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This paper presents a granular support vector machine learning model based on mixed measure,
namely M_GSVM, to solve the model error problem produced by mapping, simplifying, granulating or
substituting of data for traditional granular support vector machines (GSVM). For M_GSVM, the original
data will be mapped into the high-dimensional space by mercer kernel. Then, the data are divided into
some granules, and those mixed granules including more information are extracted and trained by
support vector machine (SVM). Finally, the decision hyperplane will be corrected through geometric
analyzing to reduced model error effectively. The experiment results on UCI benchmark datasets and
Interacting Proteins database demonstrate that the proposed M_GSVM model can improve the
generalization performance greatly with high learning efficiency synchronously.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machine introduced by Vapnik [1] is an effective
method to solve pattern recognition and regression problems such as
handwritten recognition, face image recognition, time series predic-
tion, et al. At present, SVM has become a research hotspot of machine
learning. In the applications of SVM, researchers pay much attention
on its learning efficiency and generalization performance, and some
scholars have already proposed novel approaches to improve the
learning efficiency of SVM [2-8]. Although some achievements have
been made, the data size in real world applications is often large and
the generalization performance is largely depended on kernel func-
tion. Therefore, the researches on how to improve learning efficiency
and generalization performance of SVM combining with other
artificial intelligence methods still have important theoretical and
practical value.

Granular computing is a new concept and computing paradigm in
the domain of information processing [9]. It covers all the research
about theories, methods, techniques and tools of granulation, and it
can be used to process large scale information. The essence of
granular computing is to find an approximate solution, which is
simple and low-cost, to replace the exact solution through using
inaccurate and large scale information to achieve the tractability,
robustness, low cost and better describing the real world of intelligent
systems or intelligent control. In a word, the combination of granular
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computing with intelligence computing approaches is becoming a
hotspot to constitute efficient algorithms for complex problems.

To improve the performance of traditional SVM, granular
support vector machine, which combines statistical learning
theory and granular computing theory [10]. In general, a GSVM
first creates a sequence of information granules in the original
data space, and then learns on some of these granules when
necessary. Finally, it aggregates information in these granules at
suitable abstract level. This method cannot only obtain a better
generalization for a linear separable classification problem, but
also increase “linear separability” for a linear non-separable
problem (or even transfer a linear non-separable problem to a
totally linear separable one). Comparing with traditional SVM, the
training speed of GSVM can be greatly improved and a satisfac-
tory generalization performance can be obtained as well.

In fact, long before Tang, some other scholars have already
proposed a few effective SVM models, which can be regarded as the
prototype of GSVM, such as the classical “Chunking Algorithm” [1],
“Decomposed Algorithm” [11], “SMO Algorithm” [12], and “LIBSVM
Algorithm Library” [13].

Additionally, some scholars have already designed a number of
specific GSVM algorithms, such as GSVM models based on cluster-
ing. A clustering based GSVM approach was proposed by Zhang
[14]. It divides original data into a number of granules by combin-
ing commonly used clustering methods with certain evaluation
rules, and it takes into classification or regression after choosing
granules with more information (such as granules including more
support vectors). Yu et al. [15] proposed a GSVM learning model
based on hierarchical tree structure. According to the granulation
results on positive and negative data, two “support vector sub
trees” are constructed, respectively and those granules closing to
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the edge are continue to extend until the desired accuracy is
reached. In this way, higher learning efficiency can be obtained
for large scale datasets and experiment results are witnessed in
some practical applications, but the generalization performance of
these models is largely determined by clustering methods.

Some GSVM models based on geometric technique are
designed, such as a method based on the distance between
samples and the approximate best hyperplane is proposed by
Cheng et al. [16]. It has considered two geometric aspects
simultaneously, the first is the distance between samples and
the best approximate hyperplane and the second is the distance
between the best approximate hyperplane and the obtained
hyperplane. Considering the difference of granulation on kernel
space and original space, an GSVM model based on kernel space is
proposed by Guo et al. [17], and the rules of granulation on kernel
space was given through geometric analysis. However, these
approaches may be not effective for some datasets, where the
distance between data cannot be measured by European distance.

Besides, Tang et al. [18] presented a GSVM model based on
particle swarm optimization and it is an intuitive and easy-to-
implement algorithm from the swarm intelligence community.
This approach is applicable to fault classification and outperforms
some previous methods. Pai et al. [19] presented a GSVM model
based on fraud warning, which integrates sequential forward
selection, SVM and a classification and regression tree, and it
can be used to overcome information overload problems. Deb
et al. [20] combine artificial neural networks with SVM. By
changing the parameters of neural networks, the model can
effectively reduce the dataset size and keep compressed data
agree to the original data in distribution, but the interpretability
of this model is absented. Tang et al. [21] presented a GSVM
model based on association rules. Besides, other models such as
granular support vector machine based on Rough Sets and
Decision Trees are also discussed by many scholars.

All these GSVM models are granulated on the original space and
trained on the kernel space (Here, these models are regarded as
traditional GSVM). Although they can improve the learning effi-
ciency, they have some losses of generalization performance. Speci-
fically, there are mainly two reasons: first, after granulation, the data
distribution may be different between those in original space and
those in kernel space. Second, traditional GSVM often take granula-
tion before training and take some informational samples (such as
center of granules) to replace the whole granule when training.
Therefore, data distribution errors are inevitable. These two aspects
may reduce the generalization ability of GSVM [17].

This paper presents a granular support vector machine model
based on mixed measure, which firstly maps the original data into
a high-dimensional space to reveal the features implicit in
original sample space. Then M_GSVM divides granules by some
strategies like clustering, neural network, decision tree or rough
set, et al, and extracts more informational mixed granules
(including samples belonging to two classes) to training. Finally,
the hyperplane is further corrected by geometric analyzing.
Compared with traditional GSVM models, the proposed M_GSVM
can largely improve the generalization performance with the high
learning efficiency simultaneously.

2. Generalization performance analysis of GSVM

To better explain the M_GSVM model, we give the general-
ization performance analysis of traditional GSVM model firstly.
Suppose the given samples set is X = {(xi,yi)}ﬁzl with the inde-
pendent and identically distribution P(x,y), and x;eR", y;{0,1}. k
granules is produced after granulation, and new training set X’ = X
by some samples belonging to k granules is constructed (Suppose

there are I' samples in X',I'«1). The empirical risk of produced
learning machine f is

q_1¢ :
Remp[f] = 172 C(Xi-.Vivf (%) (1
i=1

here, c(-) is loss function. Similar with the traditional SVM model
[1,22,23] and to facilitate analysis, the concept of model error is
introduced firstly.

Definition 1. (Model error) In machine learning procedure, the
new training set X’ was produced after mapping, reconstruction,
division, replacement of training set X. The optimal learning
machine produced by X and X’ are denoted as fand f, respectively.
Model error is defined as follows.

Eu = lim [Rl1-RY] @

here, R[-] is expected risk of a learning machine.

