8174
60 0.0000 0.9023 0.8174 0.0000 0.9023 0.8174
80 0.0000 0.9023 0.8174 0.0000 0.9023 0.8174

100 0.0000 0.9023 0.8174 0.0000 0.9023 0.8174

Dermatology 20 0.0000 0.9727 0.9468 0.0000 0.9727 0.9468
40 0.0000 0.9727 0.9468 0.0000 0.9727 0.9468
60 0.0000 0.9781 0.9572 0.0000 0.9727 0.9468
80 0.0000 0.9945 0.9891 0.0000 0.9727 0.9468

100 0.0000 0.9945 0.9891 0.0000 0.9727 0.9468

Splice 20 6.6933E	11 0.9940 0.9882 6.6933E	11 0.9940 0.9882
40 6.6933E	11 0.9950 0.9900 6.6933E	11 0.9940 0.9882
60 6.6933E	11 0.9937 0.9875 6.6933E	11 0.9940 0.9882
80 6.6933E	11 0.9909 0.9820 6.6933E	11 0.9940 0.9882

100 6.6933E	11 0.9900 0.9801 6.6933E	11 0.9940 0.9882

Kr-vs-kp 20 5.3831E	06 0.6439 0.4749 5.3831E	06 0.6439 0.4749
40 3.5955E	07 0.7003 0.5388 3.5955E	07 0.7003 0.5388
60 1.9341E	07 0.7412 0.5889 1.9341E	07 0.7412 0.5889
80 4.9027E	09 0.9712 0.9440 4.9027E	09 0.9712 0.9440

100 0.0000 0.9994 0.9987 0.0000 0.9994 0.9987

Mushroom 20 4.4505E	10 0.9848 0.9700 4.4505E	10 0.9848 0.9700
40 4.4505E	10 0.9848 0.9700 4.4505E	10 0.9848 0.9700
60 0.0000 0.9433 0.8927 0.0000 0.9433 0.8927
80 0.0000 0.9433 0.8927 0.0000 0.9433 0.8927

100 0.0000 0.9433 0.8927 0.0000 0.9433 0.8927

Ticdata2000 20 1.3573E	08 0.9304 0.8699 1.3573E	08 0.9304 0.8699
40 3.4870E	09 0.9425 0.8912 3.4870E	09 0.9425 0.8912
60 2.2300E	09 0.9756 0.9524 2.2300E	09 0.9756 0.9524
80 2.2300E	09 0.9756 0.9524 2.2300E	09 0.9756 0.9524

100 2.1692E	09 0.9766 0.9543 2.1692E	09 0.9766 0.9543
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As mentioned in Section 1 (Introduction), existing research on
knowledge updating caused by the variation of attributes mainly
focuses on updating approximation operators. However, dimen-
sion incremental algorithms for reduct (or core) computation have
not yet been discussed so far. Hence, to illustrate effectiveness and
efficiency of the proposed algorithms, we compare them with the
traditional algorithms based on information entropy for core and
reduct. Section 6.1 introduces the comparison of algorithms for
core computation, and the comparison of algorithms for reduct
computation is shown in Section 6.2.
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6.1. Effectiveness and efficiency for core computation

This subsection is to illustrate effectiveness and efficiency of the
incremental algorithm DIA_CORE by comparing it with the tradi-
tional algorithm for core computation (TA_CORE). For each data
set in Table 2, 50% conditional attributes and the decision attribute
are selected as the basic table. Then, from the remaining 50% con-
ditional attributes, 20%, 40%, . . . , 100% are selected, in order, as
incremental attribute sets. When each incremental attribute set
is added to the basic table, algorithms TA_CORE and DIA_CORE
are used to update the core respectively. The effectiveness and effi-
ciency of TA_CORE and DIA_CORE are demonstrated by comparing
their computational time and found core. Experimental results
are shown in Tables 3–5. For simplicity, Size of Incremental Attribute
Set is written as SIA, and Percentage Improvement of Computational
Time is written as PIT in these tables.

Based on the three entropies, experimental results in Tables 3–5
show that core attributes of each data set found by the two algo-
rithms (DIA_CORE and TA_CORE) are identical to each other. How-
ever, the computational time of DIA_CORE is much smaller than
that of TA_CORE. In other words, comparing with TA_CORE, the
Table 11
Comparison of evaluation measures based on Shannon’s entropy.

Data sets SIA (%) TA_RED

Entropy AQ

Backup-large 20 0.0000 0.9088
40 0.0000 0.9088
60 0.0000 0.9511
80 0.0000 0.9511

100 0.0000 0.9511

Dermatology 20 0.0000 0.9727
40 0.0000 0.9727
60 0.0000 0.9727
80 0.0000 0.9918

100 0.0000 0.9672

Splice 20 0.0002 0.9878
40 0.0002 0.9878
60 0.0002 0.9878
80 0.0002 0.9878

Kr-vs-kp 100 0.0002 0.9878
20 0.0917 0.6439
40 0.0816 0.7003
60 0.0701 0.7412
80 0.0075 0.9712