Clearly, the model error can measure the classification perfor-
mance difference between f and f. For the original dataset X, after
granulation, replacement and other operations, the actual training
set X’ may no longer follow the distribution P(x,y) but a new
distribution P'(x,y). (In X', some data belong to X, and other data
may be virtual or artificial ones. Generally, P'(x,y) is different from
P(x,y)). The actual training dataset X' and original dataset X may
not meet the conditions of independent and identically distrib-
uted, and thus some training and testing data would not be
classified correctly (See Fig. 1).

Then, the principle of consistency for GSVM model is introduced.

Theorem 1. (Principle of consistency for GSVM) For an GSVM
model, new training dataset X' is obtained after mapping, recon-
struction, granulation, replacement and other operations on
training dataset X, and the corresponding optimal classifier is
f.1If |X'| - <o, the sum minimization rule of empirical risk Remp[f ]
and model errors Ey, is consistent to the instruction functions set
F and probability distribution P(x,y). That is to say,

Jim P{[RIf 1~ (Remplf 1+ En)| > £} =0 3)

Proof. For an GSVM model, the distribution of X’ is different with
that of X, the classifier can classified almost all the actual training
data correctly except. So llimRemp[f]—llim Remplf'1=0.
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Fig. 1. Misclassified data in some regions.
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Fig. 2. Consistency principle of GSVM.

Because the distribution of the test samples of GSVM model is
submitted to that of X, but not X', then,

Jim (R 1—Remplf']| = 1im [RU71—RUf1+ R 1—Rempl ]
= lim [R(F1=RIf1+Remplf1—Remplf 1| = 1im [RIf1=RF1| = Ew

therefore, we can obtain the Principle of Consistency 11m P{|R[f -
(Remplf'1+Em)| > &} = 0 for the GSVM model.
End of proof

The presented M_GSVM is a specific GSVM model, and it is
according with the principle of consistency.

Therefore, for an GSVM model, the optimal classification hyper-
plane f is only suitable for X' but not X. Therefore, the general-
ization performance of GSVM may be greatly reduced (See Fig. 2).

To reduce the model error of traditional GSVM model, this paper
will focus on improving the generalization performance of GSVM
from three aspects. (1) Make the granulation and SVM training in
same space to eliminate inconsistence. (2) Extract mixed granules
to keep selected training samples containing support vectors as
more as possible. So doing, the distribution of support vectors,
deciding the new classifier f, may be close to that obtained from X
after training. (3) Correct obtained hyperplane and make the final
classifier as much as possible to consistent with the original dataset
distribution. In this way, the model error by data operations may be
reduced and the generalization performance will be improved
greatly while keeping a high learning efficiency.

3. M_GSVM model
3.1. Granulation based on kernel

For a given original training set X={(xi,y,-)}§:1, x;eR", and
yie{—1,1} are classification labels. After nonlinear mapping ®, the
samples in high dimensional space R" are denoted as
X:{d)(x,»),y,-}f»zl. Samples are divided into k granules, that is
and X; = {(I)(xj)}]’.':] (I; is the number of data in the ith granule).
Each granule can be regarded as a super ball, and the center and
radius are defined as follow.

Definition 2. (Center and radius of a granule super ball) Each N
dimensional granule is called a granule super ball after granula-
tion (For simplicity, the ith granule super ball corresponding to
the ith granular is still denoted as X;). The center y; and radius r; of

the ith granule super ball are defined as following, respectively.

[,
> K(xpXq) @)

:lq:‘l

1 U 1
=7 D D(xp) x Dlxg) = I
P \p=1gq p

ri = max( [ @) —p; ) = gna;;(\/ (D(x5))2—2D(Xs) - 4 +u,—2)

2 i I i
= max ( $ K(xs,xs)— 1 > K(xs,%p)+ p Z Z <(x,,,xq)> (5)
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According to Definition 2, the distance from any ®(x;) to the ith
granule super ball X; in N dimensional space is

i li

1
> K(xp,xq) (6)

2 &
d(D(x;),X;) = $ Ke.x)— > K@ xp)+ 2
ip=1
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Because this paper focuses on designing the GSVM model with
high efficient and good generalization performance in the given
kernel space, how to select suitable kernel function and para-
meters will be not discussed, and they are described in Refs.
[24-29]. In fact, the proposed M_GSVM can be combined with the
existed kernel selection approaches.

Here, the granulation is accomplished iteratively by granule
super balls and related measurements. The main steps of granule
dividing algorithm are summarized as Algorithm 1.

3.2. Extracting mixed granules

For granulesX;,X5,...,.Xk, we need to find mixed granules and
count positive samples and negative samples in each granule. Let
positive; = I /I;, negative; =1 /l;, I; is the number of negative
samples of a granule and ;" is that of positive ones. We define
two parameters, support and purity, to measure the performance
of granules. Let

support; =1;/1 7

purity; = 1—max(positive;,negative;) ®)

when support; is greater than a given threshold (such as 0.01),
granule X; is regarded as a valid granule, otherwise, X; is an invalid
granule. if purity; is greater than a given value (such as 0.05) for a
valid granule X;, X; is a mixed granule, otherwise, X; is a purity
granule. Then, X;,Xs,...,.X; will be divided into three sets, i.e.,
Set(invalid), Set(purity) and Set(mixed) (See Fig. 3). In Fig. 3, Al
and A2 are purity granules, B1 and B2 are mixed granules, and C1 is
an invalid granule. If only a sample is divided into a single granule,
it will be deleted due to its support is too low. Obviously, if a single
noise datum belonging to one class is divided into a granule, where
all the rest data in this granule belong to another category, it will be
judged as a purity granule and deleted due to its high purity.
Therefore, introduction of support and purity can effectively avoid
the impact of noise data.

As support vector information is often implicit in the Set(mixed), it
can help to reduce the model error by taking all samples in the
Set(mixed) and representative samples of other granules when
training so as to obtain an appropriate hyperplane. If the data
distribution near the hyperplane is very dense, the size of Set(mixed)
will be large. We will filter mixed granules and select some large size
granules to granulation repeatedly. If [; > 2I/k, then a mixed granule
X; is divided into [(kl;)/(2))] sub granules X;;,Xi,...X; [kl /2b]
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Fig. 4. Some pure granules contain support vectors.

according to the algorithm in Section 3.1 and these mixed sub
granules will be added to the Set(mixed). The iteration is executed till
the sizes of all mixed granules are small enough to compressing the
training set effectively.

3.3. Hyperplane correction

When we obtain purity granules by using above approach, it is not
equivalent to that they did not contain the original support vectors.
Especially, when the distance between positive and negative samples
is large, most of the positive and negative data may be divide into
different granules, respectively, and this will lead to more original
support vectors in purity granules (See Fig. 4). It can be seen that
purity granules A1 and A2 include some support vectors, but mixed
granule B1 only includes a little original support vectors. Generally,
the purity granules containing classification information may be near
to the obtained approximate hyperplane. To solve this problem, the
obtained hyperplane will be corrected by applying purity granules
near to obtained hyperplane with important information.

Definition 3. (Distance from a granule super ball to the hyper-
plane) In N dimensional space, the distance from a granule super
ball X; to the hyperplane fiy=w-®(x)+b is defined as

(W,—l) X ﬂiT_'_b_r
w241
%Zk:] ZjeSVsajyjI<(xj'xk)+b
= L —T; ()]
D jesvs 0 X 0 X Yi X Vi < K(X;,x;)
keSVs

dXif)=

i

here, SVs is the set of support vectors.

Suppose k' mixed granules in k valid granules are obtained and
the number of purity granules is (k—k’) (The number of invalid
granules is generally very small and we will ignore them here).

Let d= rr11<in } {d(X;,f(x))}, which is the distance from the
ie{{l,.., V1, 1}

nearest pure granule super ball to the hyperplane f. Those
samples falling on both sides of the hyperplane within d’
(d’ > d) margin will be taken into the training dataset (To simplify,
d’ takes same value in experiments, that d’=1.25d).

The proposed M_GSVM algorithm is summarized as Algorithm 2.

4. Model complexity analysis
4.1. Space complexity

For traditional SVM, all training data need to be put into the
memory because of kernel metric computing. So space complexity
of traditional SVM is Space(SVM)=0(I?). I is the number of data.
Suppose the granule number of traditional GSVM is k. If granule
center is used as original training data in each granule, the size of
training set will be k and space complexity of it is Space
(GSVM)=0(k?). Suppose the granule number of M_GSVM is also k,
m is the total samples number of all mixed granules in the first
training of M_GSVM, and p is number of new adding data in the
retraining SVM, the samples number in final retaining SVM step is
not more than m+p. Then, the space complexity of retraining SVM
step is O((m+p)?). Because the last two processes can be imple-
mented in sequence, the total space complexity becomes

Space_complexity(M_GSVM) ~ O((m+p)?)+ 0(m?) = O((m+p)?)
(10)

Known that k<m+p < <I, comparing with the traditional
SVM model, the space complexity of M_GSVM is acceptable and
closes to that of GSVM models.

4.2. Time complexity

As we know, the time complexity of SVM is Time(SVM)=0(P), |
is the number of training data. For traditional GSVM, the time
complexity is Time(GSVM)=0(k?). For M_GSVM model, the time
complexity of granulation step is O(kl), and the time complexities
of first SVM training and final retraining SVM are O(m?) and
O((m+p)?), respectively. Known that usually kIl < (m+p)>. There-
fore, the time complexity of M_GSVM model is

Time(M_GSVM) ~ O(kl)+0(m?)+0((m+p)>) = 0((m+p)*) (1)

The time consumption of M_GSVM is close to traditional GSVM
algorithms, and both of them are better than SVM obviously.

5. Simulation experiments and discussions

The comparisons of M_GSVM model with the traditional GSVM
model on generalization performance and learning efficiency are
accomplished by simulation experiments, and the influence of
model parameters on generalization performance is also studied.

5.1. Benchmark datasets

Ten standard datasets from UCI database (See Table 1) are used
in the experiments [30]. Each dataset is averagely divided into five
parts, and one of them is training set and the rests are testing sets.
Cross validation is used to reduce error of experiments.
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Table 1
Datasets used in experiments.

Datasets Size Features Classes
Banana 8800 2 2
Titanic 13255 3 2
Thyroid 5000 5 2
Diabetic 7680 8 2
Breast_cancer 2000 9 2
Flare_solar 53300 9 2
Heart 6750 13 2
Image 11550 18 2
German 5000 20 2
Splice 15875 60 2
Table 2

Granular parameters.

Granular parameters ART_GSVM(P) C_GSVM, SOM_GSVM,
M_GSVM(k)

Number of samples [ <1000  [0.3/0.4/0.5/0.6/0.7]  [10/20/30/40/50]

Number of samples [ >1000 [0.5/0.6/0.7/0.8/0.9] [20/40/60/80/100]

5.1.1. Comparisons of generalization performance

We compared M_GSVM model with traditional GSVM model
based on clustering granulation (denoted as C_GSVM) and other
GSVM models based on neural networks granulation (include
ART_GSVM and SOM_GSVM methods). Granulation parameters of
various models are shown in Table 2. Note, the parameter P of ART
neural network is generally used to determine whether the nodes
of ART neural network need to update, and it is an important
factor for the performance of ART network. Because the
ART_GSVM cannot set the granule number parameter directly,
the parameter P of ART network will be used as the granular
parameter and its value is different with other models.

Two commonly used kernel functions, Gaussian and polynomial,
are used with kernel parameters 1.0 and 3, respectively, and the
penalty factor C takes 1000. The testing results are shown in
Tables 3 and 4. The underlined values denote the relative optimal
results within the effective training time, and they can be regarded
as the relative optimal results under high efficiency compared with
traditional SVM model. Because the running time of traditional
GSVM are not long for all granulation parameters, all maximum
precision values can be regarded as relative optimal results. The
running time of M_GSVM may be long in some individual cases,
and they are invalid due to they cannot improve the learning
efficiency. So the maximum values of M_GSVM may not be the
relative optimal results, but the greater precision with high learning
efficiency will take as the relative optimal results. For SVM model,
only the results on Thyroid and Breast_cancer datasets are consid-
ered, and results on rest datasets are invalid because the training
time is too long comparing with the mentioned four models.

It can be seen from Table 3 that when the Gaussian kernel
function was used in experiments, for ART_GSVM model, three
datasets, Thyroid, Graman and Splice, can obtain good results. For
SOM_GSVM, five datasets, Banana, Thyroid, Diabetic, Flare_solar
and German have the relative optimal results. For C_GSVM, also
three datasets, Thyroid, Diabetic and Image, can reach the optimal
results. However, except for Image and Splice, other eight datasets
are still suitable for M_GSVM model.

It also can be observed from Table 4 that when the polynomial
kernel function was used in experiments, for ART_GSVM model, four
datasets, Thyroid, Diabetic, German and splice, can obtain good results.
For SOM_GSVM, four datasets, Diabetic, Thyroid, Titanic and German
have the relative optimal results. For C_GSVM, five datasets, Banana,
Diabetic, Image, Flare_solar and Thyroid, can reach the optimal results.

Similar to the experiments by Gaussian kernel, except for Image and
Splice, other eight datasets are still suitable for M_GSVM model.

Comparisons of training time for four models are shown in
Fig. 5 by Gaussian kernel. In Fig. 5, vertical dot lines correspond to
the running time when M_GSVM obtains relative optimal results
on 8 datasets. As M_GSVM cannot get relative optimal results on
Image and Splice, there are not vertical dot line in (h) and (j). The
traditional SVM model is not compared because it cannot obtain
training results during limit time.

Also, it can be seen from Fig. 5 that on dataset Diabetic, the training
time of M_GSVM is the shortest of all GSVM models. The efficiency of
M_GSVM is similar to other models on datasets of Banana and
Thyroid. The efficiency of M_GSVM is little lower than other models
on datasets Titanic, Breast_cancer, Flare_solar, Heart and German.
Overall considering learning efficiency and generalization perfor-
mance (from Tables 3 and 4 and Fig. 5), the proposed M_GSVM can
obtain good classification performance on majority datasets and has
similar learning efficiency to the mentioned GSVM models. Similar
results can also be obtained when polynomial kernel is applied.