100 0.0000 0.9994

Mushroom 20 0.0004 0.9720
40 0.0004 0.9720
60 0.0000 0.9433
80 0.0000 0.9433

100 0.0000 0.9433

Ticdata2000 20 0.0183 0.9304
40 0.0090 0.9421
60 0.0063 0.9756
80 0.0063 0.9756

100 0.0060 0.9763

Please cite this article in press as: F. Wang et al., Attribute reduction: A dim
10.1016/j.knosys.2012.10.010
incremental algorithm DIA_CORE can find the correct core of a gi-
ven data set in a much shorter time. Hence, experimental results
show that the proposed incremental algorithm for core computa-
tion is effective and efficient.
6.2. Effectiveness and efficiency for reduct computation

In this subsection, to illustrate effectiveness and efficiency of
the incremental algorithm DIA_RED, we compare it with the tradi-
tional reduction algorithms (TA_RED) based on the three entropies.
For each employed data set, 50% conditional attributes and the
decision attribute are selected as the basic table. Then, from the
remaining 50% conditional attributes, 20%, 40%, . . . , 100% are se-
lected as incremental attribute sets. When each incremental attri-
bute set is added to the basic table, algorithms TA_RED and
DIA_RED are used to update the reduct respectively. The effective-
ness and efficiency of the incremental algorithm are demonstrated
by comparing the their computational time and found reduct.
Experimental results are shown in Tables 6–8. Similarly, Size of
Incremental Attribute Set is written as SIA, and Percentage Improve-
ment of Computational Time is written as PIT in these tables.

Experimental results in Tables 6–8 show that, compared with
TA_RED, algorithm DIA_RED is much more efficiency. Especially,
the percentage improvement of computational time better illus-
trates this conclusion. In view of that there are some difference be-
tween the reducts found by the two algorithms, two common
evaluation measures in rough set are employed to evaluate the
decision performance of reducts. The two measures are approxi-
mate classified precision and approximate classified quality, which
are defined by Pawlak to describe the precision of approximate
classification [23,24]. Evaluated results and entropies induced by
the reducts are given in Tables 9–11.
DIA_RED

AP Entropy AQ AP

0.8328 0.0000 0.9088 0.8328
0.8328 0.0000 0.9088 0.8328
0.9068 0.0000 0.9511 0.9068
0.9068 0.0000 0.9511 0.9068
0.9068 0.0000 0.9511 0.9068

0.9468 0.0000 0.9727 0.9468
0.9468 0.0000 0.9727 0.9468
0.9468 0.0000 0.9727 0.9468
0.9837 0.0000 0.9727 0.9468
0.9365 0.0000 0.9727 0.9468

0.9758 0.0002 0.9878 0.9758
0.9758 0.0002 0.9878 0.9758
0.9758 0.0002 0.9878 0.9758
0.9758 0.0002 0.9878 0.9758

0.9758 0.0002 0.9878 0.9758
0.4749 0.0917 0.6439 0.4749
0.5388 0.0816 0.7003 0.5388
0.5889 0.0701 0.7412 0.5889
0.9440 0.0075 0.9712 0.9440
0.9987 0.0000 0.9994 0.9987

0.9455 0.0004 0.9720 0.9455
0.9455 0.0004 0.9720 0.9455
0.8927 0.0000 0.9433 0.8927
0.8927 0.0000 0.9433 0.8927
0.8927 0.0000 0.9433 0.8927

0.8699 0.0183 0.9304 0.8699
0.8906 0.0090 0.9425 0.8912
0.9524 0.0063 0.9756 0.9524
0.9524 0.0063 0.9756 0.9524
0.9537 0.0060 0.9766 0.9543
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Definition 8. Let S = (U,C [ D) be a decision table and U/D = {X1, -
X2, . . . , Xr}. The approximate classified precision of C with respect
to D is defined as

APCðDÞ ¼
jPOSCðDÞjPr

i¼1jCXij
: ð7Þ
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Definition 9. Let S = (U,C [ D) be a decision table. The approximate
classified quality of C with respect to D is defined as

AQ CðDÞ ¼
jPOSCðDÞj
jUj : ð8Þ

In Tables 9–11, for each employed data set, entropies induced
by the reducts found by the two algorithms are identical to each
other. This indicates that DIA_RED can also find a reduct in the con-
text of entropies. In these tables, evaluated results of the reducts
found by the two algorithms are very close to each other, even
identical on some data sets. For data sets Dermatology and Splice
in Table 10, the evaluated results of DIA_RED are smaller than that
of TA_RED. And for data sets Ticdata2000 in Table 9, Splice in Table
10 and Dermatology in Table 11, the evaluated results of DIA_RED
are bigger than that of TA_RED. Hence, experimental results show
that, more commonly, algorithm DIA_RED can find a same reduct
with TA_RED, and saves lots of computational time. In some cases,
DIA_RED can efficiently find another reduct in the context of entro-
py, and the decision performance of this reduct is very close that of
the one found by TA_RED without obvious superiority and
inferiority.
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
7. Conclusions

In practices, many real data sets in databases may increase
quickly not only in rows but also in columns. This paper developed
a dimension incremental reduction algorithm based on informa-
tion entropy for data sets with dynamically increasing attributes.
Theoretical analysis and experimental results have shown that,
compared with the traditional non-incremental reduction algo-
rithm based on entropy, the proposed algorithm is effective and
efficient. It is our wish that this study provides new views and
thoughts on dealing with dynamic data sets in applications.
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