For further analysis of the proposed M_GSVM, the prediction
accuracy loss is discussed. Let the traditional SVM testing accuracy be
p(SVM), and the optimal accuracy of any GSVM model A in acceptable
running time is denoted as optimal(A). The testing accuracy loss p(Eys)
caused by model error Ey; can be computed approximately by

p(Em) ~ p(SVM)—optimal(A) (12)

The comparison of testing accuracy losses for four GSVM
models by Gaussian kernel is shown in Fig. 6. Comparing with
ART_GSVM, SOM_GSVM and C_GSVM models, the prediction
accuracy loss of M_GSVM is the smallest on six datasets, and it
is the second small on two datasets. On Diabetic data, the
prediction accuracy losses of SOM_GSVM, C_GSVM and M_GSVM
are little differences. Only on Splice dataset, the prediction
accuracy loss of M_GSVM model is large, and that of ART_GSVM
is negative, that is to say, the generalization performance of
ART_GSVM is better than original SVM model without granula-
tion. One of the reasons may be the parameters setting. GSVM
models are not always stable. If given parameters like kernel or
parameter, penalization factor C, and others, can be adjusted, it
will obtain satisfactory generalization performance.

The comparison about prediction accuracy losses of four GSVM
models by polynomial kernel is shown in Fig. 7. Similar to
Gaussian kernel, the testing accuracy loss of M_GSVM is small
on most datasets. The p(Ey) is little large only on Splice dataset.

5.1.2. Parameters tuning for M_GSVM model

Besides the granulation parameter k, there are two parameters:
penalty parameter C and kernel parameter which will affect the
generalization performance of M_GSVM model. To simplify the
problem, only the optimization of Gaussian kernel parameter is
taken into account in this experiment, while the granulation
parameters are selected based on the best results (underlined
values) in Table 3. Specifically, the parameters setting on different
experiment datasets are shown in Table 5. The penalty parameter C
is set 10, 100, 1000 and 10000, respectively, and the Gaussian
kernel parameter r is set 0.1, 1.0, 1.5 and 10, respectively.

The mean testing results are shown in Table 6. The bold values are
the maximal testing accuracy on different penalty and kernel para-
meters. 4, is the difference between the maximal and the minimal
testing results for different kernel parameters, and 4, is the difference
between the maximal and the minimal testing results for different
penalty parameters C. It can be found that for different penalty
parameter settings, the value of A4, is always small (4, < 3.54%).
Therefore, the parameter C will hardly affect the performance for the
proposed M_GSVM model. However, for different kernel parameters,
the 4, is relative large except dataset Titanic. Specially, the A4, is
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Table 3
Comparisons of testing results among different models by Gaussian kernel (%).

Datasets Granulation parameter ART_GSVM SOM_GSVM C_GSVM M_GSVM SVM

Banana P=0.5||k=20 68.40 + 5.99 80.03 +4.16 84.02 +£2.51 83.01 +3.99
P=0.6||k=40 73.23 +5.61 77.05 +4.92 83.13+5.10 85.92 + 3.09
P=0.7||k=60 70.06 + 6.63 82.66 +3.15 82.99 +3.09 83.05+ 1.55 -
P=0.8]|k=80 71.26 +4.99 81.73 £1.62 81.73 £1.99 76.10 + 1.64
P=0.9]|k=100 77.31 + 6.09 85.81 +0.98 84.26 +2.38 71.73 £ 2.09

Titanic P=0.5||k=10 73.29 +5.95 71.90 +9.08 73.02+12.1 71.99 +7.31
P=0.6]|k=20 73.63 £ 6.50 7049 +11.4 70.62 +10.8 71.42 +1.96
P=0.7||k=30 73.63 £ 6.50 7058 +11.4 71.00 + 10.9 74.88 +3.35 -
P=0.8]|k=40 73.63 +6.50 70.92 +10.0 71.00 +10.8 73.90 +3.34
P=0.9]||k=50 73.63 + 6.50 7130+ 114 71.00 + 10.8 73.61 +1.99

Thyroid P=0.5||k=20 93.03 +3.53 88.89+3.18 88.96 + 5.37 90.99 +3.34
P=0.6||k=40 92.08 +5.71 91.11 £ 3.42 91.57 +4.63 93.00 + 2.70
P=0.7||k=60 9242 +534 91.35+6.48 91.75 + 4.62 86.30 +1.98 97.30 +0.81
P=0.8]|k=80 92.32+5.53 91.97 £5.37 92.28 +4.75 87.19 + 2.06
P=0.9]|k=100 92.24 + 5.69 92.29 +349 92.30 +5.94 80.01 + 1.00

Diabetic P=0.5||k=20 65.49+7.76 64.20 + 1.80 66.74 + 2.01 70.01 + 6.54
P=0.6||k=40 67.62 + 8.81 67.03 +1.21 70.31 +1.70 7129+ 113
P=0.7||k=60 67.82 + 8.89 71.10+£2.34 71.05+1.94 71.90 + 3.54 -
P=0.8]|k=80 67.49 + 8.12 73.38 +2.09 71.01 +2.02 72.24 +2.32
P=0.9/|k=100 67.10 +8.50 71.00 £+ 1.00 74.06 + 2.25 73.99 +1.95

Breast_cancer P=0.5||k=20 79.85 +2.58 67.38 +3.65 74.78 +12.6 80.19 +2.13
P=0.6||k=40 81.49 +2.38 71.66 +2.28 71.09 +3.11 86.13 + 6.89
P=0.7||k=60 82.38 +2.23 72.86 +£1.29 74.61+£2.42 78.30+5.43 95.63 +£0.91
P=0.8]|k=80 82.93 +2.10 7433 +£3.20 75.63 +2.58 78.73 +3.73
P=0.9||k=100 83.21+1.91 7520 +2.74 78.31+1.76 70.02 +5.05

Flare_solar P=0.5||k=10 50.03 +£5.59 55.54 +4.32 60.02 +3.71 56.17 £ 0.73
P=0.6||k=20 50.35+7.03 62.31 + 5.66 59.37 £3.99 60.53 +2.22
P=0.7||k=30 52.84+7.73 56.84 +4.97 60.58 +3.78 60.16 + 1.39 -
P=0.8||k=40 58.93 +4.98 58.63 +4.81 60.99 +4.25 61.89 +5.31
P=0.9]|k=50 61.72 +5.52 61.02 +5.54 61.19+4.74 62.03 +2.64

Heart P=0.5|k=20 81.78 +1.25 81.01 +2.01 80.77 +0.95 88.53+1.70
P=0.6||k=40 81.60 + 1.06 83.09 +3.34 81.20+1.33 87.46 +3.01
P=0.7||k=60 81.63+1.13 82.83 +2.58 81.82+1.82 92.19 + 2.15 -
P=0.8]|k=80 82.09 +1.24 84.90 +2.99 84.01 +1.67 91.78 £ 1.92
P=0.9]|k=100 81.29 +1.09 82.77 +2.76 87.77 +£1.00 80.09 +1.30

Image P=0.5||k=10 68.50 + 5.73 73.09 +4.33 75.84 +2.59 73.00 + 5.06
P=0.6||k=20 68.50 +5.73 77.06 +5.99 80.03 +2.36 74.53 +4.37
P=0.7||k=30 68.50 +5.73 80.52 +4.07 79.06 + 3.31 76.03 +4.12 -
P=0.8]|k=40 68.50 +5.73 78.34 +3.76 80.93 +4.07 77.42.+3.38
P=0.9||k=50 68.50 +5.73 77.08 £ 6.50 83.52 +4.44 71.05 +3.99

German P=0.5||k=20 71.80+1.49 64.82 +2.01 69.06 +2.15 70.46 + 1.98
P=0.6||k=40 72.83 +1.32 68.52 +2.28 68.43 +3.00 73.08 +2.36
P=0.7||k=60 72.97 +1.05 68.06 + 1.05 71.28 +1.86 73.00 + 1.99 -
P=0.8]|k=80 7297 +1.71 7247 +2.21 7113 +£1.35 71.28 +0.98
P=0.9]|k=100 72.97 +1.53 7138 £1.59 70.59 + 1.88 71.28 +0.98

Splice P=0.5||k=10 49.50 +2.51 61.25+3.93 61.73 +4.99 50.34 + 5.09
P=0.6||k=20 49.50 +2.53 61.00 + 4.09 58.30 + 5.02 53.43 +5.37
P=0.7||k=30 50.53 +4.25 60.52 +3.90 60.09 +3.49 58.32+249 -
P=0.8]|k=40 62.09 +3.30 62.24 +1.77 61.73 +£2.28 56.09 + 3.83
P=0.9]|k=50 65.90 + 2.91 60.03 +3.33 60.00 +3.13 57.66 +3.99

larger than 10% on datasets German and Banana, and is larger than
60% on dataset Splice. For the dataset Splice, the testing accuracy is
only about 5% when the kernel parameter is 0.1. The reason may be
the “poor” kernel feature space where the data cannot be classified
well. So the kernel parameter may produce more effect on testing
results comparing with the penalty parameter on most datasets. In
practical applications, we can select suitable kernel function and
parameter by some other methods. In following experiments, the
Gaussian kernel parameter is selected as 1.0 for simplicity.

5.1.3. Effectiveness verify of M_GSVM model

5.1.3.1. Effectiveness evaluation factors. Suppose support vectors set
obtained by traditional SVM on training set X is SVs={svy,5v,,...,SV;}.

The training dataset of GSVM is X with I' samples after mapp-
ing, simplify, granulation, replacement and other operations. Let
co=SVsnX'. The samples compress rate (compress_rate) and support
vector overcast rate (overcast_sv) are defined, respectively.

compress_rate=1-1'/1 (13)
overcast_sv = |co|/|SVs| = |co| /t (14)
here, |e| represents the number of samples belonging to the set. In

general, from the view point of generalization performance and
learning efficiency, if the compress_rate of an GSVM model is high,
its learning efficiency is also high. And the bigger overcast_sv, the
better generalization performance. The main factor affecting them is
granulation parameter. The compress_rate of ART_GSVM, SOM_GSVM
and C_GSVM can be calculated easily according to formula (13).
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Table 4
Comparisons of testing results among different models by polynomial kernel (%).

Data sets Granulation parameter ART_GSVM SOM_GSVM C_GSVM M_GSVM SVM

Banana P=0.5||k=20 62.25+2.38 78.12+2.53 83.17 +3.02 84.03 +4.52
P=0.6||k=40 72.50 +3.56 75.73 + 4.08 83.53 +4.28 86.91 + 3.70
P=0.7||k=60 70.35+5.93 77.10+3.25 80.93 +3.92 82.59 +2.54 -
P=0.8||k=80 7219+ 531 80.59 +2.21 82.52+3.45 80.48 +3.66
P=0.9||k=100 72.71 +3.90 82.34+2.24 85.53 + 3.66 73.54 +3.01

Titanic P=0.5||k=20 73.29+5.95 72.65 + 5.81 72.71+9.58 72.53 +3.02
P=0.6||k=40 73.29+5.95 73424227 68.32+10.0 71.87 +2.55
P=0.7||k=60 73.63 +£6.50 73.35+3.94 69.94 +8.70 73.94+2.08 -
P=0.8||k=80 73.63 + 6.50 7445 + 3.55 71.00 +10.8 74.10 + 3.51
P=0.9||k=100 73.63 +6.50 73.96 +2.53 71.00+10.8 73.00 +2.94

Thyroid P=0.5||k=20 93.53 + 4.00 89.73 +2.40 90.05 +3.73 92.75+2.24
P=0.6||k=40 92.87 +4.71 92.37 +3.19 91.76 +2.99 93.23 +2.70
P=0.7||k=60 91.76 + 6.04 92.40 +5.56 92.48 +3.89 90.83 +1.98 98.21+1.53
P=0.8||k=80 91.54+2.25 91.00+2.18 92.10+5.17 88.54 +2.06
P=0.9||k=100 91.54 + 3.87 92.46 + 3.82 93.35+4.31 83.00 + 1.00

Diabetic P=0.5||k=20 70.13 +5.81 67.51 +2.11 68.42 +2.73 70.01 +5.99
P=0.6||k=40 7135 +5.54 73.00 +3.24 69.95+2.15 70.94 + 3.05
P=0.7||k=60 73.65 +6.20 7247 +1.94 71.81+2.54 72.01+2.54 -
P=0.8||k=80 69.84 +6.43 73.73 +3.36 72.98 +3.19 7279 +2.88
P=0.9||k=100 74.26 + 7.97 71.55 +2.50 73.56 + 2.64 74.08 + 3.06

Breast_cancer P=0.5||k=20 78.07 +2.99 68.52 +1.97 76.73 +2.25 83.13 +7.51
P=0.6||k=40 80.52+2.20 66.31 +2.66 75.37 +3.84 85.65 + 4.44
P=0.7||k=60 82.39+2.54 72.03 +£2.90 75.94 + 2.61 81.50 +2.80 93.99 +3.37
P=0.8||k=80 82.00+1.19 69.56 + 3.04 77.85 +2.06 77.47 +3.83
P=0.9||k=100 83.21+2.77 66.83 +2.99 79.48 + 4.07 7436 +5.25

Flare_solar P=0.5||k=20 55.21+1.20 58.23 +3.89 58.35 + 4.02 55.28 +2.95
P=0.6||k=40 55.21+1.20 60.48 + 4.37 60.73 +3.85 5842 +3.10
P=0.7||k=60 55.21+1.20 60.02 +3.36 60.02 +3.97 59.53 +3.21 -
P=0.8||k=80 60.53 +3.35 58.56 +4.03 61.83 +2.12 61.10+2.78
P=0.9||k=100 60.02 +2.78 61.53 +2.97 62.06 +5.48 62.56 +5.14

Heart P=05||k=20 7930 +1.29 79.97 +2.98 79.54 +2.28 89.54 +2.28
P=0.6||k=40 82.07 +0.76 81.58 +2.37 81.66 +2.73 90.73+1.16
P=0.7||k=60 84.56 + 0.94 84.59 +3.50 82.39+2.24 92.64 +2.93 -
P=0.8||k=80 84.93+1.10 83.73 +2.86 86.11+3.60 90.00 +3.50
P=0.9||k=100 82.75 + 1.88 81.25 +3.05 88.59 +3.08 85.35+2.78

Image P=0.5||k=20 65.35 +4.26 75.64 +3.58 79.54+3.77 71.59 +4.85
P=0.6||k=40 68.50 +5.73 78.23 +4.02 78.29+2.00 7326 +3.73
P=0.7||k=60 68.50 +5.73 79.94 +3.91 80.73 +5.31 74.63 £3.35 -
P=0.8||k=80 68.50 +5.73 76.81+5.13 81.06 + 2.54 78.56.42.10
P=0.9||k=100 68.50 +5.73 74.52 +4.94 81.77 + 3.06 75.55 +3.94

German P=0.5||k=20 70.94 +1.21 65.05 + 1.97 67.30+2.25 71.51 +2.06
P=0.6||k=40 71.83 +£1.57 67.35 + 2.54 66.48 +3.17 72.94+2.79
P=0.7||k=60 71.14+2.16 66.62 +2.12 70.85 +2.07 73.53 +2.15 -
P=0.8||k=80 72.97 +1.05 69.73 + 1.68 71.19+1.98 72.08 +1.54
P=0.9||k=100 72.97 +1.05 73.14 +2.97 70.07 +£2.31 70.06 +1.30

Splice P=0.5|k=20 53.30 + 1.94 59.73 +3.82 59.48 +3.00 50.28 +3.98
P=0.6||k=40 53.30+1.94 60.48 + 3.66 58.72 +2.94 55.45 + 4.06
P=0.7||k=60 10.76 +2.53 62.54 +4.00 57.54 +2.56 57.37 +2.77 -
P=0.8||k=80 58.92+3.14 61.07 +3.45 61.02+2.78 55.10 +3.54
P=0.9||k=100 64.09 + 2.77 59.40 + 2.65 61.17 +3.53 53.66 + 4.49

For ART_GSVM, I is the determined by parameter P, while for SOM_
GSVM and C_GSVM, [' is the number of granules k. For M_GSVM, I
refers to m+p, the sample number in final retaining SVM step. The
overcast_sv of several models can be computed directly by Eq. (14).

In order to improve learning efficiency, the size of training data
should be reduced as more as possible. On the other hand, it
should also reserve enough support vectors. Hence, a new factor,
support vectors relative retention rate p, is introduced.

overcast_sv

= compress_rate (13)

During acceptable training time, if p is big, more original
support vectors are retained and the generalization performance
is better. Conversely, the model error will be large.

5.1.3.2. Experiments on effectiveness of M_GSVM. For ART_GSVM,
SOM_GSVM and C_GSVM models, those samples which are the
nearest to the granule centers are usually used as training data,
and then the sample compress rates show little be difference
among these three models. Therefore, for simplicity, the M_GSVM
will be only compared with C_GSVM. Because experiment results
are similar by Gaussian and polynomial kernels, only the Gaussian
kernel is taken into account in this experiment. When C_GSVM
and M_GSVM models take maximum test accuracy (from Table 3),
the corresponding compress_rate, overcast_sv and p are listed in
Table 7. compress_rate;, overcast_sv; and p; represent sample
compress rate, support vectors overcast rate and support vectors
relative retention rate after the first training of M_GSVM model,
and compress_rate,,overcast_sv, and p, represent those three
factors after retraining SVM.
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Fig. 5. Comparisons of training time for four models by Gaussian kernel. (a) Banana, (b) Titanic, (c) Thyroid, (d) Diabetic, (e) Breast_cancer, (f) Flare_solar, (g) Heart, (h)
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Fig. 6. Comparisons of p(Ey) for four GSVM models (RBF kernel).

25

BART GSVM
NV~~~ T B SOM_GSVM
B - — - — —|mc_csw
oHl- - - e _ M _lomeswm

Fig. 7. Comparisons of p(Ey) for four GSVM models (Polynomial kernel).

It can be seen from Table 7 that p, of M_GSVM model after
hyperplane correction is greater than that of C_GSVM only on five
datasets, Banana, Titanic, Thyroid, Breast_cancer and Heart. However,
the support vectors overcast rate of M_GSVM on all datasets is higher
than that of C_GSVM model obviously. The reason is that many more
support vectors are lost in the process of mapping, simplifying,
granulation and other operations of C_GSVM. Although the loss of
some support vector information in positive and negative granules
may be offset, it will be difficult to make further improvements of
C_GSVM model if the information is lost at previous steps. While, the

M_GSVM model has the high support vectors overcast rate due to
using mixed measure and hyperplane correction.

Fig. 8 shows the relationship between granulation parameters
and support vectors relative retention rate p; and p- in two stages
for M_GSVM model. In Fig. 8, vertical dot lines correspond to the
number of granules when the M_GSVM model reaches the biggest
support vectors relative retention rate. It can be seen that the
optimal number of granules in Fig. 8 is the same as that in Fig. 5
when the M_GSVM obtains the relative optimal generalization
performance on 6 datasets, Banana, Titanic, Thyroid, Breast_cancer,
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Table 5

Parameters setting of M_GSVM model.
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Data sets Granular Penalty Gaussian kernel
parameter k parameter C parameter r
Banana 40
Titanic 30
Thyroid 40
Diabetic 100
Breast_cancer 40 10/100/1000/
Flare_solar 50 10000 0.1/1.0/1.5[10
Heart 60
Image 40
German 40
Splice 30
Table 6

Testing results on different parameters (%).

Flare_solar, Heart. So for most datasets, when the generalization
performance is good, the corresponding p may be high. It also can
be observed that the p takes a high value when the number of
granules is suitable except for Image dataset. Generally, when k is
small, the number of obtained granule super balls is small, and then
many granule super balls are regarded as mixed granules. This will
lead to the overcast_sv; and p; too small. However, when granula-
tion parameter is large, the number of obtained granule super balls
is large, and too many granule super balls as purity granules will be
deleted. This will result in the overcast_sv and p; too low. For
example, when granulation parameter k takes 40 on Thyroid and 60
on Diabetic, although p, is slightly less than p, the overcast_sv, is
obviously larger than the overcast_sv,. It is said that some non
support vector information is added, but the number of valid

Datasets Penalty parameter r=0.1 r=1.0 r=1.5 r=10 Aq
Banana 10 83.96 84.37 84.69 56.77 27.92
100 84.76 85.25 84.52 56.20 29.05
1000 85.32 85.92 84.69 56.38 29.54
10000 84.29 84.10 82.06 58.24 26.05
A 1.36 1.82 2.63 2.04
Titanic 10 70.59 72.53 74.13 71.15 3.54
100 71.28 72.94 74.06 70.93 3.13
1000 73.94 74.88 74.94 74.35 1.00
10000 71.34 71.34 71.06 71.34 0.28
Ay 3.35 3.54 3.88 3.42
Thyroid 10 89.57 90.06 91.50 83.18 8.32
100 89.69 91.58 92.37 81.69 10.68
1000 91.23 93.00 93.51 81.50 12.01
10000 88.62 88.94 87.91 83.14 5.80
Ay 2.61 2.64 5.60 1.68
Diabetic 10 70.51 71.59 72.00 74.18 3.67
100 70.48 71.94 73.52 74.82 4.34
1000 70.69 73.99 74.15 75.16 4.47
10000 70.97 72.53 73.47 75.48 4.51
Ay 0.49 2.40 2.15 1.30
Breast_cancer 10 83.58 84.93 83.56 82.58 2.35
100 84.06 85.19 84.10 83.16 2.03
1000 84.40 86.13 84.11 83.47 2.66
10000 82.73 83.09 81.70 82.09 1.39
Ay 1.33 3.04 2.41 1.38
Flare_solar 10 59.81 61.57 60.33 64.47 4.66
100 59.34 62.19 61.10 65.32 5.98
1000 59.98 62.03 61.28 66.59 6.61
10000 57.60 61.48 59.94 63.20 5.60
A 2.38 0.71 1.34 3.39
Heart 10 84.95 91.21 89.25 90.15 6.26
100 87.03 91.58 90.53 91.20 4.55
1000 86.15 92.19 91.10 91.49 6.04
10000 85.78 90.27 89.35 91.13 5.35
Ay 2.08 1.92 1.85 1.34
Image 10 74.32 76.91 77.01 81.13 6.81
100 76.10 77.25 77.53 84.28 8.18
1000 75.94 77.42. 77.66 82.96 7.02
10000 75.52 76.83 76.94 83.30 7.78
Ay 1.78 0.59 0.72 3.15
German 10 58.28 72.72 73.55 74.96 16.68
100 59.40 72.38 74.08 75.13 15.73
1000 61.37 73.08 74.01 76.48 15.11
10000 60.59 71.91 74.14 75.00 14.41
Ay 3.09 1.17 0.59 1.52
Splice 10 4.49 57.39 57.53 76.38 71.89
100 4.49 58.03 57.84 77.59 73.10
1000 4.49 58.32 58.22 75.42 70.93
10000 5.48 56.83 56.51 75.07 69.59
A 0.99 1.49 1.71 2.52




W. Wenjian et al. / Neurocomputing 101 (2013) 116-128

Table 7
Three factors of C_GSVM and M_GSVM models.
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Datasets Banana Titanic Thyroid Diabetic Breast_cancer Flare_solar Heart Image German Splice
C_GSVM compress_rate 0.038 0.025 0.025 0.034 0.023 0.019 0.024 0.056 0.030 0.050
overcast_sv 0.189 0.132 0.132 0.373 0.194 0.125 0.170 0.530 0.383 0.500
P 4.97 5.28 5.28 10.97 8.43 6.58 7.08 9.46 12.77 10.00
M_GSVM compress_rate, 0.082 0.096 0.057 0.051 0.074 0.075 0.049 0.084 0.076 0.072
overcast_svq 0.507 0.434 0.593 0.33 0.538 0.466 0.701 0.627 0.793 0.79
1 6.18 4.52 104 6.471 7.27 6.21 14.31 7.46 10.43 10.97
compress_rate; 0.118 0.121 0.099 0.055 0.103 0.148 0.063 0.101 0.098 0.087
overcast_sva 0.713 0.662 0.865 0.53 0.894 0.751 0.772 0.854 0.812 0.835
P2 6.04 547 8.74 9.636 8.68 5.07 12.25 8.46 8.29 9.6
overcast_sv:overcast_sv, 1:3.77 1:5.02 1:6.55 1:1.42 1:4.6 1:6.01 1:4.54 1:1.61 1:2.12 1:1.67
p:p2 1:1.22 1:1.04 1:1.66 1:0.88 1:1.03 1:0.77 1:1.73 1:0.89 1:0.65 1:0.96
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Fig. 8. Tendency of support vector relative retention rate for M_GSVM model. (a) Banana, (b) Titanic, (c) Thyroid, (d) Diabetic, (e) Breast_cancer, (f) Flare_solar, (g) Heart,

(h) Image, (i)German, (j) Splice.

original support vectors is increased. Therefore, purity granules may
contain useful support vector information for SVM learning and the
hyperplane correction is effective. In these experiments, when
granulation parameter takes those values near the vertical dot
lines, final training samples will include more original support
vectors and they will help to improve the model so as to obtain
approximate generalization performance of traditional SVM.

5.2. Database of Interacting Proteins

The M_GSVM model is further verified on Proteins dataset.
Database of Interacting Proteins (DIP) is applied to predict the
relationship of interacting proteins, and it can be download from
http://dip.doe-mbi.ucla.edu/dip/Main.cgi. This database consists of
the interaction of proteins from various species, such as D. melano-
gaster, S. cerevisiae, E.coli, C. elegans, H. sapiens, H. pylori, M. musculus
and R. norvegicus. The interactions of each species include full and
core. Among all those interactions, all the core interactions are
verified by biological experiments, while the full interactions have
not been tested by experiments yet. The data only including core
interactions of Saccharomyces cerevisiae (baker’s yeast) updated on
Oct. 10th, 2010 are used in this experiment.

The used dataset consists of 4514 pairs of proteins, each of which
has its own ID. With the help of this ID, we can successfully find out
the sequence of the amino acid of the corresponding protein from
another database (FULL, a database contains the sequence of amino
acid of different protein). Then, the sequence is coded according to
segment local description. After this process, each protein has 630
features, and the database consists of 4514 samples, each of which
has two proteins, and each sample will have 1260 features. 2000
pairs of them are positive (two protein have relations) and the others
are negative (they have no relations). In our experiments, the
principal component analysis (PCA) method is adopted to extract
features, and 10, 20, 30, 40, 50 principal components are selected,
respectively. Four models, SVM, SOM_GSVM, C_GSVM and M_GSVM,
are compared, and the experiment results are shown in Table 8.

In Table 8, the bold values denote the maximum prediction
accuracy and the corresponding running time under different
granulation parameters for each method. Comparing with tradi-
tional SVM, the efficiency of any GSVM has been improved at least
10 times. It can be observed that the testing results of SVM are the
best in all the cases, but the training times are the longest. For
other three GSVM models, when number of principal components
is selected as 10, 30, 40 and 50, the M_GSVM is the best. When 20
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Table 8

Comparison of experiment results among different models on database of Interacting Proteins.

M_GSVM (k)

SOM_GSVM (k)

SVM C_GSVM (k)

Experiment

No. of principal

Results

components

500

400

300

200

100

500

400

300

200

100

500

400

300

200

100

79.855
93.281

497

81.177
98.142

513

83.145
69.737

437

84.953
45.039

426

81.029
25.438

398

80.852

104.44

456

80.582
68.875
365

79.941
35.500

77.394
271

72.073
8.312
94

82.470
21.266

424

83.324
11.875

69.579 80.791 81.360
353

87.066
1483.6

Accuracy (%)

Time(s)
#SV

18.218

187
81.364

5.7344

274

2.0625

197

0.4063

98

10

785

80.784
91.078

483

81.706
79.828

527

82.390
52.377

501

84.628
41.149

449

79.693
13.183

411

84.537
128.38
494

83.214
84.471
396

80.639
49.938
297

72.813
8.500

100

84.633 84.505
12.125 22.375
392 478

71.400 80.450 81.574

88.902

1446.0
1124

Accuracy (%)

Time(s)
#SV

19.719
200

5.6875

299

2.0625

200

0.3906

00
69.465

20

1

79.349
71.923

541

78.094
54.096

532

80.370
25.730

469

81.723
33.628

477

83.560
21.296

391

79.514
123.83
499

79.728
86.065

400

75.659
50.719
300

77.281
24.228

200

70.593
11.750

80.322 79.681
12.453 22.578
398 497 100

78.543

75.740

84.633

1454.3
1268

Accuracy (%)

Time(s)
#SV

5.7969

300

2.1250

200

0.3906

100

30

69.954
109.32
559

74.299
58.433

543

77.355
30.095

471

76.438
31.078

467

78.312
19.373

402

75.772
124.99
500

76.071
89.340

399

75.815
50.312

300

71.546
27.750

200

68.914
15.656

100

77.448 74.189
12.656 22.656
399 496

68.910 73.833 75.484

81.460

1483.7
1335

Accuracy (%)

Time(s)
#SV

5.8438

300

2.1875

200

0.4375

100

40
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70.967
159.82
596

71.344
233.35
559

74.014
138.49
466

73.899
95.682

479

75.970
87.376

431

73.89

73.852
92.691

400

74.161
57.047
300

70.622
30.656

200

70.067
15.594

100

72.994 72.694
12.047 22.188
400 499

65.737 69.479 71.514

78.970

1454.7
1391

Accuracy (%)

Time(s)
#SV

143.39
500

5.7344

300

2.1250

200

0.4219

100

50

52.044
71.90

731

55.832

1138.4
842

57.410
692.58
694

58.075
371.34
528

61.353
207.40
537

57.533
389.37
500

60.380
306.40
400

63.094
173.8
300

59.632
86.560

200

53.558
59.851

69.374

31574
2537

Accuracy (%)

Time(s)
#SV

(training time is too long)

1260

00

1

90
88
86
84
82
80
78
76
74
72

70 | | | |
10 20 30 40 50

Principal Components

—8—SVM
—A—SOM_GSVM

Test Accuracy (%)

Fig. 9. Changing tendency of prediction accuracy with principle components.

and 1260 principal components are selected, the M_GSVM is only
inferior to C_GSVM but with very little difference. For SOM_GSVM
model, when all the 1260 features are used, the distance between
any two samples may be very large and the similarity of samples
are not measured effectively. Then, training and testing results
cannot be obtained. Although the running time of M_GSVM is a
little longer than that of C_GSVM, M_GSVM has significant
improvement for generalization performance in most cases com-
paring with C_GSVM and SOM_GSVM. This means that M_GSVM
can retain most of the original support vectors and reduce the
model error. Hence, M_GSVM can obtain almost the same gen-
eralization performance like standard SVM and make good trade-
off between learning efficiency and generalization performance.

Fig. 9 is the changing tendency of the prediction accuracy for
four models along with 10, 20, 30, 40 and 50 principal components
on DIP database. It can be found that, with the increase of principal
components, the generalization performance is amazingly not
always improved. It shows a decrease trend when the principal
components exceed 20 for SVM, C_GSVM, SOM_GSVM and 10 for
M_GSVM. This means that when using PCA to preprocess DIP
database, many negative features will be deleted during classifica-
tion. It is supported in Table 8 that the worst results are obtained
when all of 1260 features are selected, hence, we may only need
less principal components on solving practical problems.

6. Conclusions

In order to improve the efficiency of SVM, traditional GSVM
models are usually trained after data mapping, simplification,
granulation and other operations. However, the model error is
inevitably and thus limits the improvement of generalization
performance. This paper proposes a granular support vector
machine model based on mixed measure, which granulates in
high dimensional space and extracts some mixed granules for
SVM training. The hyperplane will be further corrected by geo-
metric analysis. The M_GSVM can retain the sufficient original
support vector information, enhance the potential improvement
of generalization performance, and reduce the model error
effectively. By this model, high generalization performance can
be obtained with high learning efficiency simultaneously.

Because this paper focuses on improving the generalization
performance of GSVM in a given kernel space, the kernel selection
and parameter tuning are not taken into account. How to combine
M_GSVM model with kernel selection will be our future work.
Additionally, how to set the model parameters to make M_GSVM
method be applied to different types datasets is worthy to further
exploration. Besides, the combination of the proposed M_GSVM
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with effective feature reduction approaches to predict the pro-
teins interaction is also a valuable problem.

Algorithm 1 Granule dividing algorithm

Step1: Select k samples randomly as the center of k granules.
Step2: Classify samples according to formula (6) by nearest
neighbor approach in kernel space.

Step3: Adjust the centers of k granules by Eq. (4), and observe
whether there are changes of these centers. If so, back to step2,
else go to step4.

Step4: End the algorithm and obtain the divided granules
{X1.Xa,... Xk}

Algorithm 2 M_GSVM algorithm

Initialization
Given the training samples X = {(xi,yi)}f: 1
Step1: Granulating based on kernel.

Given the number of granulation parameters k,
and take granulation based on granular dividing algorithm.
Obtain the divided granules {X{,X5,....Xi}.

Step2: Extracting mixed granules.

Step2.1: Set up the threshold parameter of mixed
granule support; and purity;, then take the samples of
mixed granule into the Set(mixed).

Step2.2: while ( the size of granule X; in Set(mixed) is
bigger than 2I/k)

loop
{
Delete the mixed X; from Set(mixed).
Divide mixed granule X; into sub
granules based on granular dividing algorithm.
Add mixed sub granules into the
Set(mixed).
}
Step3: Training SVM
Take all the samples of Set(mixed) as training
samples, and train SVM. Then an initial approximate
hyperplane f is obtained.
Step4: Correcting hyperplane.

Step4.1: Set up the threshold parameter d’ (d’ > d)
of hyperplane correction.

Step4.2: Compute the distance from each purity
granule super ball to the initial hyperplane f according to
Eq. (9).

Step4.3: For each purity granule X;

{
Add all samples x; in granule X; into the
training dataset, if (d(x;f) <d').
1
Step5: Retraining SVM

Train SVM on the new training samples and obtain

the final superior hyperplane f.
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